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Abstract: Background:
Image-based high-throughput phenotyping technologies have been rapidly developed
in plant science recently and they provide a great potential to gain more valuable
information than traditionally destructive methods. Predicting plant biomass is regarded
as a key purpose for plant breeders and ecologist. However, it is a great challenge to
find a predictive biomass model across experiments.
Results:
In the present study, we constructed four predictive models to examine the quantitative
relationship between image-based features and plant biomass accumulation. Our
methodology has been applied to three consecutive barley (Hordeum vulgare)
experiments with control and stress treatments. The results proved that plant biomass
can be accurately predicted from image-based parameters using a random forest
model. The high prediction accuracy based on this model, in particular the cross-
experiment performance, will contribute to relieve the phenotyping bottleneck in
biomass measurement in breeding applications. The relative contribution of individual
features for predicting biomass was further quantified, revealing new insights into the
phenotypic determinants of plant biomass outcome. Furthermore, the methods could
also be used to determine the most important image-based features related to plant
biomass accumulation, which would be promising for subsequent genetic mapping to
uncover the genetic basis of biomass.
Conclusions:
We have developed quantitative models to accurately predict plant biomass
accumulation from image data. We anticipate that the analysis results will be useful to
advance our views of the phenotypic determinants of plant biomass outcome, and the
statistical methods can be broadly used for other plant species.
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Response to Reviewers: We would like to thank both reviewers for their time to evaluate our manuscript and for
their  helpful comments/suggestions on our manuscript. It is our belief that this revised
manuscript is significantly improved as a result of the changes suggested in the
previous round of review. We explained point-by-point the changes made in response
to the comments, and highlighted all the changes throughout the revised manuscript in
blue. Our replies start with [Response].

Reviewer #1
Image datasets are available and are a valuable community resources. The code is
available, which is great. While I definitely appreciate the authors work, I don't think the
data support some of the statement throughout the paper, especially when it comes to
the wording regarding MLR vs other models, unless further clarification can be
provided (Figure 3). In some of the conditions (stress for example) MLR looks better
than the other models. The inclusion of color, NIR, and Fluor traits into models is
interesting.
[Response] We appreciate the reviewer’s assessment of our work and his/her
comments on our manuscript. We realized that some of the sentences in the
manuscript might be overstated by reading the questions raised below. In the revised
manuscript, we changed some parts and gave the statement more carefully (Response
1.7).

Lines 14-15: I think this statement needs to be qualified by saying that it is a challenge
to find a predictive biomass model across experiments, not that it is a challenge to find
a biomass model 'in the context of high-throughput phenotyping', which is vague and I
don't think accurate without further clarification considering the number of previous
papers that model biomass from images with high correlation to ground truth
measurements.
[Response 1.1] We thank the reviewer for this valuable suggestion. We rewrote the
statement according to the suggestion in the ‘Abstract’ section.

Lines 34 to 40: lacking in citations of literature. Introduction in general needs
improvement in terms of the previous literature that it cites.
[Response 1.2] We thank the reviewer for pointing out this. We have added some new
references and re-organized some text in the section ‘Introduction’ (line 36-44).

The second paragraph of the intro is a very limited short review of the literature but
there are a number of papers that model biomass using ht-phenotyping that are not
represented including Yang et al 2014 (nature communications), Montest et al. 2011
(Field Crops Research), Fahlgren et al. 2015 (Molecular Plant) to name a few.
[Response 1.3] We appreciate the reviewer’s nice suggestion. We have added some
related references in the revised manuscript (line 44-50).

Line 45: "On the other hand, to produce reliable assessments, suitable model types
needs to be established and model construction requires integration of many
components such as efficient mathematical analysis and representative data." Very
vague.
Line 58: Please clarify this statement: "Another concern is that the number of traits
used in these studies were quite limited and perhaps not representative enough.
Therefore, a more effective and powerful model is needed to overcome these
limitations and to allow better utilization of the image-based plant features which are
obtained from non-invasive phenotyping approaches." Not sure what this means
exactly, very vague considering that the papers mentioned do have models of biomass
that are not 'perfect' but do have high heritability and correlation with ground truth
measurements.
[Response 1.4/1.5] We have rephrased related sentences in the second paragraph of
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the ‘Introduction’ section (line 62-65).

I think the authors need to adjust the justification of their research to stress that there
needs to be biomass models that can be used across
experiments/environment/treatments, which they do say, but needs to be stated more
clearly. In general, many of the justification statements, which are pointed out in points
3 and 4 above are obscure to the point that they lose meaning.
[Response 1.6] We rephrased these statements in this revised version (line 69-73).

Line 146: "Although the performance of these models was roughly similar, RF, SVR
and MARS methods had better performance than the MLR method for prediction of
both FW (Fig. 3B) and DW (Fig. 3D), implying a nonlinear relationship between image-
based phenotypic profiles and biomass output." This doesn't seem accurate, it looks
like MLR has just as good predictive power in many of the situations presented. I don't
think you can say that MLR and the others are roughly similar and then say that this
implies a nonlinear relationship. Can this conclusion be clarified? It seems like there
are only small differences between the models.
[Response 1.7] We thank the reviewer for cautioning us to avoid overstatements in our
manuscript. We have revised the manuscript in the ‘Results’ section so as not to
overstate our observations (line 153-165).

Regardless of whether or not random forest is the 'best' model, the data doesn't seem
to support the statement that the RF model 'largely' outperformed the other models.
This only seems accurate under the control condition, can this be clarified?
[Response 1.8] We agree with the reviewer that the statement wasn’t proper here. We
have corrected this point in the revised manuscript.

Line 238: "Although previous attempts have been made to estimate plant biomass from
image data, most of these studies consider only a single image-based feature or very
few features in their models which are often linear-based, ignoring the fact that the
phenotypic components underlying biomass accumulation are presumably complex.
Accurately predicting biomass from image data requires efficient mathematical models
as well as representative image-derived features." I disagree with the authors on this
point, if biomass can be modeled with a few features with high correlation why does it
matter if they presume that it is complex? Their more complex models were still
decreased in R2 with environmental differences and between experiments and I don't
find the data suggesting that RF model outperforming other models (particularly MLR)
convincing without further clarification.
[Response 1.9] We agree with the reviewer’s comment that it would be good that if
biomass can be modelled with a few features with high correlation.  What we meant or
afraid is that using too less feature might lead to under-estimated or over-estimated
results since other features were not considered and evaluated. But nevertheless, we
removed this sentence in this revised manuscript.

