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Abstract

Background

Chromosome conformation capture (3C) and HiC DNA sequencing methods have
rapidly advanced our understanding of the spatial organization of genomes and
metagenomes. Many variants of these protocols have been developed, each with their
own strengths. Currently there is no systematic means for simulating sequence data
from this family of sequencing protocols.

Findings

We describe a computational simulator that, given reference genome sequences and
some basic parameters, will simulate HiC sequencing on those sequences. The simulator
models the basic spatial structure in genomes that is commonly observed in HiC and 3C
datasets, including the distance-decay relationship in proximity ligation, differences in
the frequency of interaction within and across chromosomes, and the structure imposed
by cells. A means to model the 3D structure of topologically associating domains
(TADs) is provided. The simulator also models several sources of error common to 3C
and HiC library preparation and sequencing methods, including spurious proximity
ligation events and sequencing error.

Conclusions

We have introduced the first comprehensive simulator for 3C and HiC sequencing
protocols. We expect the simulator to have use in testing of HiC data analysis
algorithms, as well as more general value for experimental design, where questions such
as the required depth of sequencing, enzyme choice, and other decisions must be made
in advance in order to ensure adequate statistical power to test the relevant hypotheses.
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Findings 1

Software testing 2

Within bioinformatics, data simulation has become an important proxy for real 3

experimental data when testing individual algorithms and, more broadly, whole analysis 4

workflows. Use of simulated data in testing can be motivated by the formal notion of 5

software validation, the direct comparative analysis of algorithms or even as an 6

exploratory technique when prototyping experimental design. For established 7

experimental methods, the ever-accumulating public data archive offers a route to 8

thorough real-data driven testing. For a chosen test however, a difficulty remains in 9

matching desired data characteristics to one or several public dataset(s). Further, as 10

fields such as DNA sequencing develop, new forms of experimental data appear for 11

which the public data archives contain few, if any, examples. Though performance on 12

real data is the ultimate arbiter of analytical value, few researchers would have the time 13

and financial resources to commit to its generation purely for software testing. 14

Simulation-driven development and testing has proven to be a highly cost effective and 15

time efficient approach. It offers the possibility to explore data characteristics as a near 16

continuum and subject software to a previously unavailable degree of testing 17

thoroughness. 18

Tools for simulating DNA sequencing reads have existed from the very early days of 19

genomics, beginning with the many anonymous implementations of simple DNA 20

shearing algorithms, up to the most recent highly detailed empirical model 21

simulators [13,14, 19,30]. From read simulation in isolation, field advancements such as 22

metagenomics have been accompanied soon after by simulators reflecting their specific 23

data characteristics and evolving experimental methodology [2, 16,34]. 24

We introduce Sim3C, a software package designed to simulate data generated by HiC 25

and other 3C-based proximity ligation (PL) sequencing protocols. The software includes 26

flexible support for a range of sequencing project scenarios and choice of three 3C 27

methods (HiC, Meta3C, DNase-HiC). The resulting output (paired-end FastQ) is easily 28

assimilated into existing workflows, opening the door to more thorough software testing, 29

such as the comparative analysis of clustering algorithms [8]. 30

3C sequencing 31

3C-based sequencing protocols, including Hi-C, 4C-seq, and Meta3C, have great 32

potential to address questions directed at the spatial organization of DNA in samples 33

ranging from eukaryotic tissue, to single cells, to microbial communities. The growing 34

use of these protocols creates a legitimate need for a simulator capable of generating 35

data with relevant characteristics. 36

Chromosome conformation capture (3C) was originally designed as a PCR-based 37

assay to measure interactions among a small number of defined regions of eukaryotic 38

chromosomes [7]. In 2009 Lieberman-Aiden [21] reported an extension of the protocol to 39

high throughput sequencing, enabling the global spatial arrangement of chromosomes to 40

be reconstructed at unprecedented resolution. All 3C protocols depend on an initial 41

formalin fixation step, which crosslinks proteins bound to DNA in vivo. Subsequently 42

cells are lysed and the DNA:protein complexes are sheared enzymatically and/or 43

physically to create free ends in the bound DNA strands. These free ends are then 44

subjected to a proximity ligation reaction, in which ligation of free ends preferentially 45

occurs among DNA strands cobound in a protein complex. The DNA:protein crosslinks 46

are then reversed, the DNA is purified, and an Illumina-compatible sequencing library is 47

constructed. In HiC protocols, the proximity ligation junctions can then be further 48

