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Abstract: Background
Advances in next-generation DNA sequencing technologies are now enabling detailed
characterization of sequence variations in cancer genomes. With whole genome
sequencing, variations in coding and non-coding sequences can be discovered. But
the cost associated with it is currently limiting its general use in research. Whole exome
sequencing is used to characterize sequence variations in coding regions, but the cost
associated with capture reagents and biases in capture rate limit its full use in
research. Additional limitations include uncertainty in assigning the functional
significance of the mutations when these mutations are observed in the non-coding
region or in genes that are not expressed in cancer tissue.

Results
We investigated the feasibility of uncovering mutations from expressed genes using
RNA sequencing datasets with a method called "VaDiR: Variant Detection in RNA" that
integrate three variant callers, namely: SNPiR, RVBoost and MuTect2. The
combination of all three methods, which we called Tier1 variants, produced the highest
precision with true positive mutations from RNA-seq that could be validated at the DNA
level.  We also found that the integration of Tier1 variants with those called by MuTect2
and SNPiR produced the highest recall with acceptable precision. Finally, we observed
higher rate of mutation discovery in genes that are expressed at higher levels.

Conclusions
Our method, VaDiR, provides a possibility of uncovering mutations from RNA
sequencing datasets that could be useful in further functional analysis. In addition, our
approach allows orthogonal validation of DNA-based mutation discovery by providing
complementary sequence variation analysis from paired RNA/DNA sequencing data
sets.
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VaDiR: an integrated approach to Variant
Detection in RNA
Lisa Neums1,2, Seiji Suenaga1, Peter Beyerlein2, Sara Anders2, Devin Koestler4, Andrea Mariani3 and
Jeremy Chien1*

Abstract

Background: Advances in next-generation DNA sequencing technologies are now enabling detailed
characterization of sequence variations in cancer genomes. With whole genome sequencing, variations in
coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its
general use in research. Whole exome sequencing is used to characterize sequence variations in coding regions,
but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional
limitations include uncertainty in assigning the functional significance of the mutations when these mutations
are observed in the non-coding region or in genes that are not expressed in cancer tissue.

Results: We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing
datasets with a method called “VaDiR: Variant Detection in RNA” that integrate three variant callers, namely:
SNPiR, RVBoost and MuTect2. The combination of all three methods, which we called Tier1 variants,
produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA
level. We also found that the integration of Tier1 variants with those called by MuTect2 and SNPiR produced
the highest recall with acceptable precision. Finally, we observed higher rate of mutation discovery in genes
that are expressed at higher levels.

Conclusions: Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing
datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal
validation of DNA-based mutation discovery by providing complementary sequence variation analysis from
paired RNA/DNA sequencing data sets.

Keywords: RNA-seq; somatic variant calling; Ovarian Cancer; Cancer genomes; Transcriptome

Background
Next-generation sequencing has enabled the discovery
of novel variants in genetic sequences. However, even
though the cost of sequencing has decreased in recent
years, whole genome sequencing (WGS) can still be
prohibitively expensive in many cases [1]. Sequenc-
ing only exonic regions of the genome helps reduce
cost, and multiple tools (such as MuTect2 provided by
GATK [2], MuSE [3], SomaticSniper [4] and VarScan2
[5]) have been developed for somatic variant discov-
ery using whole exome sequencing (WES) data, and
the performance of these tools was recently evaluated
[6]. Still, the reagents used to capture exonic regions
are costly and produce uneven coverage across the
genome due to capture rate biases [7, 8], and only

*Correspondence: Chien.jeremy@gmail.com
1Department of Cancer Biology, University of Kansas Medical Center, 3901

Rainbow Blvd., 66160 Kansas City, KS, USA

Full list of author information is available at the end of the article

a fraction of the genes in an exome are actually ex-
pressed in any given cell [9]. For diseases like cancer,
mutations in expressed regions are of greater interest
than in non-exonic or unexpressed exonic regions be-
cause they are more likely to affect cellular function
directly. The transcriptome is therefore an attractive
subject of research in cancer and other human patholo-
gies, and some of the cancer genes, such as FOXL2 in
granulosa-cell tumors [10] and ARID1A in clear cell
carcinomas of the ovary [11], were initially discovered
through transcriptome sequencing.

The calling of variants with sequencing data from
transcriptome (RNA-seq) is more challenging because
of the splice junctions. Tools like RVBoost [12], SNPiR
[13] or GATK Haplotypecaller are created to address
this problem. Somatic variant calling from RNA is
more difficult because of RNA processing like RNA-
editing, allele-specific expression, variable levels of
gene expression, and the heterogeneity of tumors which

Manuscript in pdf Click here to download Manuscript
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leads to low variant frequencies of some mutations [14].
Tools such as RVBoost, SNPiR, and GATK Haplo-
typecaller can be used to perform germline variant
calling from RNA, but their performance and limita-
tions for somatic variant calling have not been stud-
ied previously. Nonetheless, these approaches have the
potential to provide an orthogonal method to validate
DNA sequence variations by complementing the anal-
ysis with RNA sequence analysis.

Additional challenges include the determination of
detected mutations either as germline or somatic.
In tumor tissues, somatic mutations differ from the
germline variations of a patient that are different from
the reference genome. To detect somatic sequence vari-
ations, it is necessary to compare DNA sequences from
normal tissue, such as blood, to DNA or RNA se-
quences from tumor tissue. If germline sequence varia-
tions are not filtered out, it would be difficult to assign
detected variations as either somatic or germline. Ad-
ditionally, it would be improper to assign a variant
discovered in the tumor tissue as a somatic mutation
when this particular position has no sufficient coverage
in germline sequencing.

It should be noted that the integrated approach used
by RADIA [15], that combines the somatic variant se-
quence analysis from tumor DNA and RNA sequenc-
ing, allows the discovery of DNA sequence variations
in expressed genes and a better characterization of
the effect of mutations on gene expression and phe-
notypic alterations. However, its use of WES of tumor
tissue introduces additional cost. RADIA uses the tu-
mor DNA and normal DNA sequencing data sets in the
main analysis, and RNA sequence analysis is used as
an orthogonal supplement. DNA sequence variations
are considered as the ground truth, and RNA variants
not supported by DNA sequencing were rejected as
false-positives. Although somatic variants discovered
only by RNA sequencing have the potential of being
false-positives, some of these variants may represent
missed calls from tumor DNA sequencing or RNA-
editing sites that have not been annotated. A detailed
comparison of somatic DNA and RNA variants from
different tools will provide us with more precise pro-
cessing and discovery of sequence variations from RNA
and DNA sequencing.

In this study, following the recommendation and
practices that are widely adopted in the field of bioin-
formatics [16, 17], we chose a validated dataset to
perform a detailed comparison of somatic DNA and
somatic RNA sequence variations from 21 pairs of
whole exome and mRNA sequencing from ovarian can-
cer genomes. We formulated an approach to utilize
three publicly available tools, namely MuTect2, RV-
boost and SNPiR for variant discovery from RNA se-
quencing. We evaluated the performance of each tool

and established the best combination of these tools
that enables discovery of variants from RNA sequence
with high precision and recall. We showed that most of
the variants which would be classified as false-positives
or false-negatives can be explained by biological char-
acteristics. In addition, we investigated the perfor-
mance of our workflow on artificially spiked variants
in coding regions of mRNA sequencing data and we
compared the performance of VaDiR to RADIA. Fi-
nally, we showed the performance of our workflow on
a biologically relevant study: the comparison of so-
matic variants in high-grade serous carcinomas col-
lected from patients with chemotherapy-resistant or
-sensitive ovarian cancer.

DATA DESCRIPTION
Twenty one samples of ovarian serous cystadenocarci-
noma from The Cancer Genome Atlas (TCGA) were
divided into two groups: 11 cases that were sensitive to
the cancer treatment and 10 cases that were resistant.
Sensitive cases had a progression-free survival of more
than 18 months, and resistant cases had progression-
free survival of less than 12 months. The clinical data
for the patients were retrieved from cBioPortal ([18–
20]), and the Illumina sequence files for tumor RNA
and normal blood DNA were retrieved from cghub [21]
and gdc [22] (Supplementary Table 1). Whole exome
sequencing and mRNA sequencing datasets were avail-
able from each patient.

Additional data used for the artificial spiking of vari-
ants (see section ”Detection of artificial spiked vari-
ants”) were provided by Dr. Andrea Mariani and came
from three different tumor samples from a patient with
serous ovarian carcinoma.