Reviewer #2:
The authors investigate the ability of deriving plant biomass (both fresh and dry mass)
from 2D image-based features acquired with visible, fluorescent and NIR multi-view
imaging systems operating on an automated high throughput phenotyping platform. In
a first part, several multivariate statistical models are compared for their ability at
predicting biomass for two treatments within a single experiment, on three independent
datasets, detailed results being presented for one experiment. One of the best model,
the random forest, is then further investigated for its capacity at making prediction
across experiments, being trained on one experiment at a time or on one treatment of
one experiment at a time. Finally, the relative importance of individual image-based
traits in the prediction of either fresh or dry weight is presented for two treatments of
one dataset.
Models and methods for model evaluation are clearly presented, and the overall quality
of the text and Figure makes the paper easy to follow. The inclusion of other than
visible images, the objective selection of image-based traits, the comparison of models
and the use of 3 independent datasets clearly distinguish this paper from previous
publications on the same subject. It provides the reader very valuable information on
the current prediction capacity of the approach, together with a consistent methodology
for analyzing other related practices.
[Response] We thank the reviewer for his/her assessment of our work and appreciate
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that the reviewer recognizes the advantages of our approaches and analysis.

However, I have two major concerns on the current version of this manuscript.
First, I think that some conclusions highlighted in the abstract or in the text are not
completely in line (or at least sufficiently tempered) with what is demonstrated in the
text or shown on the figures. In the abstract (line 19-20), it is highlighted that 'The
results proved that plant biomass can be accurately predicted from image-based
parameters using a random forest model'. To me this conclusion is clearly supported
by data in the case of within experiment predictions, but not fully in the case of the
cross experiment test (i.e. quite opposite to what is stressed line 21). My impression,
given results presented Figure 5, is that in one case out of two, a model trained on one
experiment alone could not accurately (or at least with not the same accuracy) predict
the biomass, despite a repeated protocol. This result is per se very interesting, as it
demonstrates an important limitation of the approach. It can however not be
summarized by what is written line 19-21, 201-202, 209-210 or 253-257. On another
occasion (line 148 and line 248), I found the conclusion ('the RF model largely
outperformed other models') a bit exaggerated, as, on Figure 3, depending on the
criteria, RF model performs very similar to MARS model for example.
[Response 2.1] We thank the reviewer for raising these points. 1) we agree with the
reviewer that the prediction accuracy of the model across experiments is still lower in
some case (mostly due to growth conditions changing over seasons). We changed
relevant description in the text and added some text to discuss this point. 2) We agree
with the reviewer on this point. We clarified this point in the revised version (see line
153-165).

Second, I did not manage to test the models, nor to reproduce the analysis with the
provided data and source code. Concerning the data, image traits are provided for all
experiments, but manual measurement on Dry Weight are missing. Concerning the
code, the R-script provided does not fit to the provided dataset, thus making it difficult
to test. More important, model code runs with errors at runtime ('not defined' errors). I
also think, but this is only a suggestion, that, in addition to raw image files, providing
binary masks of plants, that are of high importance for all traits analyzed here, could
improve the re-use of this nice dataset.
[Response 2.2] We thank the viewer for raising this point.  We now provided a
separated R script ‘run.R’to test the models. The test data used in our analysis were
now deposited in the Github repository (https://github.com/htpmod/HTPmod). We also
thank for the reviewer for this nice suggestion. Unfortunately, the files for the binary
masks of plants were not kept anymore due to storage limitation. But the report files
(generated by the IAP software) that include all trait values are still kept. We uploaded
these report files alongside the raw image datasets for re-use of these data (see the
section ‘Availability of supporting data and materials’).

Other minor points or comments for specific parts of the texts are provided bellow:
Line 72-74: I think this sentence would be better be placed in the Potential application
section
[Response 2.3] We have moved the sentence to the section ‘Potential Implications’.

Line 85: Do you mean that some image traits are more sensitive to physiological traits?
I do not see why Fig 1B is illustrative for this point.
[Response 2.4] The reviewer is correct that some image traits are more sensitive to
physiological traits. We agree with the reviewer that the citation of Fig. 1B is not proper
here. We corrected this accordingly.

Line 98:  In the context of phenotyping, it might also be useful to add Spearman rank
correlation to the assessment
[Response 2.5] We agree with the reviewer’s opinion. In principle, the assessment
based on these two kinds of correlation coefficients is similar for good models. We
prefer to choose Pearson correlation coefficient based on the assumption that the
relationship of observed values and predicted values is linear.

Line 108: Fig 1B is only a heatmap image. May be a list of traits should be provided, or
a reference to the supplementary data should be added here.
[Response 2.6] We want to thank the reviewer for bringing up this point. We added a
reference to the Supplementary Data S1.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Line 117: Figure 2B is poorly informative as traits are not identified. This figure is also
not commented in the text, I suggest removing it.
[Response 2.7] We agree to the reviewer’s suggestion and removed Figure 2B in this
revised version.

Line 144: I would find useful to make here perfectly clear that all the models were
trained on the control + stress plants, to avoid any confusion with the 'cross treatment
test' later on (Figure 6)
[Response 2.8] We thank the reviewer for pointing this out. We have corrected this in
the revised manuscript.

Line 146-151: I found the analysis a bit confusing as, in the details, the ranking of the
different methods varies, and I do not clearly see why RF 'largely outperforms' other
methods (especially MARS).
[Response 2.9] We agree with the reviewer that this statement is overstated. We have
corrected this issue in the revised manuscript (see line 153-165).

Line 152-155: The comparison with the widely used 'single feature' method is very
interesting. Can you consider to add its score/line on the R2 and RMSRE?
[Response 2.10] This is indeed a good suggestion. We now added this value in Figure
3B and D.

Line 178: May be it is also worth noting in the text that geometric + color traits trust 13
out of 15 (FW) and 15 out of 15 (DW) first places, as these two types of data are widely
available among phenotyping platform and yet not so often used in biomass
predictions.
[Response 2.11] We appreciate the reviewer for this valuable comment. We have
included this point in the revised manuscript.

Line 201 - 211: The text seems to me a bit too optimistic regarding the cross
experiment predictions. Exp3 clearly shows a non-conservation of the relationship
obtained in Exp1 or 2, and a clear loss of predictive power compared to within
experiment training.
[Response 2.12] We admit that we are a bit overstate here. We have changed it in the
revised version.

Line 281: typo: sophisticated
[Response 2.13] We appreciate the reviewer for pointing out this mistake. We have
corrected this word in the revised manuscript.

Line 349: could you give an idea of the amount of such filled missing values?
[Response 2.14] After the feature selection step (e.g., outlier detection, reproducibility
analysis and redundancy removal), the missing values for the remaining features are
quite rare (much less than 1%).

Line 400: the formulation is a bit strange as it sounds like a conclusion already.
[Response 2.15] We have improved this sentence in the revised version.