purified in the sequencing library. 49
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3C-derived methods have found several applications beyond their initial use to 50

reconstruct 3D chromosome structure. For example, it has been shown that 3C-derived 51

data provide a valuable signal for genome scaffolding [5, 10], as well as a signal that can 52

support genome-wide haplotype phasing [17,36]. 3C-derived data has also proven 53

valuable for metagenomics, where initial studies on mock communities demonstrated 54

that highly accurate genome reconstruction in mixed microbial communities could be 55

facilitated by proximity ligation sequence data [4, 6, 26]. Subsequent application to 56

naturally occurring microbial communities has also suggested that bacteriophage can be 57

linked to their hosts with this data type [24]. 58

In the remainder of this manuscript we describe the Sim3C software and outline how 59

it can be used to simulate data for various 3C-derived experiments. 60

Experiment scenarios 61

Beyond simple monochromosomal genome sequencing experiments, Sim3C offers 62

support for the more complex scenarios of multi-chromosomal genomes and 63

metagenomes. A scenario is defined by way of a community profile; assigning a 64

copy-number and containing genome to each chromosome and a relative abundance to 65

each genome. The profile and supporting reference sequences form a skeleton definition 66

with which to initialize the weighted random sampling process within a simulation. The 67

user can elect to supply a profile either as an explicit table (listing 1, 2) or allow Sim3C 68

to draw abundances at runtime from one of three distributions (equal abundance, 69

uniformly random, log-normal distribution) for communities made up of strictly 70

mono-chromosomal genomes. 71�
72

#chrom c e l l abund copynum 73

chr a bac1 0 .4 1 74

p l a s 1 bac1 0 .4 4 75

ch r c bac2 0 .6 1 76
� 77

Listing 1. A mock two genome community. For demonstration purposes, we
assume that the plasmid (plas 1) is present in four copies and that there is a 0.4/0.6
relative abundance split between the two organisms (bac1, bac2) in the community�

78

#chrom c e l l abund copynum 79

chr1 euk1 1 1 80

chr2 euk1 1 1 81

chr3 euk1 1 1 82

chr4 euk1 1 2 83
� 84

Listing 2. A mock four chromosome genome. Cellular abundance is a constant
across the profile, while chr4 exists in two copies. Note that relative abundances specified
in a profile are not required to sum to 1, but are normalised internally.

Error Modelling 85

Sim3C models three forms of experimental noise: machine-based sequencing error, the 86

formation of spurious ligation products and the contamination of PL libraries with 87

WGS read-pairs. 88

To simulate machine-based sequencing error, the paired-end mode from 89

art illumina [14] has been reimplemented as a Python module (Art.py). This approach 90
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was taken as delegating read-pair generation to native invocations of art illumina proved 91

cumbersome. More explicitly, a loosely coupled solution (via subprocess calls but 92

without an IPC mechanism) lacked sufficient control to generate PL read-pairs in an 93

efficient and robust manner. On the other hand, tightly coupling Sim3C to the ART 94

C/C++ source code (i.e. implementing hooks) would have left Sim3C vulnerable to 95

changes in a non-public external API (i.e. a codebase without formal definition or 96

guarantee of stability). Reimplementation also meant Art’s many empirically derived 97

machine profiles are available for use by Sim3C, allowing equivalent treatment of 98

machine-error when experiments involve both PL (Sim3C) and pure WGS (art illumina) 99

libraries. 100

The production of spurious ligation products is an inherent source of noise in PL 101

library construction [28]. Sim3C models spurious pairs as the uniformly random ligation 102

of any two cut-sites across all source genomes. While this process disregards cellular 103

organisation, it respects the relative abundance of chromosomes. Spurious pairs, and to 104

a lesser extent sequencing error, represent an important confounding signal to 105

downstream analyses that attempt to infer the cellular or chromosomal organisation of 106

DNA sequences. 107

Lastly, conventional WGS read-pairs represent a source of contamination within a 108

PL library, which even after HiC enrichment steps, are not completely eliminated. The 109

rates at which spurious and WGS read-pairs are injected into a simulation run are 110

controllable by the end-user. 111

Simulation modes 112

Since HiC was first introduced [21], the development of variants and extensions has 113

been continual [11,26,32,33]. Variants have often strived to further enhance the 114

discriminatory power of the original experiment, while seemingly adding yet more 115

complexity to an already challenging protocol (in-situ DNase HiC, sciHiC) [33]. Others 116

instead have sought compromise, with the aim of lessening the burden on the laboratory 117