ANALYSIS
Performance characteristics of each method and
different combinations of two or more methods
To describe the performance characteristics of each
method, we use recall and precision metrics instead of
sensitivity and specificity because we are interested in
variant calls only. Specificity is not a relevant measure
because it includes all true negative calls which are
in millions. We performed variant calling using RV-
boost, SNPiR, and MuTect2 separately. Each caller
alone calls many variants which are not validated by
DNA somatic variants (discordant calls), while SNPiR
calls the most variants (Figure 1(A)). Mutect2 pro-
vides the least amount of variant calls not supported
by DNA sequencing compared to the other two meth-
ods. However, only 10% of variant calls made by Mu-
tect2 was supported by DNA sequencing. These results
indicate that any single caller is not adequate in dis-
covering variants with high precision. Therefore, we
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next tested if any combination of three calling meth-
ods would provide a higher rate of variant calls sup-
ported by DNA sequencing. The combination of all
three calling methods (hereafter referred to as Tier1)
leads to 81.8% of variants which are validated by DNA
somatic variants (concordant calls) with a recall rate of
9% (Figure 1(B), Supplementary Table 2). The com-
bination of Tier1 with mutations called by Mutect2
and SNPiR (hereafter referred to as Tier2) leads to
a higher recall (11.3%) while the precision is still in
a moderate range (41.5%). For the following analysis,
we concentrated only on Tier1.

Effect of weighted features
Additionally, we performed a weighted average of three
callers with the goal of decreasing the number of false
positive (FP) and false negative (FN) calls. Specifi-
cally, we investigated the effect of different weights on
the evalue, which was defined as the sum of FP and
FN. The weights on each of the callers were system-
atically varied from 0 to 1 in increments of 0.1. Eval-
ues were calculated for each weighted combination and
the optimal weights were defined as those that resulted
in the smallest evalue. The consensus call of all three
callers (Tier1) is denoted in blue (Figure 2). Our re-
sults demonstrate that many different combinations of
weights produce similar evalues as compared to the
consensus call of all three callers (Figure 2, Supple-
mentary Figure 1), suggesting that no improvement
in performance was gained by weighted average ap-
proach. Similarly, no appreciable gain in performance
was noted when we considered the variant allele fre-
quency (vaf) in the estimation of the weights (Supple-
mentary Figure 2). Thus, taken collectively, our results
showed little to no benefit in using weighted features.

Performance of a combined calling method
A total of 634 somatic mutations were called from 21
tumor samples. 516 mutations were concordant and
116 were discordant with mutation calls made from
DNA (see Supplementary Table 2). To get a ground
truth of variants which could have been called by RNA
and were called in tumor DNA, we filtered out all
DNA variant calls which have a read depth below 10 in
RNA. With this filtering, we found a total of 515 vari-
ants which were called at the RNA level, while 452 of
them are concordant (true-positive) and 63 discordant
(false-positive) (Table 1). 1,779 of the 10,361 variants
called by DNA callers have read depth greater than
ten at the RNA level, and 1,327 of them were missed
by RNA calling (74.5% false-negative rate).

Variants not found in RNA
To understand why variant calls from RNA sequenc-
ing missed a large majority of variant calls observed

by DNA sequencing, we checked the properties of vari-
ants missed by RNA callers. From the 10,361 somatic
variants called by at least two DNA variant callers,
9,845 were missed by Tier1. Out of them 8,517 (86.5%)
were missed because these variants reside in genes that
are not expressed (4,628) or expressed less abundantly
(3,890) (Supplementary Figure 3). For the mutations
in genes with high transcript abundance, 474 (4.8%)
were missed because these variants were not in exonic
regions. The effect of transcript abundance on vari-
ants discovered from RNA-seq could also be observed
in the percentage of concordant calls: 516 (24.7%) of
the expressed mutations called in DNA in exonic re-
gions were called by Tier1 (Figure 3 (A)) but when the
expression is higher (DP>10) 34.6% (452 out of 1,305
mutations) of the somatic mutations were called. This
result confirms that an important factor in RNA-seq
variant calling is the expression level.

Among the mutations found by DNA callers but
missed by Tier1 from highly expressed genes (DP>10),
531 (5.4%) of the mutations had variant allele fraction
(VAF) < 0.20 in tumor DNA, while 141 of them had
a VAF = 0 (Figure 3 (B), Supplementary Figure 4),
which can be explained through missed indels and that
we accepted only reads with a high quality value in the
discovery of the DP of all variants. Additionally, 724
(7.4%) of the missed mutations had VAF < 0.20 in tu-
mor RNA, while 493 of them had a VAF = 0 in tumor
RNA. This result confirms that one of the limitations
of RNA-based variant calling methods is that they are
highly dependent on the VAF. Figure 3 (B) shows that
VAF of missed variant is significantly lower than VAF
of called variants both at the DNA and RNA levels
(p-value < 0.0001). Moreover, the difference is much
greater between VAF of called variants and missed
variants at the RNA levels, suggesting that many of
the missed variants at the RNA level may be the re-
sult of mutations present in small fraction of tumor
cells and the lower expression of mutated transcripts.

From the variants with high expression and high
VAF, thirty one mutations were not called by any of
the callers. Ninety six mutations were filtered out by at
least one of the callers because of potential evidence of
germline variants or because the realigning step with
PBLAT shows that these variants could come from
mismapping. Most of the missed variants with low
VAF are called by MuTect2 or SNPiR alone or Mu-
Tect2 and SNPiR together(Figure 3 (C)). It is not
clear if these missed variants are false-negatives, i.e,
true variants missed by VADiR, or if they are false-
positives made by DNA callers. Given that many of the
missed variant calls (not found by VaDiR) are the re-
sult of PBLAT step in VaDiR to eliminate mis-mapped

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Neums et al. Page 4 of 9

reads and this step is not used in DNA callers, it is pos-
sible that some of the calls missed by VaDiR are true
negatives that are incorrectly called by DNA callers.

Variants not found in DNA
The differences in coverage or VAF between DNA
and RNA datasets could also contribute to discordant
calls. Therefore, we checked those attributes at discor-
dant sites. From all 116 discordant mutations called by
Tier1, 53 (45.7%) had a read depth (DP) of uniquely
mapping reads under 10 at RNA level and seventeen
(15.7%) had a read depth under 10 at DNA level (Sup-
plementary Figure 5). Another 22 (19.0%) mutations
had VAF > zero at DNA level, indicating that these
low-level DNA variants were missed by DNA-based
callers used by TCGA. Twenty three variants with
VAF=0 at DNA level but high DP in germline DNA,
tumor DNA and tumor RNA were mostly either A>G
or C>T (Supplementary Figure 6). Those variants
were found at 12 different positions, of which one vari-
ant (chr3:58141791 A>G [FLNB:p.M2324V]) is found
in 4 different samples and another (chr20:10285837
C>T) in 9 different samples. These likely represent
unannotated RNA-editing sites [23–25].

Because we observed differences in the VAF at the
discordant sites, we next expanded the analysis to all
sites. Interestingly, we observed a weak correlation of
VAF between tumor DNA and tumor RNA at posi-
tions with DP>0 for tumor DNA and RNA (Figure
4 (A)). When we limit the analysis to positions with
DP>10 for tumor DNA (Figure 4 (B)) or tumor and
normal DNA (Figure 4 (C)), we also observed a weak
correlation. Finally, when we limit the analysis to po-
sitions with DP>10 for tumor DNA and RNA and
normal DNA, we observed a strong correlation of 0.74
of variant allele fraction between RNA and DNA (Fig-
ure 4 (D)). Only four mutations had VAF around 0.50
at DNA level but 1.0 at RNA level which suggests that
these are imprinted genes. These results suggest that
VAF in abundant transcripts are strongly correlated
with VAF at DNA level. Therefore, VAF obtained from
RNA-sequencing may be used as a substitute for DNA
VAF for subclone phylogenetic analysis. As shown by
McPherson et al. [26] subclonal phylogenetics can use
limited/targeted sequencing to identify subclones.

Detection of artificial spiked variants
To further assess the performance of RNA-based
callers, we used BamSurgeon and spiked-in 200 artifi-
cial RNA sequence variants at varying variant fractions
in transcriptomes from three samples of two different
tumor sites from one patient. From the 200 simulated
variant positions, 120 were actually spiked in because
failed positions have too low read depth even if the po-
sitions for spiking were obtained from expressed genes.