Line 426: DW data are missing.
[Response 2.16] We have added DW data in the Supplemental Data S1.

Line 535: legend of figure 5 did not really apply to these figures. A complete legend
should be added.
[Response 2.17] A new legend was added for Figure 5.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics Yes
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Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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 10 

Abstract  11 

Background:  12 

Image-based high-throughput phenotyping technologies have been rapidly developed in plant science 13 

recently and they provide a great potential to gain more valuable information than traditionally destructive 14 

methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologist. However, it 15 

is a great challenge to find a predictive biomass model across experiments. 16 

Results:  17 

In the present study, we constructed four predictive models to examine the quantitative relationship between 18 

image-based features and plant biomass accumulation. Our methodology has been applied to three 19 

consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved 20 

that plant biomass can be accurately predicted from image-based parameters using a random forest model. 21 

The high prediction accuracy based on this model, in particular the cross-experiment performance, will 22 

contribute to relieve the phenotyping bottleneck in biomass measurement in breeding applications. The 23 

relative contribution of individual features for predicting biomass was further quantified, revealing new 24 

insights into the phenotypic determinants of plant biomass outcome. Furthermore, the methods could also be 25 

used to determine the most important image-based features related to plant biomass accumulation, which 26 

would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. 27 
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Conclusions:  28 

We have developed quantitative models to accurately predict plant biomass accumulation from image data. 29 

We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of 30 

plant biomass outcome, and the statistical methods can be broadly used for other plant species.  31 

Keywords: Barley; High-throughput phenotyping; Phenomics; Biomass; Modeling.  32 

 33 

Introduction  34 

Biomass accumulation is an important indicator of crop final product and plant performance. It is thus 35 

considered as a key trait in plant breeding, agriculture improvement and ecological applications. The 36 

conventional approach of measuring plant biomass is very time consuming and labour intensive since plants 37 

need to be harvested destructively to obtain the fresh or dry weight [1]. Moreover, the destructive method 38 

makes multiple measurements of the same plant over time impossible. With the development of new 39 

technology, digital image analysis has been used more broadly in many fields, as well as in plant research [2-40 

4]. It allows faster and more accurate plant phenotyping and has been proposed as an alternative way to infer 41 

plant biomass [2, 3, 5].  42 

 43 

In recent years, plant biomass has been subject to intensive investigation by using high-throughput 44 

phenotyping (HTP) approaches in both controlled growth chambers [2-3, 6-11] and field environments [5, 45 

12-17], demonstrating that the ability of imaging-based methods to infer plant biomass accumulation. For 46 

example, significant genotypic and environmental effects on plant biomass and some other traits in Setaria 47 

were revealed by the Bellwether Phenotyping Platform under controlled-environmental condition [10]. Yang 48 

et al [11] showed that predicted rice biomass (including shoot fresh and dry weight) based on image-derived 49 

morphological and texture features provided a relatively more complete representation than manual 50 

measurements in dissecting its genetic architecture. In this regard, optimized models plus image-derived 51 

features from HTP systems will improve the power of dissecting genetic architecture of complex traits.  52 

Although there are some developed models for predicting plant biomass, most of them have certain 53 

limitations. For example, Golzarian et al. (2011) modelled the plant biomass (dry weight) in wheat (Triticum 54 

aestivum L.) as a linear function of projected area, assuming plant density was constant. However, this 55 
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method under-estimated dry weight of salt stressed plants and over-estimated that of control plants. Even 56 

though the authors argued that the bias was largely related to plant age and the model might be improved by 57 

including the factor of plant age [3], the differences in plant density between stressed and control plants may 58 

be caused by different physiological properties of plants rather than plant age. In another study, Busemeyer 59 

et al. (2013) developed a calibrated biomass determination model for triticale (x Triticosecale Wittmack L.) 60 

under field conditions based on multiple linear regression analysis of a diverse set of parameters, considering 61 

both, the volume of the plants and their density. Indeed, this model largely improved the prediction accuracy 62 

of the calibration models based on a single type of parameters and can precisely predict biomass accumulation 63 

across environments [15]. However, they used very limited traits for the model and make it a question whether 64 

it could be applied broadly in other cases. As mentioned by Yang et al. (2014), noticeable improvement was 65 

achieved by adding morphological features or texture features to the biomass-predicting model [11]. This 66 

suggests that adding more information/traits could improve the predictive performance of models. Therefore, 67 

a more effective and powerful model is needed to overcome these limitations and to allow better utilization 68 

of the image-based plant features which are obtained from non-invasive phenotyping approaches.  69 

 70 

Individual studies have recently shown that the prediction accuracy of plant biomass based on image-derived 71 

features is relatively high even using the simplest linear regression models [3,10,18]. However, the 72 

performance of nonlinear predictive models has not been well evaluated. Besides, it is still challenging to 73 

apply these models across experiments that are performed in different environmental conditions or with 74 

different treatments due to lack of representative datasets so far to make reliable assessments. In this study, 75 

we present a general framework for investigating the relationships between plant biomass (referred to as 76 

shoot biomass hereafter) and image-derived parameters. We applied a multitude of supervised and 77 

unsupervised statistical methods to investigate different aspects of biomass determinants by a list of 78 

representative phenotypic traits in three consecutive experiments in barley. The results showed that image-79 

based features can accurately predict plant biomass output and collectively reflect large proportions of the 80 

variation in biomass accumulation. We elucidated the relative importance of different feature categories and 81 

of individual features in prediction of biomass accumulation. The differences in the contribution of the image-82 

based features for prediction of two types of biomass measurements, fresh weight and dry weight were 83 
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compared as well. Furthermore, our models were tested for the possibility of predicting plant biomass in 84 

different experiments with different treatments.  85 

 86 

Results  87 

Development of statistical models for modelling plant biomass accumulation using image-based 88 

features  89 

In the previous studies [19,20], we have shown that a single phenotypic trait -- the three-dimensional digital 90 

volume, which is a derived feature from projected side and top areas -- can be reasonably predictive to 91 

estimate plant biomass accumulation. We expect that the predictive power could be improved when multiple 92 

phenotypic traits are combined in a prediction model since plant biomass is determined not only by their 93 

structural features but also by their density (physiological properties). To further investigate the relationship 94 

between image-derived parameters and plant biomass accumulation, deep phenotyping data which contain 95 

both structural (e.g., geometric traits) and physiological traits (e.g., plant moisture content as reflected by 96 

near-infrared [NIR]-related traits) were analysed (Fig. 1, A and B). Pot weights of the plants were not 97 

included for the analysis although they were weighed regularly. It might reflect the growth tendency of the 98 

whole plants (shoots and roots) where herein we focused mainly on shoots. 99 

 100 

Models were constructed to quantify the ability of imaging-based features to statistically predict the biomass 101 

accumulation. The models were developed by using four widely used machine-learning methods (Fig. 1C): 102 

multivariate linear regression (MLR), multivariate adaptive regression splines (MARS), random forest (RF) 103 

and support vector regression (SVR), which have extensively been used in accurate prediction of gene 104 

expression [21-25] and DNA methylation levels [26-29]. We combined the biomass measurements (fresh 105 

weight [FW] and/or dry weight [DW]) with image-based features and then divided them into a training data 106 

set and a test data set. A model was trained on the training data set and has then been applied to the test data 107 

set to predict the plant biomass. The relationship between plant biomass accumulation and image-based 108 

features was assessed based on the criterion of the Pearson correlation coefficient (r) between the predicted 109 

values and the actual values, or the coefficient of determination (𝑅2; the percentage of variance of biomass 110 
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explained by the model; Fig. 1D).  111 