(Meta3C). While not considering more recent and complex extensions, Sim3C offers 118

three simulation modes: traditional HiC, Meta3C and DNase-HiC. The first two of 119

these modes were chosen as representing the fundamental basis (traditional HiC) and an 120

attractive and pragmatic simplification of the original (Meta3C). The third mode 121

(DNase-HiC) replaces the restriction endonuclease driven production of the free-ends, 122

used to form PL products, with an ideally-free process of DNA fragmentation. In the 123

laboratory, this ideally-free process could be carried out by DNase digestion or 124

mechanical shearing via sonication. 125

The most notable difference between the methods of HiC and the more recent 126

Meta3C, is that after restriction digest, HiC employs additional steps leading to the 127

incorporation of biotin tags at each PL junction. This biotinylation permits HiC 128

libraries to be subsequently enriched for fragments containing PL junctions by 129

streptavidin-mediated affinity purification. Without enrichment, the simpler Meta3C 130

protocol results in a gross mixture of both WGS and PL read-pairs, where only a small 131

percentage of the total read-pair yield (approx. 1%) will possess PL junctions [22]. The 132

enrichment process within HiC, however, is not perfectly efficient and WGS read-pairs 133

are still observed (approx. 10–50% of reads contain a PL product) [22]. DNase-HiC 134

replaces restriction digest with a non-specific endonuclease (e.g. DNase I) [23] or 135

mechanical DNA shearing process (e.g. sonication) [11]. In this operational mode, 136

Sim3C treats DNA cleavage as a completely unbiased (free) process and as such all 137

genomic positions have equal probability of participating in proximity ligation events. 138

Within Sim3C, each of the three methodological variations is conceptualised as a 139

sequencing strategy (figure 1) and each iteration of a strategy produces one read-pair 140
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(PL or WGS in origin). For all strategies, an iteration begins by drawing a 3-tuple of 141

insert parameters: length, direction and junction point (Lins, dir, xjunc). 142

After obtaining insert parameters, the HiC strategy (figure 1a) first tests if the insert 143

will represent a WGS or PL read-pair (∼ Bern(peff )), where efficiency peff is defined 144

in the sense of enrichment. When peff = 1, there is perfect filtering and all WGS 145

read-pairs are eliminated from the experiment. In the case of WGS, the iteration 146

reaches an end-point and the simulation emits a conventional read-pair drawn from the 147

community definition. In the case of PL, next a 3-tuple defining a cut-site is drawn 148

(gen1, chr1, x1), where the categorical distribution over chromosomes is weighted by 149

relative abundances (A) and chromosomal copy-numbers (ncpy); genomic position is 150

sampled uniformly from the set of restriction sites (sites(chr1)); and parent genome 151

(gen1) is implicit from the chromosome. Next, a test for spurious ligation is performed 152

(∼ Bern(pspur)). If a spurious event has occurred, the 3-tuple defining the second site 153

(gen2, chr2, x2) is drawn i.i.d. as the first. If not spurious, next a test for 154

inter-chromosomal (trans) ligation is performed. For inter-chromosomal events, as the 155

source genome is implicitly defined (gen2 = gen1), only the second chromosome and 156

position (chr2, x2) are drawn. Chromosome chr2 is selected without replacement from 157

the same genome (gen1), where the categorical distribution is adjusted for the removal 158

of the first chromosome, and genomic position x2 on chr2 is drawn i.i.d. as the first. 159

Lastly, an intra-chromosomal (cis) ligation must have occurred. As now both genome 160

and chromosome are implicitly defined (gen2 = gen1, chr2 = chr1), all that is required 161

is to draw genomic position x2. Here, the separation s between x1 and x2 162

(s = |x2 − x1|) is constrained to follow an empirically determined long-tailed mixture of 163

the geometric and uniform distributions (equation 1). 164

For Meta3C (figure 1b) after insert parameters are determined, in the same fashion 165

as a regular WGS read, an initial free genomic position is drawn (chr1, x
∗
1), uniformly 166

distributed over the extent of chr1 rather than only over its cut-sites. In real datasets, it 167

has been observed that neither the restriction digestion nor the re-ligation of free ends 168

are perfectly efficient. Taken as independent probabilities, in our model we 169

conceptualise their joint occurrence as an efficiency factor, peff and a Bernoulli trial 170

(Bern(peff )) determines whether a sequence read is successful in containing an 171

observable proximity ligation event. Failing this coverage test relegates the iteration and 172

end-point and emit a WGS read-pair. Successful candidates instead continue akin to the 173