On average 71% of all spiked-in variants were found by
each caller alone. The combination of all three callers
leads to a calling of around 50% of all spiked-in mu-
tations (Table 2, Supplementary Figure 7). By using
Tier2, we were able to call 60% of all spiked-in mu-
tations. 55.6% of the mutations missed by Tier1 but
called by at least one caller are not in coding regions
(Table 3). From the remaining missed variants, 15.7%
have a variant allele fraction of less than 0.2 and 6.1%
have high variant allele fraction but have a DP<10 in
DNA.

Comparison between RADIA and VaDiR
Since RADIA performs function similar to our work-
flow VaDiR, we compared the performance differences
between RADIA and VaDiR. RADIA uses DNA vari-
ant calling as the primary method and use RNA vari-
ant calling as a supplement. All somatic variants called
by RADIA are supported by DNA-level evidence and
RNA-only variants are not called by RADIA. There-
fore, we limited our comparison to variants that are
found at both RNA and DNA levels by RADIA and
VaDiR. A total of 308 mutations were called by either
RADIA or VaDiR or both in six samples. Of these, 175
mutations were called by both methods, 12 mutations
were called by VaDiR only, and 121 mutations were
called by RADIA only, while VAF of variants missed
by VaDiR are significantly lower than VAF of variants
missed by RADIA (Supplementary Figure 8). From
these 121 mutations, 40 (33.1%) had a read depth be-
low 10 in RNA. 52 (43.0%) mutations, with a read
depth over 10, had VAF below 0.20. This shows again
the limitation of method based only on RNA. Six of
the remaining 29 variants were in non-exonic regions
and would not be called by our method.

Ovarian cancer: resistant vs. sensitive
Since variant calling from RNA-seq provides both mu-
tational status and gene expression, the number of
mutations found by RNA-seq may be associated with
pathologic or clinical phenotypes. In contrast, the to-
tal number of mutations found at the DNA level may
not be associated with pathologic or clinical pheno-
type because it may be confounded by potentially non-
relevant mutations in non-coding region or in genes
that are not expressed. To determine if variant calling
from RNA-sequencing may provide novel insights into
clinical phenotype, we characterized the number of
mutations in expressed genes from RNA-seq obtained
from 10 chemotherapy-resistant and 11 chemotherapy-
sensitive ovarian carcinomas. We considered concor-
dant mutations only (those found by both RNA- and
DNA-based callers) for the analysis. The results in-
dicate that concordant rate is higher for Tier1 mu-
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tations compared to Tier2 mutations although to-
tal number of mutations are higher in Tier2 (Fig-
ure 5 (A)). We observed higher amount of mutations
in chemotherapy-sensitive ovarian carcinomas com-
pared to chemotherapy-resistant counterparts (Figure
5 (A)). This result is consistent with previous studies
indicating that sensitive tumor samples have a higher
mutation rate in ovarian cancer [27]. In these sam-
ples, number of mutations was significantly higher at
either DNA (pV alue = 0.017 [Two Sample t-test,
t = −2.3474, df = 19]) or RNA (pV alue = 0.03 [Two
Sample t-test, t = −2.605, df = 19]) levels in sensitive
carcinomas compared to resistant carcinoma samples
(Figure 5 (B)).

We next focus our analysis to variants that pro-
duce nonsynonymous mutations because they are more
likely to contribute to a change in phenotype and the
divergent evolution of tumor subclones. If a tumor
sample is predominantly represented by a tumor sub-
clone, VAF of nonsynonymous SNVs in that subclone
will provide the largest fraction of mutations, and thus
higher fractions of VAF in nonsynonymous SNVs is
expected. On the other hand, if the tumor sample is
represented by multiple tumor subclones, each con-
taining subclone-specific mutations, nonsynonymous
SNVs will be found at low levels in this tumor. There-
fore, VAF of nonsynonymous mutations may repre-
sent clonal heterogeneity. Results, shown in Supple-
mentary Figure 9, indicate that differences in VAF be-
tween sensitive and resistant samples are not signifi-
cant. Interestingly, sensitive samples have significantly
lower VAFs in non-COSMIC mutations compared to
resistant samples both at the RNA (pV alue = 0.034
[Two Sample t-test, t = 2.1681, df = 62]) and DNA
level (pV alue = 0.017 [Two Sample t-test, t = 2.4543,
df = 62])(Supplementary Figure 9 (B)).

DISCUSSION
In addition to the consensus calling of variants by
three methods, we tested weighted combinations of the
three methods with and without considering the vaf
[28]. We didn’t see any improvements in the numbers
of true-positive variants, false-negative variants and
false-positive variants . Therefore, the approach that
uses weighted average features is not implemented in
our tool. However, our workflow provides the possibil-
ity of combining calls from any or all callers for further
refinement or for adapting to the need of users.

With our approach, we were able to call variants with
high precision. Only a small fraction of the variants
which are called in RNA but not in DNA are likely false
positives. The remaining discordant variants are either
RNA-editing sites or are missed by DNA callers. Most
of the variants called in DNA but missed by VaDiR

are not in coding regions or are not expressed. We also

missed many variants that have low VAF. Those are

called by none of the callers, MuTect2 only, or SNPiR

only. These mutations are observed at low VAFs in

tumor DNA, and therefore they likely represent muta-

tions from small subsets of tumor subclones. Finally,

our approach missed approximately 15% of variants

(127/853) with a high DP and a high VAF. Among the

127, 96 mutations were called by at least one method,

indicating that consensus calling is too stringent or

that parameters for one of the callers is not optimal.

Those data are confirmed by the artificial spiked-in

variants where only variants with high VAF could be

called by all three callers.

The comparison to RADIA shows that VaDiR misses

mainly low-frequency RNA variants while RADIA

misses some high-frequency RNA variants. This result

confirms the limitation of calling variants only from

RNA, but it also shows that VaDiR can be used to

call a great number of somatic variants without the

need for tumor whole exome sequencing. It should be

noted that current workflow is not completely indepen-

dent of DNA sequencing since we use germline DNA

sequencing to filter out germline variants. However,

if the goal is to discover variants in RNA sequencing,

VaDiR workflow can be modified to use MuTect2 with-

out germline DNA and to leave out the last filtering

step for DP and VAF values in germline DNA. VaDiR

may be suitable for tiered studies where VaDiR can

be used in the initial step to identify common variants

from RNA sequencing datasets, and these candidate

mutations can be confirmed by targeted DNA sequenc-

ing in a larger cohort to uncover biologically relevant

somatic mutations for a specific cancer type. By fo-

cusing the initial variant discovery to expressed genes

in diseased samples, follow-up validation sequencing

efforts can be more targeted to limited regions of in-

terest, thereby lowering the total cost of these genomic

studies.

We were also able to find new possible RNA-editing

sites, which should be investigated in future studies.

Therefore, our workflow provides new capabilities that

are missing in existing approaches and can be used to

gain novel insight into disease phenotype. Our main

concern in future studies would be to increase the num-

ber of concordant variant calls by adjustment of the

filtering steps from SNPiR and RVboost and to in-

vestigate the reasons for missed somatic variants with

high VAFs. Future work will also include efforts to

make this tool available through a web-server for the

detection of somatic variants in RNAseq.
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METHODS
Software
To process the data, we used STAR, BWA-MEM,
Genome Analysis Toolkit (GATK), SNPiR, RVboost,
R, Picard, BEDtools, ANNOVAR, SAMtools, and
BCFtools which is a part of the SAMtools package
[2, 12, 13, 29–36] (Supplementary Table 3). To ana-
lyze our results, we used BAMSurgeon, R, and RA-
DIA [15, 37]. We used reference files from Broad Insti-
tute’s resource bundle [38], including the UCSC hg19
(GRCh37) reference genome, known indels from the
1000 Genomes Project, and known SNPs from dbSNP.

To validate the results that we obtained from RNA,
we used somatic variants from DNA called by any
two of the variant callers MuSE, MuTect2, Somatic-
Sniper, and VarScan. We retrieved the corresponding
VCF files from GDC [22].

We implemented SNPiR with the following modifi-
cations: In the file BLAT candidates.pl at line 94, the
developers incorrectly handled the information in the
CIGAR-string of hardclipped reads, that resulted in a
faulty shift in the base position. We corrected the code
to handle CIGAR-strings correctly. This modification
was necessary because our workflow differs from the
SNPiR workflow in that we use hard-clipped reads. At
the same location, we also added an optimization to
avoid searching through more base positions than nec-
essary. Further, we changed the filter to use PBLAT
instead of BLAT, so we could utilize additional CPU
threads to improve execution time. We made similar
changes in the file filter mismatch first6bp.pl at line
84. In addition, we optimized the search algorithm
in filter intron near splicejuncts.pl by skipping exons
and genes that do not contain a given variant position
(which also introduced the requirement that SNPiR’s
gene annotation table be sorted by position) and mod-
erately improve code for readability. Finally, we mod-
ified convertVCF.sh to filter out any variant whose
read depth (DP) value was zero, in order to prevent
division-by-zero errors that occurred with our dataset.
Rather than replacing the original SNPiR files in our
distribution, we have included both versions and pre-
fixed our file names with “revised ”.