 112 

Our methodology was applied to three consecutive experiments (Fig. 2A; Supplemental Table S1 and Data 113 

S1), which were designed to investigate vegetative biomass accumulation in response to two different 114 

watering regimes under semi-controlled greenhouse conditions in a core set of barley cultivars by non-115 

invasive phenotyping [20, 30]. There were 312 plants with 18 genotypes for each experiment. Plants were 116 

monitored using three types of sensors (visible, fluorescence [FLUO] and near-infrared [NIR]) in a 117 

LemnaTec-Scanalyzer 3D imaging system. An extensive list of phenotypic traits ranging from geometric 118 

(shape descriptors) to physiological properties (i.e., colour-, FLUO- and NIR-related traits) could be extracted 119 

from the image data (Supplemental Data S1) using our image processing pipeline IAP [19]. A representative 120 

list of traits for each plant in the last growth day were selected to test their ability to predict plant biomass. 121 

 122 

Coordinated patterns of plant-image-based profiles and their relation to plant biomass 123 

We extracted a list of representative and non-redundant phenotypic traits for each plant from image datasets 124 

for each experiment (see Materials and Methods; Fig. 1B). In common for these experiments, overall thirty-125 

six high-quality traits which describe plant growth status in the last growth day were obtained. As a result, 126 

each dataset was assigned a matrix whose elements were the signals of different features in different plants 127 

(Fig. 1C). Principal component analysis (PCA; Fig. 2B) was applied to these datasets. We found that plants 128 

from different experiments with different treatments showed clearly distinct patterns of phenotypic profiles. 129 

For instance, stressed plants and control plants were separated using PCA by their first principal component 130 

(PC1) and also by the top clusters obtained in HCA, while plants from different experiments were 131 

distinguished by PC2 and PC3 in PCA or subordinate clusters in HCA. Accordingly, it could be observed that 132 

biomass (e.g., FW) of plants from different experiments with different treatments was significantly different 133 

(two-way ANOVA, p-value < 2e-16; Fig. 2C). The relationship was reflected by a dendrogram from cluster 134 

analysis based on the means of FW over genotypes (Fig. 2D). Furthermore, the overall phenotypic patterns 135 

of these plants were similar to their biomass output (Fig. 2, B-D), revealing that these image-based features 136 

were potential factors reflecting the accumulation of plant biomass. We thus explored the relationship 137 

between the signals of these image-based features and the level of plant biomass output. We calculated the 138 
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correlation coefficients for each dataset. The correlation patterns were consistent for different datasets and 139 

more than half of the features revealed high correlation coefficients (r > 0.5; Fig. 2E). Interestingly, both 140 

structural features (such as digital volume, projected area and the length of the projected plant area border) 141 

and density-related features (such as NIR and FLUO intensities) were involved in the top ranked features. 142 

 143 

Relating image-based signals to plant biomass output 144 

The above analyses suggest that plant biomass can at least be partially inferred from image-based features. 145 

To examine which model has the best performance and to select an appropriate model for biomass prediction, 146 

we then applied our regression models (Fig. 1C) to predict plant biomass using image-based features. Our 147 

analyses were focused on the first experiment (i.e., Exp 1), since the phenotypic traits of the corresponding 148 

dataset have been intensively investigated in our previous study [20]. In this experiment, plant biomass was 149 

quantified in two forms: FW and DW. We selected a collection of 45 image-derived parameters from this 150 

dataset that were non-redundant and highly representative.  151 

  152 

We next tried to predict FW and DW based on this set of image-derived features using four different 153 

regression models (MLR, RF, SVR and MARS; Fig. 3). The models were respectively tested on control 154 

plants, stressed plants and the whole set of plants (Fig. 3, A and C). The prediction accuracy of our models 155 

(the correlation coefficients between the predicted biomass and the actual biomass) was firstly compared 156 

with the ability of individual features to predict biomass. It was found that our models generally showed 157 

better prediction power than the single digital volume-based prediction (Fig. 3, B and D), indicating that 158 

additional features improved the predictive power. Then the performance of these models was compared and 159 

evaluated. Overall, the performance of all the tested models showed roughly similar for the prediction of both 160 

FW (Fig. 3B) and DW (Fig. 3D) under stressed conditions. The prediction accuracy of our models is still 161 

comparable to the results from previous studies [3, 6, 18] based on MLR models, even though much more 162 

features were considered in our study. The RF model slightly outperformed other models in predicting 163 

biomass of control plants, accounting for the most variance (𝑅2 =  0.85 for FW and 𝑅2 =  0.62 for DW; Fig. 164 

3, B and D, left panels) and showed the best prediction accuracy (Pearson's correlation r = 0.93 for FW and 165 

r = 0.80 for DW; Fig. 3, B and D, middle panels). Of note, RF is the only model showing better performance 166 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



than single digital volume-based prediction (Fig. 3D). In this study, we focused on the results from the RF 167 

method in the rest of analysis, although results from different methods were highly consistent and led to the 168 

same conclusions. 169 

 170 

Relative importance of different image-based features for predicting plant biomass 171 

As mentioned above, the image-based features could be classified broadly into four categories: plant structure 172 

properties, colour-related features, NIR signals, and FLUO-based traits (Fig. 1B). The last three types of 173 

features reflect plant physiological properties and can be considered as plant density-related traits and are 174 

thus related to their fresh or dry matter content. For each individual feature or each type of features, we 175 

constructed a degenerate model for biomass prediction using the corresponding feature(s) as the predictor(s). 176 

We compared the capability of each individual or type of feature for predicting biomass accumulation in the 177 

first experiment (i.e., experiment 1). Geometric features showed the most predictive power among the four 178 

categories for prediction of both FW and DW, but were slightly less predictive than all features in a full model 179 