HiC decision tree, beginning with the test for spurious ligation. 174

For both HiC and Meta3C, PL read-pairs are produced by joining the free-ends 175

drawn above as defined by the fragment parameters (figure 2). Here the location of the 176

PL junction within the insert is determined by xjunc. At the junction, HiC differs from 177

Meta3C as the process of biotinylation results in the duplication of the restriction 178

cut-site overhang sequence. The overhang duplication in Hi-C is included in the 179

simulation. 180

DNase-HiC is handled similarly to traditional HiC, with the exception that, as 181

in-silico digestion trivially leads to all sites, the simulated digestion is unnecessary to 182

perform and positions can be drawn directly from the uniform distribution over the 183

interval [0..Lchr). Site duplication, attributable to the likely production of random 184

overhangs in this scenario, is not presently simulated. 185
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a b

Figure 1. Logical schema used within Sim3C. (a) HiC and (b) Meta3C simulation
strategies. Gold diamonds represent simple Bernoulli trials. Blue boxes represent
sampling distributions defined by runtime input data (community profile, genomic
sequences, enzyme) and the empirically derived distribution for intra-chromosome (cis)
interaction probability (equation 1). Logical end-points to a single iteration of either
algorithm are represented as red (producing a WGS read-pair) and green boxes (producing
a PL read-pair). Due to the elimination of the biotinylation step, Meta3C does not
produce a duplication of the restriction cut-site overhang (grey boxes).
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Figure 2. Proximity ligation insert. The joining of parts A (red) and B (blue) to
create the full junction containing PL insert, from which the read-pair is then simulated
via Art.py. Here, the junction point varies uniformly over the interval [0..L) and in
combination with the requested read length and insert size range, can result in read-
through events as are observed in real experiments. In the case of traditional HiC, the
side-effect of site duplication makes it possible to confirm such occurrences.

Empirical distribution 186

The central relation used to express the probability of observing intra-chromosomal 187

proximity ligation (PL) events as a function of genomic separation s is a mixture model 188

combining the geometric and uniform distributions (equation 1), with mixing parameter 189

β, geometric distribution shape parameter α and genomic interval length l. This 190

combination allows for a non-zero probability for all chromosomal positions, while also 191

capturing the rapid early fall-off in probability with increasing separation (figure 3). 192

Agreement with empirical observations is acceptable over the majority of the range, 193

diverging slightly from the empirical estimate at small separation (s < 10 kbp). Worth 194

considering, however, is that as diminishing separation s approaches the length of the 195

sequencing insert, there is increasing odds of PL read-pair counting statistics being 196

contaminated by WGS read-pairs that escaping filtering efforts. 197

Pr(X = s|α, β, l) = β(1− α)sα+ (1− β)/l (1)
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Figure 3. Empirical model against real data. Agreement of model relation
(equation 1) as fitted to empirical data collected from the single bacterial genome of C.
crescentus (α=7.7e-6, β=0.56). Only the first 2.5Mbp are shown so as to see the highest
density region near for small separation.

Structurally related interactions 198

Sim3C can approximate the modulation of observed contact frequencies brought about 199

by 3D chromosome structure. Independent of any 3D structure that might exist, the 200

primary and most frequently observed interactions are those which occur along a 201

chromosome (intra-arm) (figure 5a), seen as the primary (y ' x) diagonal in the contact 202

map. Less intense are interactions occurring between chromosomal arms (inter-arm) 203

(figure 5b) [18], which produced an anti-diagonal (y ' L− x) in the contact map. At 204

progressively smaller scales, the hierarchical 3D folding of DNA into topologically 205

associated domains (TADs) produces overlapping regions of interaction (figure 5c) 206

visible in the contact map as block-like intensity modulations. Though the agents 207

responsible for their formation vary [1,3], the characteristic patterns evident in real-data 208

derived 3C contact maps have been observed across all three domains [9, 18,37]. 209

Our approximation of hierarchical folding begins from the full extent L of a 210

chromosome (figure 4). Folding is portrayed by the division of the interval [0..L) into a 211

set of non-overlapping sub-intervals {[0, x1), [x1, x2), · · · , [xn−1, xn)}, the number and 212

widths of which are drawn at random (U(lmin, lmax), U(nmin, nmax)). The procedure is 213

then recursively applied to each sub-interval until a depth d, producing a nested set of 214

coverings of the full interval [0..L) at progressively finer scales. Across this hierarchical 215

collection each interval is assigned a uniformly distributed random probability pi and 216

empirical distribution fi(s|θi) (equation 1) for separation s parameterised by shape 217

parameter αTAD and interval length linv = xi+1 − xi, where θ = (αTAD, β, linv). 218