For comparison with our method, we implemented
RADIA with the following modification: During BLAT
filtering, RADIA also incorrectly handled the hard-
clipped reads. We corrected the code for the same rea-
sons as described for the SNPiR implementation.

For creation of the figures, the R package ggplot2
[39] was used.

Aligning sequences
The procedure for the alignment to the reference
genome followed GATK Best Practices [40, 41] (Figure

6). For RNA-seq, we used the STAR aligner in 2-pass
mode with the parameters implemented by ENCODE
project. The resulting aligned reads were processed
to add read groups, sort, mark duplicates, split reads
that spanned splice junctions, create an index, realign
around known indels, reassign mapping qualities, and
recalibrate base quality scores.

For DNA, we used the BWA-MEM aligner with the
same reference genome. The resulting aligned reads
were processed to add read groups, sort, mark dupli-
cates, create an index, realign around known indels,
reassign mapping qualities, and recalibrate base qual-
ity scores.

Calling variants
A refined BAM file for each sample is then used to
process the variant calling. Three different methods
for calling are used: RVboost, SNPiR, and MuTect2.
The first two methods are for germline variants in
RNA and the last method is for somatic variants in
DNA. None of these methods is for somatic variant
calling in RNA. RVboost and SNPiR use the same vari-
ant caller, UnifiedGenotyper from GATK, but differ-
ent filtering procedures. RVboost filters variants using
a statistical learning method called boosting, whereas
SNPiR uses hard filtering in 7 steps (Supplementary
Table 4). To adapt MuTect2’s results for RNA, we im-
plemented three of SNPiR’s hard-filtering steps. RV-
boost and SNPiR only need the refined RNA BAM
file from the tumor tissue. MuTect2 needs both the re-
fined RNA BAM from the tumor tissue and the refined
DNA BAM from normal tissue.

Filtering somatic variants by caller intersection and
additional hard filters
In addition to the filtering procedures of the variant
callers themselves, we further filtered our results by
taking an intersection of vcf files from the three callers.
We restricted our final, combined callset to the vari-
ants called by all three methods (Tier 1) or supple-
mented by variants called by MuTect2 and SNPiR
(Tier2). We also applied our own hard filters, only ac-
cepting variants with a read depth (DP) of at least five
and a VAF of less than 3% in uniquely mapping reads
(Mapping quality of at least 40) in the normal DNA
at the corresponding position.

Weighting of Features
For the performance of different weighted combina-
tions of the three callers, namely SNPiR (s), Rvboost
(r) and MuTect2 (m), we performed two experiments
using all variants in coding regions that have a read
depth DP > 10 in RNAseq. The weight wi of caller
i was calculated as follow: wi = vi∑3

j=1
vj

where the
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values vi ranged from 0 to 1 in increments of 0.1. To
find the best weighted combination, we determined an
evalue, which is calculated as sum of all false-negative
and all false-positive variants. Next, we calculated the
area under the precision-recall curve (AUPRC), sensi-
tivity/recall, specificity and precision.

Experiment 1 (Supplementary Table 5): For all vari-
ants called by at least one caller, we calculated the
weighted score s as follows: s =

∑3
i=1 wi · ci, where ci

represents call (1) or no call (0) made by caller i. We
then identified the optimal threshold of s that provides
the lowest evalue. This was done for each weighted
combination of callers.

Experiment 2 (Supplementary Table 6): We calcu-
lated the evalue for each weighted combination to de-
termine the optimal threshold for which the variant is
called multiplied by the variant allele frequency (vaf)
and adjusted to the dynamic range of the callers as
follow: s =

∑3
i=1 wi · vafi−meani

standarddeviationi
. The threshold

is a value of s between -3 and 3 at which the lowest
evalue is achieved.

Processing artificial spiked variants
We used BAMSURGEON to spike in 200 variants in
coding regions of two ovarian tumor samples, such
that each sample had a different random frequency of
spiked-in variants. The samples were then processed
by VaDiR.

Processing samples with RADIA
Six samples from TCGA, three from resistant patients
and three from sensitive patients, were processed with
RADIA. This analysis required three BAM files from
each sample: one from normal blood DNA, one from
tumor DNA, and one from tumor RNA. We followed
the instructions provided by RADIA for filtering. We
used all possible filters provided by RADIA.
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Illustrations and figures

Figure 1 Intersection of the three variant calling methods.
(A) Intersection of the three methods with all somatic
variants. The red triangles represent the amount of concordant
variants. (B) Intersection of three methods with only
concordant somatic variants. All three callers (Tier1) together
has the highest number of condordant variants.

Figure 2 Effect of weighted features on the performance
Shown is in panel A to D the performance of each
combinationo of weights of the three callers Haplotypecaller,
SNPiR and RVboost while evalue means the sum of FP and
FN. The blue point marks the equal combination of all three
callers, namly Tier1. In Panel E is shown the weights of the
callers in each combination.

Figure 3 Variants called in tumor DNA. (A) Percentage of
concordant calls of all somatic variants from expressed genes
for each sample from two datasets (sensitive and resistant
tumor samples). A higher percentage of concordant calls was
achieved in transcripts with high expression (DP>10)
compared to that of all expressed transcripts (DP>0). (B)
Violin plot of variant fraction for all somatic variant positions
with RNA DP>10. Most of the variant positions missed by
VaDiR have a low variant fraction (VAF<0.1) in RNA. (C)
Ranked SNVs called by TCGA and/or different combinations
of RNA-seq calling methods. Only those positions with
DP>10 in tumor DNA, RNA and normal DNA are included in
the analysis. The names in the chart are the first letters of the
caller SNPiR (s), RVBoost (r) and MuTect (m) or their
combinations.

Tables and captions

Figure 4 Correlation of variant fractions between RNA and
DNA. The four charts show the effect of read depth filter on
the correlation of variant fractions.

Figure 5 Comparison of sensitive and resistant samples. (A)
Numbers of concordant calls in Tier1 and Tier2 by VaDiR.
The precision for each sample for Tier1 and Tier2 is shown in
percentage above each bar. (B) Number of mutations found
at the DNA and RNA level in sensitive tumors are significantly
higher than in resistant tumor Samples.

Figure 6 VaDiR workflow for processing somatic variant
calls from RNA-seq. Sequence alignment is done by STAR
and BWA MEM for RNA and DNA respectively. The refined
mapping follows GATK Best Practices. The variant calling is
done by Unified Genotyper (GATK) and MuTect2 (GATK).
The following filtering steps are done by RVBoost and SNPiR.
Additional filters such as MAQ > 40, germline read depth
(DP) > 5 and germline variant fraction (VAF) < 0.03 are
applied to remove germline variants.

Table 1 Performance characteristics of VaDiR with the
combination Tier1.

DNA positive DNA negative
RNA positive 452 63
RNA negative 1327

Table 2 Called spiked-in variants.

Sample Tier1 Tier2
OV10 68 (54.40%) 78 (62.40%)
OV11 61 (52.59%) 68 (58.62%)
OV12 58 (48.74%) 69 (57.98%)

Percentages represent recall rates in each sample. Tier
1 is the consensus of three callers. Tier 2 is the Tier 1
plus consensus of MuTect2 and SNPiR. Total number
of recoverable spiked-in variants is 125 (OV10), 116
(OV11), and 119 (OV12).

Table 3 Characteristics of missed spiked-in variants.

Tier1 OV10 OV11 OV12
all spiked in variants 125 116 119
missed by VaDiR 57 55 61
not called by at least one caller 20 20 20
missed in coding region 16 17 18
missed in coding region 11 9 13
by RNA VAF>20%
missed in coding region 8 7 11
by RNA VAF>20%
and normal DNA DP>10
Tier2 OV10 OV11 OV12
all spiked in variants 125 116 119
missed by VaDiR 47 48 50
not called by at least one caller 20 20 20
missed in coding region 9 11 12
missed in coding region 6 5 9
by RNA VAF>20%
missed in coding region 4 4 8
by RNA VAF>20%
and normal DNA DP>10
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VaDiR: an integrated approach to Variant
Detection in RNA
Lisa Neums1,2, Seiji Suenaga1, Peter Beyerlein2, Sara Anders2, Devin Koestler4, Andrea Mariani3 and
Jeremy Chien1*

Abstract

Background: Advances in next-generation DNA sequencing technologies are now enabling detailed
characterization of sequence variations in cancer genomes. With whole genome sequencing, variations in
coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its
general use in research. Whole exome sequencing is used to characterize sequence variations in coding regions,
but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional
limitations include uncertainty in assigning the functional significance of the mutations when these mutations
are observed in the non-coding region or in genes that are not expressed in cancer tissue.