(Fig. 4, A and B). Strikingly, the predictability of other types of features (such as colour-related and FLUO-180 

based traits) was substantial, indicating that these traits may act as unforeseen factors in biomass prediction. 181 

In addition, the NIR-based features showed higher predictive capability for FW than for DW in control and 182 

stressed plants, revealing NIR signals were import factors in determining FW accumulation.  183 

 184 

Next, we investigated the relative importance (RI) of each feature for predicting biomass using a full model 185 

in the whole set of plants (i.e., “control + stressed plants”; Fig. 4, C and D, upper panels). In a RF model, the 186 

RI of a feature is calculated as the increase of prediction error (%IncMSE) when phenotypic data for this 187 

feature is permuted [31], and thus indicates the contribution of the feature after considering its intercorrelation 188 

in a model. We found that the top ten most important features in the full model for predicting FW and DW 189 

included both structure and density-related traits. As expected, projected area (from side or top view) and 190 

digital volume were the top ranked features, which have individually been considered as proxies of shoot 191 

biomass in previous studies [3, 20, 18, 32-37]. However, several geometric and colour-related features that 192 

are top ranked in the prediction have not been used in biomass predictions in previous analysis although they 193 

are widely available among phenotyping platforms.  194 
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  195 

In principle, we would expect that highly important features in the full model would be related to a high 196 

predictive power in a degenerate model. Surprisingly, there was no clear correlation observed between the 197 

feature importance and their predictive power (Fig. 4, C and D). For example, several colour-related and 198 

NIR-based features which were in the top ten list of the most important features revealed insubstantial 199 

predictive power in individual models. This observation implies that the relation of the underlying biomass 200 

determinants is extremely complex and not a linear combinations of the investigated features.  201 

 202 

Furthermore, we compared the relative importance of each feature in predicting FW and DW (Fig. 4E). 203 

Although a positive correlation (r = 0.88) between the feature importance for FW and DW could be observed, 204 

several features showed large differences in their ability to interpret FW or DW, including “nir.intensity” 205 

(derived from side view images), “compactness.01” (top), “hull.pc1” (top), “leaf.count” (side), 206 

“hsv.h.average” (top) and “lab.a.mean” (top). For instance, NIR intensity and plant compactness (top view) 207 

may be important for predicting FW but not for DW. We also performed the above analyses by using only 208 

control (Supplemental Fig. S1) or stressed plants (Supplemental Fig. S2), respectively. We found that the 209 

patterns of feature importance were distinct between these two groups of plants. For example, NIR intensity 210 

was ranked as the top fifth feature for predicting FW for stressed plants but was not substantially important 211 

for control plants. These findings suggest that there are differences in underlying plant biomass determinants 212 

in these kinds of treatment situations that are also reflected by their image-based phenotypic traits.  213 

 214 

Image-based features are predictive of plant biomass across experiments with similar conditions or 215 

treatments  216 

In order to explore whether our models were generalizable across different experiments, we applied our 217 

models trained in one experiment to predict biomass (herein FW) in other experiments using a common set 218 

of features. Examples of such cross-experiment predictions are shown in Figure 5A. We tested and illustrated 219 

all possibilities for cross prediction using the whole set of plants in the corresponding experiment. In general, 220 

the prediction accuracy within individual experiments remained high (r > 0.97 and 𝑅2 >  0.93 for all three 221 

experiments; Fig. 5B), revealing that our models were effectively predicting plant biomass based on image-222 
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derived feature signals among different experiments. Moreover, the prediction accuracy for cross-experiment 223 

prediction, especially between the first two experiments (r > 0.97 and 𝑅2 >  0.94), was still relatively high, 224 

implying that our models generally captured the relationships among the various image-based features. 225 

However, the third experiment had relative weaker correlations with the other two experiments for predicting 226 

biomass (with r > 0.81 and 𝑅2 >  0.65; Fig. 5A). This might be mainly due to seasonal (temperature and 227 

illumination) differences which caused different plants behaviours, namely lower biomass for both control 228 

and stressed plants in experiment 3 [30]. This suggests that different plant growth conditions might cause 229 

some variation for cross-experiment prediction. 230 

 231 

At the same time, we tested cross predictability of our models using treatment-specific data in the experiments 232 

(Fig. 6). Similar results were obtained as above using the whole dataset (Fig. 5B). The weak predictive power 233 

for cross-prediction involving control plants from the third experiment was most clearly observable in the 234 

low accuracy in the biomass prediction of this particular subset of plants. Generally, control and stressed 235 

plants were found to have very weak predictive power when related to each other (Fig. 6), as also supported 236 

by the distinct patterns of relative feature importance between these two plant groups (Supplemental Figs. 237 

S1 and S2). For each experiment, the prediction accuracy was higher for stressed plants compared to control 238 

plants. This might resulted from the imaging analysis process. Relatively small plants, stressed plants in this 239 

case, would gain more clear images due to less overlapping or less area of out range. Therefore, image quality 240 

would be an important variation source for our modelling and should be taking into consideration for any 241 

application.  242 

 243 

Discussion  244 

Biomass is a complex but important trait in functional ecology and agronomy for studying plant growth, crop 245 

productive potential and plant regeneration capabilities. Many different techniques, either destructive or non-246 

destructive, have been used to estimate biomass [1, 2-3, 5-17]. Compared with the traditional destructive 247 

methods for measuring biomass, non-destructive imaging methods provide a faster, more accurate approach 248 

for plant phenotyping. In recent years, more and more high-throughput plant phenotyping platforms have 249 
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been set up and applied worldwide. Accordingly, it becomes a current challenge to establish models utilizing 250 

the big datasets gained from high-throughput imaging systems. Accurately predicting biomass from image 251 

data requires efficient mathematical models as well as representative image-derived features. 252 

 253 

In this study, we have presented a systematic analysis of relationships between plant biomass accumulation 254 

and image-derived signals, to confirm the assumption that biomass can be accurately predicted from image-255 

based parameters. We built a random forest model of biomass accumulation using a comprehensive list of 256 

representative image-based features. The comparison between a random forest model and alternative 257 

regression models indicated that the RF model outperforms other models in terms of (1) better predictive 258 

power – especially in comparison with the linear model, confirming the complex phenotypic architecture of 259 

biomass, (2) better outperformance than a single-feature-prediction model – arguing the complex phenotypic 260 

makeup of biomass, and (3) feasible biological interpretability – the ability to readily extract information 261 

about the importance of each feature in prediction. The high prediction accuracy based on this model, in 262 

particular the cross-experiment performance, is promising to relieve the phenotyping bottleneck in biomass 263 

measurement in breeding applications. For example, based on an established small reference dataset which 264 

is used to train a RF model, it is possible to predict biomass in several large plant populations within one 265 

experiment or across several experiments using image data by taking advantage of high-throughput 266 

phenotyping technologies. Alternatively, the model can be trained from a much larger reference panel of 267 

plants that are grown in diverse environmental conditions which is then applied to a diverse set of experiments. 268 