The process of drawing samples of separation begins by determining the set of 219

intervals {linv} which contain an initial point x0. The intervals, as tuples (pi, fi(s|θi)), 220

then form a categorical distribution (equation (7)), from which a governing distribution 221
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fi(s|θi) is drawn and finally a sample of separation is taken, s ∼ fi(s|θi). To efficiently 222

sample from the full collection, an interval-tree data structure is employed. When 223

queried, an interval-tree returns the set of intervals {l} overlapping a position x in order 224

O(log n+m), where n is number of intervals and m is number of intervals returned by 225

the query. 226

f = {f0(s|θ0), f1(s|θ1), · · · , fi(s|θi)} (2)

N = number of distributions = |f | (3)

p = {p0, p1, · · · , pi} (4)

pi ∼ U(0, 1) and
∑

pi = 1 (5)

n ∼ Cat(N,p) (6)

f(s|n) =

N−1∏
i=0

fi(s|θi)[i=n] (7)

where [i = n] is the Iverson bracket. 227

Lx1x30

{
0 Lx1 x2x3

d=2
x4 x5

0 Lx1 x2
d=1

0 L

{

Figure 4. Approximating the structurally related modulation of observed
contact frequencies. Beyond primary intra-chromosomal interactions which produce
the main diagonal, Sim3C can reproduce an inter-arm mediated anti-diagonal at user
controlled intensity. Illustrated here, finer scale modulations attributed to topologically
associated domains (TADs) can optionally be approximated. Primary interactions are
governed by the empirical distribution f0(s—0) which covers the full interval [0, L). Each
level of recursion (d = 1, 2 · · ·n) generates a finer set of intervals, to which a distribution
fi(s|θi) and probability pi is assigned. The intervals at the final depth each define a
range (green, curly braces) over which a set of probabilities and empirical distribution
pairs govern interaction separation s.
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a

b

c

a

b

a

Figure 5. Interactions from simple folds. For a flexible and unbound chromosome
(circular here) embedded in 3D space, the possibility of spatially proximate interactions
can be increased from (a) those which are strictly primary, to (b) include inter-arm and
(c) further still by successive folding. When the spatial arrangement is consistent across
the population of cells, this will be observable as modulations in the contact frequencies.

Example scenarios 228

In the following, three use-cases are presented to demonstrate aspects of the resulting 229

simulation output: bacterial genome, multi-chromosomal eukaryotic (yeast) genome, 230

and metagenome. For each use-case, 3C contact maps have been used to pit simulation 231

output against the corresponding real experimental data (table 1). 232

Bacterial 233

A monochromosomal bacterial genome is perhaps the simplest scenario to which 234

proximity ligation methods have been applied, making for a sensible entry point from 235

which to make comparison. Due to the smaller extent, a bright and high resolution 236

contact map (10 kbp bin size) is possible for a practical volume of sequencing data, 237

potentially revealing fine detail not easily discerned with larger bin sizes (50-100 kbp 238

bin size). 239

The genome of Caulobacter crescentus NA1000, a model organism in the study of 240

cellular differentiation and regulation of the cell cycle, is comprised of a single 4 Mbp 241

circular chromosome [27]. Deep HiC sequencing of C. crescentus has been used to 242

explore the degree to which bacterial chromosomes can be regarded as organised and 243

provided evidence for the existence of so called chromosomal interaction domains 244

(CIDs) [18]. As a prokaryotic analog of topologically associated domains (TADs) from 245

eukaryotic literature [1, 29,31], these regions are believed to promote intra-domain loci 246

interactions and thereby act to functionally compartmentalize the genome. This 247

chromosomal structure was observed to be at once disruptable through rifampicin 248

mediated inhibition of transcription and malleable by the movement of highly expressed 249

genes [18]. 250
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For the raw contact map of C. crescentus, prominent rectilinear features are 251

apparent for both real and simulated traditional HiC sequencing data (figure 6a,b), 252

while notably for simulated unrestricted HiC the field is much smoother (figure 6c). 253

Within the Sim3C model, a single distribution governs both intra- and inter-arm 254

interactions. Inspection of the real-data contact map (figure 6a) suggests that the true 255

relationship governing inter-arm interactions is more dispersed. This perhaps is not 256

surprising, where different arms associating spatially possess a greater number of 257

potential configurations than can be taken on by the primary chromosome backbone. 258