Results: We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing
datasets with a method called “VaDiR: Variant Detection in RNA” that integrate three variant callers, namely:
SNPiR, RVBoost and MuTect2. The combination of all three methods, which we called Tier1 variants,
produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA
level. We also found that the integration of Tier1 variants with those called by MuTect2 and SNPiR produced
the highest recall with acceptable precision. Finally, we observed higher rate of mutation discovery in genes
that are expressed at higher levels.

Conclusions: Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing
datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal
validation of DNA-based mutation discovery by providing complementary sequence variation analysis from
paired RNA/DNA sequencing data sets.

Keywords: RNA-seq; somatic variant calling; Ovarian Cancer; Cancer genomes; Transcriptome

Background
Next-generation sequencing has enabled the discovery
of novel variants in genetic sequences. However, even
though the cost of sequencing has decreased in recent
years, whole genome sequencing (WGS) can still be
prohibitively expensive in many cases [1]. Sequenc-
ing only exonic regions of the genome helps reduce
cost, and multiple tools (such as MuTect2 provided by
GATK [2], MuSE [3], SomaticSniper [4] and VarScan2
[5]) have been developed for somatic variant discov-
ery using whole exome sequencing (WES) data, and
the performance of these tools was recently evaluated
[6]. Still, the reagents used to capture exonic regions
are costly and produce uneven coverage across the
genome due to capture rate biases [7, 8], and only

*Correspondence: Chien.jeremy@gmail.com
1Department of Cancer Biology, University of Kansas Medical Center, 3901

Rainbow Blvd., 66160 Kansas City, KS, USA

Full list of author information is available at the end of the article

a fraction of the genes in an exome are actually ex-
pressed in any given cell [9]. For diseases like cancer,
mutations in expressed regions are of greater interest
than in non-exonic or unexpressed exonic regions be-
cause they are more likely to affect cellular function
directly. The transcriptome is therefore an attractive
subject of research in cancer and other human patholo-
gies, and some of the cancer genes, such as FOXL2 in
granulosa-cell tumors [10] and ARID1A in clear cell
carcinomas of the ovary [11], were initially discovered
through transcriptome sequencing.

The calling of variants with sequencing data from
transcriptome (RNA-seq) is more challenging because
of the splice junctions. Tools like RVBoost [12], SNPiR
[13] or GATK Haplotypecaller are created to address
this problem. Somatic variant calling from RNA is
more difficult because of RNA processing like RNA-
editing, allele-specific expression, variable levels of
gene expression, and the heterogeneity of tumors which

.tex file Click here to download Manuscript
VaDiR_bmc_new_revised_jc.tex
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leads to low variant frequencies of some mutations [14].
Tools such as RVBoost, SNPiR, and GATK Haplo-
typecaller can be used to perform germline variant
calling from RNA, but their performance and limita-
tions for somatic variant calling have not been stud-
ied previously. Nonetheless, these approaches have the
potential to provide an orthogonal method to validate
DNA sequence variations by complementing the anal-
ysis with RNA sequence analysis.

Additional challenges include the determination of
detected mutations either as germline or somatic.
In tumor tissues, somatic mutations differ from the
germline variations of a patient that are different from
the reference genome. To detect somatic sequence vari-
ations, it is necessary to compare DNA sequences from
normal tissue, such as blood, to DNA or RNA se-
quences from tumor tissue. If germline sequence varia-
tions are not filtered out, it would be difficult to assign
detected variations as either somatic or germline. Ad-
ditionally, it would be improper to assign a variant
discovered in the tumor tissue as a somatic mutation
when this particular position has no sufficient coverage
in germline sequencing.

It should be noted that the integrated approach used
by RADIA [15], that combines the somatic variant se-
quence analysis from tumor DNA and RNA sequenc-
ing, allows the discovery of DNA sequence variations
in expressed genes and a better characterization of
the effect of mutations on gene expression and phe-
notypic alterations. However, its use of WES of tumor
tissue introduces additional cost. RADIA uses the tu-
mor DNA and normal DNA sequencing data sets in the
main analysis, and RNA sequence analysis is used as
an orthogonal supplement. DNA sequence variations
are considered as the ground truth, and RNA variants
not supported by DNA sequencing were rejected as
false-positives. Although somatic variants discovered
only by RNA sequencing have the potential of being
false-positives, some of these variants may represent
missed calls from tumor DNA sequencing or RNA-
editing sites that have not been annotated. A detailed
comparison of somatic DNA and RNA variants from
different tools will provide us with more precise pro-
cessing and discovery of sequence variations from RNA
and DNA sequencing.

In this study, following the recommendation and
practices that are widely adopted in the field of bioin-
formatics [16, 17], we chose a validated dataset to
perform a detailed comparison of somatic DNA and
somatic RNA sequence variations from 21 pairs of
whole exome and mRNA sequencing from ovarian can-
cer genomes. We formulated an approach to utilize
three publicly available tools, namely MuTect2, RV-
boost and SNPiR for variant discovery from RNA se-
quencing. We evaluated the performance of each tool

and established the best combination of these tools
that enables discovery of variants from RNA sequence
with high precision and recall. We showed that most of
the variants which would be classified as false-positives
or false-negatives can be explained by biological char-
acteristics. In addition, we investigated the perfor-
mance of our workflow on artificially spiked variants
in coding regions of mRNA sequencing data and we
compared the performance of VaDiR to RADIA. Fi-
nally, we showed the performance of our workflow on
a biologically relevant study: the comparison of so-
matic variants in high-grade serous carcinomas col-
lected from patients with chemotherapy-resistant or
-sensitive ovarian cancer.

DATA DESCRIPTION
Twenty one samples of ovarian serous cystadenocarci-
noma from The Cancer Genome Atlas (TCGA) were
divided into two groups: 11 cases that were sensitive to
the cancer treatment and 10 cases that were resistant.
Sensitive cases had a progression-free survival of more
than 18 months, and resistant cases had progression-
free survival of less than 12 months. The clinical data
for the patients were retrieved from cBioPortal ([18–
20]), and the Illumina sequence files for tumor RNA
and normal blood DNA were retrieved from cghub [21]
and gdc [22] (Supplementary Table 1). Whole exome
sequencing and mRNA sequencing datasets were avail-
able from each patient.

Additional data used for the artificial spiking of vari-
ants (see section ”Detection of artificial spiked vari-
ants”) were provided by Dr. Andrea Mariani and came
from three different tumor samples from a patient with
serous ovarian carcinoma.

ANALYSIS
Performance characteristics of each method and
different combinations of two or more methods
To describe the performance characteristics of each
method, we use recall and precision metrics instead of
sensitivity and specificity because we are interested in
variant calls only. Specificity is not a relevant measure
because it includes all true negative calls which are
in millions. We performed variant calling using RV-
boost, SNPiR, and MuTect2 separately. Each caller
alone calls many variants which are not validated by
DNA somatic variants (discordant calls), while SNPiR
calls the most variants (Figure 1(A)). Mutect2 pro-
vides the least amount of variant calls not supported
by DNA sequencing compared to the other two meth-
ods. However, only 10% of variant calls made by Mu-
tect2 was supported by DNA sequencing. These results
indicate that any single caller is not adequate in dis-
covering variants with high precision. Therefore, we
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next tested if any combination of three calling meth-
ods would provide a higher rate of variant calls sup-
ported by DNA sequencing. The combination of all
three calling methods (hereafter referred to as Tier1)
leads to 81.8% of variants which are validated by DNA
somatic variants (concordant calls) with a recall rate of
9% (Figure 1(B), Supplementary Table 2). The com-
bination of Tier1 with mutations called by Mutect2
and SNPiR (hereafter referred to as Tier2) leads to
a higher recall (11.3%) while the precision is still in
a moderate range (41.5%). For the following analysis,
we concentrated only on Tier1.