The first evidence for this notion is the observation that our model showed more predictive power in plants 269 

with two treatments than with a single treatment (Fig. 3, B and D). Indeed, when applying our model to the 270 

combined dataset from all the three experiments, we found the prediction accuracy remains very high (𝑅2 =271 

 0.96 and r = 0.98, average values from ten times of ten-fold cross-validation). To keep the high prediction 272 

accuracy in other application, there are some points should be take caution. Considering the environmental 273 

effects on biomass accumulation, the application of our model will require the testing experiments showing 274 

similar conducted conditions with that of the reference experiments. This means the plant cultivation 275 

conditions should be standardized and any noise which might lower image quality should be avoided. 276 

Another approach to improve applicability of models, which could not be tested in this study, would be to 277 
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improve the data base for the training, by acquiring data from additional environment sensors. Temperature, 278 

humidity, and illumination data would certainly help to explain differences in the growth patterns among 279 

experiments, performed in different growth seasons. To this end, we expect that our approach is extensible 280 

by incorporating such sensor data in the data matrices. Furthermore, our results can provide suggestive hints 281 

for biologists to setup phenotyping infrastructures for investigation of plant biomass. For instance, a visible 282 

light imaging system would be sufficient to accurately predict fresh weight based on the observation that 283 

geometric features alone show high prediction accuracy (Fig. 4A). However, to investigate dry weight, it 284 

would be helpful to include an additional near-infrared camera system under normal growth conditions and 285 

an additional fluorescence camera system under drought stress conditions (Fig. 4B).  286 

 287 

In contrast to previous studies [2-3, 6-7, 18, 32-37], in which biomass was investigated using only single 288 

image-derived parameter (such as projected area) or several geometric parameters, our analyses extended 289 

these studies by incorporating more representative features that cover both structural and physiological-290 

related properties into a more sophisticated model. Although the predictive power of our model is roughly 291 

higher than that of single feature-based prediction, such as the digital volume (Fig. 3) [20], our model also 292 

reveals the relative contribution of individual feature in prediction of biomass. The information regarding the 293 

importance of each feature will offer new insights into the phenotypic determinants of plant biomass outcome. 294 

Interestingly, we found that several top ranked features, such as digital volume and NIR intensity, showed 295 

genetic correlations with biomass of fresh weight (Fig. 4C) [20], implying these top ranked features may 296 

represent the main “phenotypic components” of biomass outcome and can be further used to dissect genetic 297 

components underlying biomass accumulation. As image-based high-throughput phenotyping in plants 298 

developed mainly in recent years and therefore few corresponding modelling studies have been performed, 299 

we believe that our model could be further improved when new types of cameras and/or newly defined 300 

features are available.  301 

 302 

In summary, we have developed a quantitative model for dissecting the phenotypic components of biomass 303 

accumulation based on image data. Apart from predicting biomass outcome, the methods can be used to 304 

determine the most important image-based features related to plant biomass accumulation, which are 305 
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promising for subsequent genetic mapping to uncover the genetic basis of biomass.  306 

 307 

Potential Implications 308 

As high-throughput plant phenotyping is a technique which is becoming more and more widely used for 309 

automated phenotype in plant research, especially in plant breeding, we anticipate that the methodologies 310 

proposed in this work will have various potential applications. We anticipate that the analysis results will be 311 

useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical 312 

methods can be broadly used for other plant species and therefore assist plant breeding in the context of 313 

phenomics.  314 

 315 

Materials and Methods  316 

Germplasm and experiments 317 

Barley plant image data were obtained as described previously [20, 30]. Briefly, a core set of 16 two-rowed 318 

spring barley cultivars (Hordeum vulgare L.) and two parental cultivars of a double haploid (DH) were 319 

monitored for vegetative biomass accumulation. Three independent experiments with identical setup were 320 

performed in a (semi-) controlled greenhouse at IPK by using the automated phenotyping and imaging 321 

platform LemnaTec-Scanalyzer 3D. Experiments were performed consecutively from May to November 322 

2011 over a period of 58 days each (Supplemental Table S1). The greenhouse setup enabled sowing for the 323 

next experiment already 2 days before the old experiment ended. For this, new pots were placed in the middle 324 

of the greenhouse, while the old experiment was still on the conveyer belts.  325 

  326 

Each experiment consisted of two treatments: well-watered (control treatment) and water limited (drought 327 

stress treatment). In each treatment, nine plants per core set cultivar as well as six plants per DH parent were 328 

tested. This resulted in a total of 312 plants per experiment, corresponding to the maximal capacity of the 329 

phenotyping platform. Watering and imaging were performed daily. Drought stress was imposed by 330 

intercepting water supply from 27 days after sowing (DAS 27) to DAS 44. Stressed plants were re-watered 331 
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at DAS 45. In total, for each of the experiments about 100 GB of raw (image) data was accumulated. At the 332 

end of experiments (DAS 58), plants were harvested to measure above-ground biomass in form of plant fresh 333 

weight (FW; for all experiments) and/or dry weight (DW; for experiment 1). 334 

 335 

Image analysis 336 

Image datasets were processed by the barley analysis pipelines in the IAP software (version v1.1.2) [19]. 337 

Analysed results were exported in the csv file format via IAP functionalities, which can be used for further 338 

data inspection. The result table includes columns for different phenotypic traits and rows as plants are 339 

imaged over time. The corresponding metadata is included in the result table as well.  340 