Effect of weighted features
Additionally, we performed a weighted average of three
callers with the goal of decreasing the number of false
positive (FP) and false negative (FN) calls. Specifi-
cally, we investigated the effect of different weights on
the evalue, which was defined as the sum of FP and
FN. The weights on each of the callers were system-
atically varied from 0 to 1 in increments of 0.1. Eval-
ues were calculated for each weighted combination and
the optimal weights were defined as those that resulted
in the smallest evalue. The consensus call of all three
callers (Tier1) is denoted in blue (Figure 2). Our re-
sults demonstrate that many different combinations of
weights produce similar evalues as compared to the
consensus call of all three callers (Figure 2, Supple-
mentary Figure 1), suggesting that no improvement
in performance was gained by weighted average ap-
proach. Similarly, no appreciable gain in performance
was noted when we considered the variant allele fre-
quency (vaf) in the estimation of the weights (Supple-
mentary Figure 2). Thus, taken collectively, our results
showed little to no benefit in using weighted features.

Performance of a combined calling method
A total of 634 somatic mutations were called from 21
tumor samples. 516 mutations were concordant and
116 were discordant with mutation calls made from
DNA (see Supplementary Table 2). To get a ground
truth of variants which could have been called by RNA
and were called in tumor DNA, we filtered out all
DNA variant calls which have a read depth below 10 in
RNA. With this filtering, we found a total of 515 vari-
ants which were called at the RNA level, while 452 of
them are concordant (true-positive) and 63 discordant
(false-positive) (Table 1). 1,779 of the 10,361 variants
called by DNA callers have read depth greater than
ten at the RNA level, and 1,327 of them were missed
by RNA calling (74.5% false-negative rate).

Variants not found in RNA
To understand why variant calls from RNA sequenc-
ing missed a large majority of variant calls observed

by DNA sequencing, we checked the properties of vari-
ants missed by RNA callers. From the 10,361 somatic
variants called by at least two DNA variant callers,
9,845 were missed by Tier1. Out of them 8,517 (86.5%)
were missed because these variants reside in genes that
are not expressed (4,628) or expressed less abundantly
(3,890) (Supplementary Figure 3). For the mutations
in genes with high transcript abundance, 474 (4.8%)
were missed because these variants were not in exonic
regions. The effect of transcript abundance on vari-
ants discovered from RNA-seq could also be observed
in the percentage of concordant calls: 516 (24.7%) of
the expressed mutations called in DNA in exonic re-
gions were called by Tier1 (Figure 3 (A)) but when the
expression is higher (DP>10) 34.6% (452 out of 1,305
mutations) of the somatic mutations were called. This
result confirms that an important factor in RNA-seq
variant calling is the expression level.

Among the mutations found by DNA callers but
missed by Tier1 from highly expressed genes (DP>10),
531 (5.4%) of the mutations had variant allele fraction
(VAF) < 0.20 in tumor DNA, while 141 of them had
a VAF = 0 (Figure 3 (B), Supplementary Figure 4),
which can be explained through missed indels and that
we accepted only reads with a high quality value in the
discovery of the DP of all variants. Additionally, 724
(7.4%) of the missed mutations had VAF < 0.20 in tu-
mor RNA, while 493 of them had a VAF = 0 in tumor
RNA. This result confirms that one of the limitations
of RNA-based variant calling methods is that they are
highly dependent on the VAF. Figure 3 (B) shows that
VAF of missed variant is significantly lower than VAF
of called variants both at the DNA and RNA levels
(p-value < 0.0001). Moreover, the difference is much
greater between VAF of called variants and missed
variants at the RNA levels, suggesting that many of
the missed variants at the RNA level may be the re-
sult of mutations present in small fraction of tumor
cells and the lower expression of mutated transcripts.

From the variants with high expression and high
VAF, thirty one mutations were not called by any of
the callers. Ninety six mutations were filtered out by at
least one of the callers because of potential evidence of
germline variants or because the realigning step with
PBLAT shows that these variants could come from
mismapping. Most of the missed variants with low
VAF are called by MuTect2 or SNPiR alone or Mu-
Tect2 and SNPiR together(Figure 3 (C)). It is not
clear if these missed variants are false-negatives, i.e,
true variants missed by VADiR, or if they are false-
positives made by DNA callers. Given that many of the
missed variant calls (not found by VaDiR) are the re-
sult of PBLAT step in VaDiR to eliminate mis-mapped
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reads and this step is not used in DNA callers, it is pos-
sible that some of the calls missed by VaDiR are true
negatives that are incorrectly called by DNA callers.

Variants not found in DNA
The differences in coverage or VAF between DNA
and RNA datasets could also contribute to discordant
calls. Therefore, we checked those attributes at discor-
dant sites. From all 116 discordant mutations called by
Tier1, 53 (45.7%) had a read depth (DP) of uniquely
mapping reads under 10 at RNA level and seventeen
(15.7%) had a read depth under 10 at DNA level (Sup-
plementary Figure 5). Another 22 (19.0%) mutations
had VAF > zero at DNA level, indicating that these
low-level DNA variants were missed by DNA-based
callers used by TCGA. Twenty three variants with
VAF=0 at DNA level but high DP in germline DNA,
tumor DNA and tumor RNA were mostly either A>G
or C>T (Supplementary Figure 6). Those variants
were found at 12 different positions, of which one vari-
ant (chr3:58141791 A>G [FLNB:p.M2324V]) is found
in 4 different samples and another (chr20:10285837
C>T) in 9 different samples. These likely represent
unannotated RNA-editing sites [23–25].

Because we observed differences in the VAF at the
discordant sites, we next expanded the analysis to all
sites. Interestingly, we observed a weak correlation of
VAF between tumor DNA and tumor RNA at posi-
tions with DP>0 for tumor DNA and RNA (Figure
4 (A)). When we limit the analysis to positions with
DP>10 for tumor DNA (Figure 4 (B)) or tumor and
normal DNA (Figure 4 (C)), we also observed a weak
correlation. Finally, when we limit the analysis to po-
sitions with DP>10 for tumor DNA and RNA and
normal DNA, we observed a strong correlation of 0.74
of variant allele fraction between RNA and DNA (Fig-
ure 4 (D)). Only four mutations had VAF around 0.50
at DNA level but 1.0 at RNA level which suggests that
these are imprinted genes. These results suggest that
VAF in abundant transcripts are strongly correlated
with VAF at DNA level. Therefore, VAF obtained from
RNA-sequencing may be used as a substitute for DNA
VAF for subclone phylogenetic analysis. As shown by
McPherson et al. [26] subclonal phylogenetics can use
limited/targeted sequencing to identify subclones.

Detection of artificial spiked variants
To further assess the performance of RNA-based
callers, we used BamSurgeon and spiked-in 200 artifi-
cial RNA sequence variants at varying variant fractions
in transcriptomes from three samples of two different
tumor sites from one patient. From the 200 simulated
variant positions, 120 were actually spiked in because
failed positions have too low read depth even if the po-
sitions for spiking were obtained from expressed genes.

On average 71% of all spiked-in variants were found by
each caller alone. The combination of all three callers
leads to a calling of around 50% of all spiked-in mu-
tations (Table 2, Supplementary Figure 7). By using
Tier2, we were able to call 60% of all spiked-in mu-
tations. 55.6% of the mutations missed by Tier1 but
called by at least one caller are not in coding regions
(Table 3). From the remaining missed variants, 15.7%
have a variant allele fraction of less than 0.2 and 6.1%
have high variant allele fraction but have a DP<10 in
DNA.

Comparison between RADIA and VaDiR
Since RADIA performs function similar to our work-
flow VaDiR, we compared the performance differences
between RADIA and VaDiR. RADIA uses DNA vari-
ant calling as the primary method and use RNA vari-
ant calling as a supplement. All somatic variants called
by RADIA are supported by DNA-level evidence and
RNA-only variants are not called by RADIA. There-
fore, we limited our comparison to variants that are
found at both RNA and DNA levels by RADIA and
VaDiR. A total of 308 mutations were called by either
RADIA or VaDiR or both in six samples. Of these, 175
mutations were called by both methods, 12 mutations
were called by VaDiR only, and 121 mutations were
called by RADIA only, while VAF of variants missed
by VaDiR are significantly lower than VAF of variants
missed by RADIA (Supplementary Figure 8). From
these 121 mutations, 40 (33.1%) had a read depth be-
low 10 in RNA. 52 (43.0%) mutations, with a read
depth over 10, had VAF below 0.20. This shows again
the limitation of method based only on RNA. Six of
the remaining 29 variants were in non-exonic regions
and would not be called by our method.