  341 

Each plant was characterized by a set of phenotypic traits also referred to as features, which were grouped 342 

into four categories: geometric features, fluorescence-related (FLUO-related) features, colour-related 343 

features and near-infrared-related (NIR-related) features. These traits were defined by considering image 344 

information from different cameras (visible light, fluorescence and near infrared) and imaging views (side 345 

and top views). See the IAP online documentation (http://iapg2p.sourceforge.net/documentation.pdf) for 346 

details about trait definition.  347 

 348 

Feature selection 349 

Feature selection was performed with the same procedure as described in [20]. We applied the feature 350 

selection technique to each dataset. Generally, we captured almost identical subset features from different 351 

datasets. We manually added several representative traits due to removal by variance inflation factors. For 352 

example, the digital volume and projected area are highly correlated with each other but we kept both of 353 

them, because we would investigate the predictive power of both features. Moreover, the regression models 354 

we used are insensitive to collinear features. We thus kept as much representative features as possible. To 355 

apply the prediction models among different datasets, a common set of features supported by all the datasets 356 

was used.  357 

 358 

Data transformation 359 
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Each plant can be presented by a representative list of phenotypic traits, resulting in a matrix 𝑋𝑛×𝑚 for each 360 

experiment, where 𝑛 is the number of plants and 𝑚 is the number of phenotypic traits. Missing values were 361 

filled by mean values of other replicated plants. To make the image-derived parameters from diverse sources 362 

comparable, we normalized the columns of 𝑋 by dividing the values with the maximum value of each column 363 

across all plants. Plants with empty values of manual measurements (FW and DW) were discarded for 364 

analysis. These transformed data sets were subjected to regression models. 365 

 366 

Hierarchical clustering analysis and PCA 367 

Hierarchical clustering analysis (HCA) and principle component analysis (PCA) were performed on the 368 

transformed data matrix 𝑋𝑛×𝑚  in the same way as described in [20]. We also performed HCA using the 369 

genotype-level mean value of FW data to check the similarity of overall plant growth patterns in different 370 

experiments. 371 

 372 

Models for predicting plant biomass 373 

To understand the underlying relationship between image-derived parameters and the accumulated biomass 374 

(such as FW and DW), we constructed predictive models based on four different machine-learning methods: 375 

multivariate linear regression (MLR), multivariate adaptive regression splines (MARS), random forest (RF) 376 

and support vector regression (SVR). In these models, the normalized phenotypic profile matrices 𝑋𝑛×𝑚 for 377 

a representative list of phenotypic traits were used as predictors (explanatory variables) and the measured 378 

DW/FW as the response variable 𝑌. 379 

 380 

All these models were implemented in R (http://www.r-project.org/; release 2.15.2). To assess the relative 381 

contribution of each phenotypic trait to predicting the biomass. We also calculated the relative feature 382 

importance for each model. Specifically, for the MLR model, we used the “lm” function in the base 383 

installation packages. The relative importance of predictor variables in the MLR model was estimated by a 384 

heuristic method [38] which decomposes the proportionate contribution of each predictor variable to 𝑅2. For 385 

MARS, we used the “earth” function in the earth R package. The “number of subsets (nsubsets)” criterion 386 

(counting the number of model subsets that include the variable) was used to calculate the variables feature 387 
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importance, which is implemented in the “evimp” function. For the RF model, we used the randomForest R 388 

package which implements Breiman's random forest algorithm [31]. We chose the “%IncMSE” (increase of 389 

mean squared error) to represent the criteria of relative importance measure. For SVR, we utilized the e1071 390 

R package which provides functionalities to use the libsvm library [39]. The absolute values of the 391 

coefficients of the normal vector to the “optimal” hyperplane can be considered as the relative importance of 392 

each predictor variable contributing to regression [40, 41]. 393 

 394 

Evaluation of the prediction models 395 

To evaluate the performance of the predictive models, we adopted a 10-fold cross-validation strategy to check 396 

the prediction power of each regression model. Specifically, each dataset was randomly divided into a training 397 

set (90% of plants) and a testing set (10% of plants). We trained a model on the training data and then applied 398 

it to predict biomass for the testing data. Afterwards, the predicted biomass in the testing set was compared 399 

with the manually measured biomass. The predictive accuracy of the model can be measured by  400 

1) the Pearson correlation coefficient (PCC; r) between the predicted values and the observed values; 401 

2) the coefficient of determination (𝑅2) which equals to the fraction of variance of biomass explained 402 

by the model, defined as  403 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

= 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 404 

where 𝑆𝑆𝑟𝑒𝑠 and 𝑆𝑆𝑡𝑜𝑡 are the sum of squares for residuals and the total sum of squares, respectively, 𝑦̂𝑖 the 405 

predicted and 𝑦𝑖  the observed biomass of the 𝑖th plant, 𝑦̅ is the mean value of the observed biomass; and 406 

3) the root mean squared relative error of cross-validation, defined as  407 

RMSRE =
√∑ (

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
)

2
𝑠
𝑖=1

𝑠
 408 

where 𝑠 denotes the sample size of the testing dataset.  409 

We repeated the cross-validation procedure ten times. The mean and standard deviation of the resulting 𝑅2 410 

and RMSRE values were calculated across runs.  411 

 412 

To evaluate the applicability of our methods across seasons (thus different growth environments) and 413 
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treatments (e.g., control versus drought stress) in the same season, we applied the models in different contexts 414 

with cohort validation. Specifically, we trained the biomass prediction models under one specific context and 415 

predicted biomass in another different context and vice versa. The predictive accuracy of the model was 416 

evaluated based on the measures 𝑅2 and RMSRE as described above. Furthermore, the predictive power was 417 

reflected by the bias 𝜇 between the predicted and observed values, defined as 418 

𝜇 =
1

𝑛
∙ ∑

𝑦̂𝑖 − 𝑦𝑖

𝑦𝑖

𝑛

𝑖=1
 419 

where 𝑛 denotes the sample size of the dataset. This bias indicates over- (𝜇 > 0) or under-estimation (𝜇 < 0) 420 

of biomass. 421 

 422 

Availability of source code and requirements 423 

 Project name: Modeling of plant biomass accumulation with HTP data 424 

 Project home page: https://github.com/htpmod/HTPmod  425 

 Operating system(s): Windows, Linux and Mac OS.  426 

 Programming language: R  427 

 License: open source under GNU GPL v3.0.  428 

 429 

Availability of supporting data and materials 430 

The raw image data sets as well as analysed data supporting the results of this article are available in the PGP 431 

repository [42] under XXXX (please use the following links for review: https://doi.ipk-432 

gatersleben.de/DOI/aee46b58-628f-4f8b-9097-0c87cdc2fb39/e281580f-58a8-4a95-9b16-433 

a89e22bba55e/2/1847940088, https://doi.ipk-gatersleben.de/DOI/269b0f6b-2bf9-4d31-b6b0-434 

70639a8416a2/2c368112-3f49-467f-9cc1-71b33323b2a0/2/1847940088, and  435 

https://doi.ipk-gatersleben.de/DOI/d87676ef-9327-4675-99a2-55a2bd0d95fa/8dbaf3cb-b644-4162-95b1-436 

2f925fe9dfba/2/1847940088), according to the ISA-Tab format and the recommendations of the MIAPPE 437 

(Minimum Information About a Plant Phenotyping Experiment) standard [43]. The selected data for 438 

modelling are available in the Supplemental Data S1.  439 

 440 
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Figure Legends  483 

Figure1. Modeling pipeline for predicting plant biomass accumulation based on image-derived parameters.  484 

(A) Input data, including high-throughput image data and manually measured biomass data. Plants were 485 

phenotyped using various cameras such as visible (or color), fluorescence (FLUO) and near-infrared (NIR) 486 

sensors. Image analysis was performed with IAP software [10] for feature extraction. The same plants were 487 

harvested and measured at the end of growth. Generally, two types of biomass were measured: fresh weight 488 

(FW) and dry weight (DW). (B) Trait processing. All the phenotypic traits were grouped into four categories: 489 

geometric, color-related, FLUO-related and NIR-related traits. Phenotypic data were subjected to quality 490 

check to remove low-quality data. (C) Each plant was described by a list of traits, resulting in a predictor 491 

matrix whose rows represent plants and columns represent image-based traits. This matrix was used to 492 

predicted plant biomass accumulation by MLR (multivariate linear regression), MARS (multivariate adaptive 493 

regression splines), RF (random forest) and SVR (support vector regression) models. The right panel 494 

represents the schema of model validation. In the first schema, a dataset (Dataset 1) was divided into training 495 

set and testing set in a ten-fold cross-validation manner. In the second schema, the whole of one dataset 496 

(Dataset 1) was used for training and another dataset (Dataset 2) was used for testing. (D) Model selection, 497 

evaluation and result interpretation. The correlation of the predicted values and measured values was used to 498 

assess the overall performance of the model.  499 

 500 

Figure 2. Predictability of image-based traits to plant biomass.  501 

(A) Schema depicting three consecutive high-throughput phenotyping experiments in barley. Plants in each 502 

experiment were harvested for biomass measurements: fresh weight (FW; for all experiments) and dry weight 503 

(DW; only for experiment 1). (B) Scatter plots showing projections of the top four Principal components 504 

(PCs) based on PCA of image-based data. The component scores (shown in points) are colored and shaped 505 

according to the experiments (as legend listed in the box). The component loading vectors (represented in 506 

lines) of all traits (as colored according to their categories) were superimposed proportionally to their 507 

contribution. (C) Boxplot showing the distribution of FW across different experiments. (D) A dendrogram 508 

from cluster analysis based on the means of FW data over genotypes. (E) Pearson's correlation (mean values 509 

in the three datasets) between image-based traits and FW. Traits with the largest mean correlations values are 510 
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labeled: 1 -- sum of leaf length (side view), 2 -- sum of FLUO intensity (side), 3 -- plant area border length 511 

(side), 4 -- sum of NIR intensity (top), 5 -- sum of FLUO intensity (top), 6 -- projected area (top), 7 -- 512 

projected area (side) and 8 -- digital volume.  513 

 514 

Figure 3. Quantitative relationship between image-based features and plant biomass.  515 

(A) and (C) Scatter plots of manually measured plant biomass (fresh weight [FW] and dry weight [DW]) 516 

versus predicted biomass values using four prediction models: multivariate linear regression (MLR), 517 

multivariate adaptive regression splines (MARS), random forest (RF) and support vector regression (SVR). 518 

The red line indicates the expected prediction (𝑦 = 𝑥). The quantitative relationship between image-based 519 

features and biomass was evaluated by Pearson's correlation coefficient (PCC r and its corresponding p-520 

value), RMSRE (root mean squared relative error) and the percentage of variance explained by the models 521 

(the coefficient of determination 𝑅2). (B) and (D) Summary of the predictive power of each regression model. 522 

The results were based on ten-fold cross-validation with ten trials. Models were evaluated based on control 523 

plants, stressed plants and the whole set of plants. The solid lines represent the predictive performance based 524 

on the single “digital volume” feature. 525 

 526 

Figure 4. The relative importance of image-based features in prediction of plant biomass. 527 

The capabilities of different types of image-based features to predict plant biomass based on evaluation of 528 

either fresh weight (FW) (A) or dry weight (DW) (B). The overall predictive accuracies of each type of 529 

features are indicated. Grey bar denote the predictive accuracy using all features. The relative importance of 530 

each feature in the Random Forest model (upper panel) and the predictive accuracy of each individual feature 531 

as the single predictor (lower panel) based on investigation of either FW (C) or DW (D). The calculation was 532 

based on the whole set of plants (control and stressed plants). Note that feature labels are shared in the upper 533 

and lower panels. Features are shown in numbers as ordered by their names. The three features highlighted 534 

in the red dash box are digital volume, projected side area and projected top area. (E) Comparison of the 535 

relative importance of features in prediction of FW and DW. The top six most different features are 536 

highlighted and labeled.  537 
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Figure 5. Comparison of prediction accuracy across different experiments. 539 

(A)Biomass prediction across experiments. Models were trained using data from one experiment and were 540 

applied to another experiment for prediction. The whole set of plants (i.e., “control + stressed” plant) were 541 

used in the analysis. Brown triangles denote stressed plants and green circles control plants. Red box indicates 542 

that the prediction accuracy is relatively high between experiments 1 (Exp. 1) and 2. (B) Boxplots of 543 

coefficient determination (𝑅2, left), Pearson's correlation coefficients (r, middle) and the root mean squared 544 

relative error (RMSRE, right) for different comparisons. “Within” denotes a model trained and tested on data 545 

from the same dataset with specific treatments (control, stress or both), and “Cross” represents a model 546 

trained on one dataset and tested on another dataset. “Control  stress” denotes a model trained on data with 547 

control treatment and tested on data with stress treatment, and vice versa for “stress  control”. The number 548 

of possible analyses for each category was shown above the boxes.  549 

 550 

Figure 6. Comparison of prediction accuracy across different treatments. Refer to Figure 5A for legend. The 551 

analysis was performed for control and stressed plants separately.  552 

 553 

Supplemental Data  554 

The following supplemental materials are available.  555 

Supplemental Figure S1. The relative importance of image-based features in prediction of biomass in 556 

control plants. Refer to Figure 4 for legend. The calculation was based on control plants.  557 

Supplemental Figure S2. The relative importance of image-based features in prediction of biomass in 558 

stressed plants. Refer to Figure 4 for legend. The calculation was based on stressed plants. 559 

 560 

Supplemental Table S1. Overview of three high-throughput phenotyping experiments in barley.  561 

Experiment #plants/#genotypes1 Date of sowing Date of harvesting Biomass2 

Exp. 1 (1121KN) 310/18 27.05.2011 24.07.2011 FW & DW 

Exp. 2 (1130KN) 310/18 22.07.2011 18.09.2011 FW 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Exp. 3 (1137KN) 309/18 16.09.2011 13.11.2011 FW & DW 

1 Number of plants or genotypes used in analysis (filtered data).  562 

2Types of biomass measurement. FW: fresh weight; DW: dry weight.  563 

 564 

Supplemental Data S1. Manual data and image-derived data in the three experiments.  565 
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