Ovarian cancer: resistant vs. sensitive
Since variant calling from RNA-seq provides both mu-
tational status and gene expression, the number of
mutations found by RNA-seq may be associated with
pathologic or clinical phenotypes. In contrast, the to-
tal number of mutations found at the DNA level may
not be associated with pathologic or clinical pheno-
type because it may be confounded by potentially non-
relevant mutations in non-coding region or in genes
that are not expressed. To determine if variant calling
from RNA-sequencing may provide novel insights into
clinical phenotype, we characterized the number of
mutations in expressed genes from RNA-seq obtained
from 10 chemotherapy-resistant and 11 chemotherapy-
sensitive ovarian carcinomas. We considered concor-
dant mutations only (those found by both RNA- and
DNA-based callers) for the analysis. The results in-
dicate that concordant rate is higher for Tier1 mu-
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tations compared to Tier2 mutations although to-
tal number of mutations are higher in Tier2 (Fig-
ure 5 (A)). We observed higher amount of mutations
in chemotherapy-sensitive ovarian carcinomas com-
pared to chemotherapy-resistant counterparts (Figure
5 (A)). This result is consistent with previous studies
indicating that sensitive tumor samples have a higher
mutation rate in ovarian cancer [27]. In these sam-
ples, number of mutations was significantly higher at
either DNA (pV alue = 0.017 [Two Sample t-test,
t = −2.3474, df = 19]) or RNA (pV alue = 0.03 [Two
Sample t-test, t = −2.605, df = 19]) levels in sensitive
carcinomas compared to resistant carcinoma samples
(Figure 5 (B)).

We next focus our analysis to variants that pro-
duce nonsynonymous mutations because they are more
likely to contribute to a change in phenotype and the
divergent evolution of tumor subclones. If a tumor
sample is predominantly represented by a tumor sub-
clone, VAF of nonsynonymous SNVs in that subclone
will provide the largest fraction of mutations, and thus
higher fractions of VAF in nonsynonymous SNVs is
expected. On the other hand, if the tumor sample is
represented by multiple tumor subclones, each con-
taining subclone-specific mutations, nonsynonymous
SNVs will be found at low levels in this tumor. There-
fore, VAF of nonsynonymous mutations may repre-
sent clonal heterogeneity. Results, shown in Supple-
mentary Figure 9, indicate that differences in VAF be-
tween sensitive and resistant samples are not signifi-
cant. Interestingly, sensitive samples have significantly
lower VAFs in non-COSMIC mutations compared to
resistant samples both at the RNA (pV alue = 0.034
[Two Sample t-test, t = 2.1681, df = 62]) and DNA
level (pV alue = 0.017 [Two Sample t-test, t = 2.4543,
df = 62])(Supplementary Figure 9 (B)).

DISCUSSION
In addition to the consensus calling of variants by
three methods, we tested weighted combinations of the
three methods with and without considering the vaf
[28]. We didn’t see any improvements in the numbers
of true-positive variants, false-negative variants and
false-positive variants . Therefore, the approach that
uses weighted average features is not implemented in
our tool. However, our workflow provides the possibil-
ity of combining calls from any or all callers for further
refinement or for adapting to the need of users.

With our approach, we were able to call variants with
high precision. Only a small fraction of the variants
which are called in RNA but not in DNA are likely false
positives. The remaining discordant variants are either
RNA-editing sites or are missed by DNA callers. Most
of the variants called in DNA but missed by VaDiR

are not in coding regions or are not expressed. We also

missed many variants that have low VAF. Those are

called by none of the callers, MuTect2 only, or SNPiR

only. These mutations are observed at low VAFs in

tumor DNA, and therefore they likely represent muta-

tions from small subsets of tumor subclones. Finally,

our approach missed approximately 15% of variants

(127/853) with a high DP and a high VAF. Among the

127, 96 mutations were called by at least one method,

indicating that consensus calling is too stringent or

that parameters for one of the callers is not optimal.

Those data are confirmed by the artificial spiked-in

variants where only variants with high VAF could be

called by all three callers.

The comparison to RADIA shows that VaDiR misses

mainly low-frequency RNA variants while RADIA

misses some high-frequency RNA variants. This result

confirms the limitation of calling variants only from

RNA, but it also shows that VaDiR can be used to

call a great number of somatic variants without the

need for tumor whole exome sequencing. It should be

noted that current workflow is not completely indepen-

dent of DNA sequencing since we use germline DNA

sequencing to filter out germline variants. However,

if the goal is to discover variants in RNA sequencing,

VaDiR workflow can be modified to use MuTect2 with-

out germline DNA and to leave out the last filtering

step for DP and VAF values in germline DNA. VaDiR

may be suitable for tiered studies where VaDiR can

be used in the initial step to identify common variants

from RNA sequencing datasets, and these candidate

mutations can be confirmed by targeted DNA sequenc-

ing in a larger cohort to uncover biologically relevant

somatic mutations for a specific cancer type. By fo-

cusing the initial variant discovery to expressed genes

in diseased samples, follow-up validation sequencing

efforts can be more targeted to limited regions of in-

terest, thereby lowering the total cost of these genomic

studies.

We were also able to find new possible RNA-editing

sites, which should be investigated in future studies.

Therefore, our workflow provides new capabilities that

are missing in existing approaches and can be used to

gain novel insight into disease phenotype. Our main

concern in future studies would be to increase the num-

ber of concordant variant calls by adjustment of the

filtering steps from SNPiR and RVboost and to in-

vestigate the reasons for missed somatic variants with

high VAFs. Future work will also include efforts to

make this tool available through a web-server for the

detection of somatic variants in RNAseq.
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METHODS
Software
To process the data, we used STAR, BWA-MEM,
Genome Analysis Toolkit (GATK), SNPiR, RVboost,
R, Picard, BEDtools, ANNOVAR, SAMtools, and
BCFtools which is a part of the SAMtools package
[2, 12, 13, 29–36] (Supplementary Table 3). To ana-
lyze our results, we used BAMSurgeon, R, and RA-
DIA [15, 37]. We used reference files from Broad Insti-
tute’s resource bundle [38], including the UCSC hg19
(GRCh37) reference genome, known indels from the
1000 Genomes Project, and known SNPs from dbSNP.

To validate the results that we obtained from RNA,
we used somatic variants from DNA called by any
two of the variant callers MuSE, MuTect2, Somatic-
Sniper, and VarScan. We retrieved the corresponding
VCF files from GDC [22].

We implemented SNPiR with the following modifi-
cations: In the file BLAT candidates.pl at line 94, the
developers incorrectly handled the information in the
CIGAR-string of hardclipped reads, that resulted in a
faulty shift in the base position. We corrected the code
to handle CIGAR-strings correctly. This modification
was necessary because our workflow differs from the
SNPiR workflow in that we use hard-clipped reads. At
the same location, we also added an optimization to
avoid searching through more base positions than nec-
essary. Further, we changed the filter to use PBLAT
instead of BLAT, so we could utilize additional CPU
threads to improve execution time. We made similar
changes in the file filter mismatch first6bp.pl at line
84. In addition, we optimized the search algorithm
in filter intron near splicejuncts.pl by skipping exons
and genes that do not contain a given variant position
(which also introduced the requirement that SNPiR’s
gene annotation table be sorted by position) and mod-
erately improve code for readability. Finally, we mod-
ified convertVCF.sh to filter out any variant whose
read depth (DP) value was zero, in order to prevent
division-by-zero errors that occurred with our dataset.
Rather than replacing the original SNPiR files in our
distribution, we have included both versions and pre-
fixed our file names with “revised ”.

For comparison with our method, we implemented
RADIA with the following modification: During BLAT
filtering, RADIA also incorrectly handled the hard-
clipped reads. We corrected the code for the same rea-
sons as described for the SNPiR implementation.

For creation of the figures, the R package ggplot2
[39] was used.

Aligning sequences
The procedure for the alignment to the reference
genome followed GATK Best Practices [40, 41] (Figure

6). For RNA-seq, we used the STAR aligner in 2-pass
mode with the parameters implemented by ENCODE
project. The resulting aligned reads were processed
to add read groups, sort, mark duplicates, split reads
that spanned splice junctions, create an index, realign
around known indels, reassign mapping qualities, and
recalibrate base quality scores.

For DNA, we used the BWA-MEM aligner with the
same reference genome. The resulting aligned reads
were processed to add read groups, sort, mark dupli-
cates, create an index, realign around known indels,
reassign mapping qualities, and recalibrate base qual-
ity scores.

Calling variants
A refined BAM file for each sample is then used to
process the variant calling. Three different methods
for calling are used: RVboost, SNPiR, and MuTect2.
The first two methods are for germline variants in
RNA and the last method is for somatic variants in
DNA. None of these methods is for somatic variant
calling in RNA. RVboost and SNPiR use the same vari-
ant caller, UnifiedGenotyper from GATK, but differ-
ent filtering procedures. RVboost filters variants using
a statistical learning method called boosting, whereas
SNPiR uses hard filtering in 7 steps (Supplementary
Table 4). To adapt MuTect2’s results for RNA, we im-
plemented three of SNPiR’s hard-filtering steps. RV-
boost and SNPiR only need the refined RNA BAM
file from the tumor tissue. MuTect2 needs both the re-
fined RNA BAM from the tumor tissue and the refined
DNA BAM from normal tissue.

Filtering somatic variants by caller intersection and
additional hard filters
In addition to the filtering procedures of the variant
callers themselves, we further filtered our results by
taking an intersection of vcf files from the three callers.
We restricted our final, combined callset to the vari-
ants called by all three methods (Tier 1) or supple-
mented by variants called by MuTect2 and SNPiR
(Tier2). We also applied our own hard filters, only ac-
cepting variants with a read depth (DP) of at least five
and a VAF of less than 3% in uniquely mapping reads
(Mapping quality of at least 40) in the normal DNA
at the corresponding position.

Weighting of Features
For the performance of different weighted combina-
tions of the three callers, namely SNPiR (s), Rvboost
(r) and MuTect2 (m), we performed two experiments
using all variants in coding regions that have a read
depth DP > 10 in RNAseq. The weight wi of caller
i was calculated as follow: wi = vi∑3

j=1
vj

where the
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values vi ranged from 0 to 1 in increments of 0.1. To
find the best weighted combination, we determined an
evalue, which is calculated as sum of all false-negative
and all false-positive variants. Next, we calculated the
area under the precision-recall curve (AUPRC), sensi-
tivity/recall, specificity and precision.

Experiment 1 (Supplementary Table 5): For all vari-
ants called by at least one caller, we calculated the
weighted score s as follows: s =

∑3
i=1 wi · ci, where ci

represents call (1) or no call (0) made by caller i. We
then identified the optimal threshold of s that provides
the lowest evalue. This was done for each weighted
combination of callers.

Experiment 2 (Supplementary Table 6): We calcu-
lated the evalue for each weighted combination to de-
termine the optimal threshold for which the variant is
called multiplied by the variant allele frequency (vaf)
and adjusted to the dynamic range of the callers as
follow: s =

∑3
i=1 wi · vafi−meani

standarddeviationi
. The threshold

is a value of s between -3 and 3 at which the lowest
evalue is achieved.

Processing artificial spiked variants
We used BAMSURGEON to spike in 200 variants in
coding regions of two ovarian tumor samples, such
that each sample had a different random frequency of
spiked-in variants. The samples were then processed
by VaDiR.

Processing samples with RADIA
Six samples from TCGA, three from resistant patients
and three from sensitive patients, were processed with
RADIA. This analysis required three BAM files from
each sample: one from normal blood DNA, one from
tumor DNA, and one from tumor RNA. We followed
the instructions provided by RADIA for filtering. We
used all possible filters provided by RADIA.
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Illustrations and figures

Figure 1 Intersection of the three variant calling methods.
(A) Intersection of the three methods with all somatic
variants. The red triangles represent the amount of concordant
variants. (B) Intersection of three methods with only
concordant somatic variants. All three callers (Tier1) together
has the highest number of condordant variants.

Figure 2 Effect of weighted features on the performance
Shown is in panel A to D the performance of each
combinationo of weights of the three callers Haplotypecaller,
SNPiR and RVboost while evalue means the sum of FP and
FN. The blue point marks the equal combination of all three
callers, namly Tier1. In Panel E is shown the weights of the
callers in each combination.

Figure 3 Variants called in tumor DNA. (A) Percentage of
concordant calls of all somatic variants from expressed genes
for each sample from two datasets (sensitive and resistant
tumor samples). A higher percentage of concordant calls was
achieved in transcripts with high expression (DP>10)
compared to that of all expressed transcripts (DP>0). (B)
Violin plot of variant fraction for all somatic variant positions
with RNA DP>10. Most of the variant positions missed by
VaDiR have a low variant fraction (VAF<0.1) in RNA. (C)
Ranked SNVs called by TCGA and/or different combinations
of RNA-seq calling methods. Only those positions with
DP>10 in tumor DNA, RNA and normal DNA are included in
the analysis. The names in the chart are the first letters of the
caller SNPiR (s), RVBoost (r) and MuTect (m) or their
combinations.

Tables and captions

Figure 4 Correlation of variant fractions between RNA and
DNA. The four charts show the effect of read depth filter on
the correlation of variant fractions.

Figure 5 Comparison of sensitive and resistant samples. (A)
Numbers of concordant calls in Tier1 and Tier2 by VaDiR.
The precision for each sample for Tier1 and Tier2 is shown in
percentage above each bar. (B) Number of mutations found
at the DNA and RNA level in sensitive tumors are significantly
higher than in resistant tumor Samples.

Figure 6 VaDiR workflow for processing somatic variant
calls from RNA-seq. Sequence alignment is done by STAR
and BWA MEM for RNA and DNA respectively. The refined
mapping follows GATK Best Practices. The variant calling is
done by Unified Genotyper (GATK) and MuTect2 (GATK).
The following filtering steps are done by RVBoost and SNPiR.
Additional filters such as MAQ > 40, germline read depth
(DP) > 5 and germline variant fraction (VAF) < 0.03 are
applied to remove germline variants.

Table 1 Performance characteristics of VaDiR with the
combination Tier1.

DNA positive DNA negative
RNA positive 452 63
RNA negative 1327

Table 2 Called spiked-in variants.

Sample Tier1 Tier2
OV10 68 (54.40%) 78 (62.40%)
OV11 61 (52.59%) 68 (58.62%)
OV12 58 (48.74%) 69 (57.98%)

Percentages represent recall rates in each sample. Tier
1 is the consensus of three callers. Tier 2 is the Tier 1
plus consensus of MuTect2 and SNPiR. Total number
of recoverable spiked-in variants is 125 (OV10), 116
(OV11), and 119 (OV12).

Table 3 Characteristics of missed spiked-in variants.

Tier1 OV10 OV11 OV12
all spiked in variants 125 116 119
missed by VaDiR 57 55 61
not called by at least one caller 20 20 20
missed in coding region 16 17 18
missed in coding region 11 9 13
by RNA VAF>20%
missed in coding region 8 7 11
by RNA VAF>20%
and normal DNA DP>10
Tier2 OV10 OV11 OV12
all spiked in variants 125 116 119
missed by VaDiR 47 48 50
not called by at least one caller 20 20 20
missed in coding region 9 11 12
missed in coding region 6 5 9
by RNA VAF>20%
missed in coding region 4 4 8
by RNA VAF>20%
and normal DNA DP>10
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Tier1
OV10 OV11 OV12

all spiked in variants 125 116 119
variants found by 1+ caller 105 96 99

37 36 42
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Tier2
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all spiked in variants 125 116 119
variants found by 1+ caller 105 96 99

27 29 31
missed in coding region 9 11 12
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Dear Dr. Zauner, 

 

Thank you for your suggestions on the revision of our manuscript, titled “VaDiR: an integrated approach 

to Variant Detection in RNA” 

 

Per your suggestion, we revised the manuscript to include the following: 

 

A reference to the GigaDB entry with DOI. 

[43] Neums L, Suenaga S, Beyerlein P, Koestler D, Anders S, Mariani A, Chien J. Supporting software for 
"VaDiR: an integrated approach to Variant Detection in RNA". 2017. http://dx.doi.org/10.5524/100360 
 

We included the following statement in the “Availability of Supporting Data”: 

"Supporting data and an archival copy of the code are also available via the GigaScience repository 

GigaDB [43]. 

For testing purposes we utilised data kindly provided by Dr. Andrea Mariani of Mayo Clinic, Rochester, 

Minnesota. Due to ethical constraints these data cannot be shared publicly, but if researchers would like to 

request access to these data please contact Dr. Andrea Mariani (mariani.andrea@mayo.edu) with a short 

description of why you require access and how you would use the data." 

 

We updated the manuscript to include the project URL and RRID. 

 

We also included information about third party code in supplemental table 3 (including citation and 

licence info). 
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