Additionally for the real contact map, long-range interactions away from either diagonal 259

can be seen to drop to a lower threshold than that produced from simulation. 260

Within the unrestricted HiC map, the fine zero-intensity rectilinear features are a 261

direct result of poor mappability (non-unique sequence), where their small size reflects 262

the extent of the non-unique regions (example: rRNA genes) and the single base-pair 263

resolution of the less constrained read generation process. The process of enzymatic 264

digestion is the only difference between the unrestricted and traditional HiC simulation 265

models. The clear contrast in their contact maps is thus a combination of factors either 266

directly inherent to digestion (cut-site density) or a byproduct of downstream 267

bioinformatics analysis (e.g. filtering heuristics). Though the problem of mappability 268

exists for any reference based representation, for real and simulated traditional HiC, 269

zero-intensity rectilinear features mark regions devoid of cut-sites over at least 10 kbp. 270

Enabling TAD approximation in simulated traditional HiC (figure 6d) has the effect 271

of modulating map intensity in a manner not particularly distinct from that produced 272

purely from experimental/workflow bias. Discriminating between these two feature 273

sources; one representing experimental signal, the other representing noise; demands 274

attention when developing solutions to problems such as normalisation. Contact map 275

normalisation methods, whether based upon explicit or implicit bias models [35], may 276

leave behind remnants of noise-related features from either a lack of convergence or 277

model limitations. Downstream inferencing should therefore not be made under an 278

assumption of bias-free signal. 279
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Figure 6. Bacterial contact maps. Observed HiC interactions for the monochro-
mosomal genome of Caulobacter crescentus NA1000. Comparing (a) real experimental
data [18], to the three simulation choices (b) traditional HiC, (c) DNase-HiC and (d)
traditional HiC with TADs enabled. Sharp rectilinear modulations of the intensity within
(a) and (b) indicate a reduction in PL observations within a given bin. Not due to 3D
chromosome structure, rather such features can be attributed largely to mappability and
low cut-site density. (c) Without an enzymatic constraint a significantly smoother field
is apparent, yet still susceptible to mappability. (d) Enabling topologically associated
domains (TADs) highlights the similarity between features produced merely from biases
and what could be truly associated with 3D structure.

Eukaryotic 280

The eight chromosomes of the 15.4 Mbp genome of the native xylose-fermenting yeast 281

Scheffersomyces stipitis CBS 6054 [15] range in size from 970 kbp to 3.5 Mbp. The 282

organism was one of 16 yeasts included in a synthetic community to explore the 283

application of HiC sequencing to deconvolving metagenomic assemblies [6] and is 284

divergent enough from other synthetic community members to permit unambiguous 285

read mapping, and thus act as a proxy for a clonal experiment. 286
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From the contact map of real HiC data (figure 7a), it can be seen that the rates of 287

intra-chromosomal and inter-chromosomal interactions are roughly equivalent in 288

magnitude. Across the eight chromosomes of S. stipitis, there is significant uniformity in 289

the degree of physical intimacy within and between all chromosomes. The subtleties of 290

this chromosomal organisation reveals a self-similar “fuzzy-x” pattern repeated between 291

all chromosomes across the contact map. The convergence point within the pattern is 292

attributed to centromere-SPB binding and has been used to predict centromere 293

locations [38]. It has been shown that the physical constraints generated from the 294

interaction of centromeres to the spindle pole body (SPB) and telomeres to the nuclear 295

envelope are sufficient to explain a number of experimental observations in real 296

data [12,39]. As Sim3C was derived from study of bacterial datasets, our simulation 297

model does not currently include a notion of these higher organism physical constraints. 298

Consequently, the contact map derived from simulated traditional HiC sequencing elicits 299

a flat field (figure 7b), where the intensity variation that does exist is a byproduct of 300

aforementioned factors such as mappability and cut-site density. For the runtime 301

parameters employed, the rate of intra-chromosomal contact is higher than that of 302

inter-chromosomal, making clear the boundaries between the eight chromosomes (figure 303

7b). Though our model is presently incomplete for higher organisms, there remains a 304

potential utility as an analytical or simply observational prior. 305

Figure 7. Eukaryotic contact maps. Observed HiC interactions (a) real and (b)
simulated data from the eight chromosome genome of the budding yeast Scheffersomyces
stipitis CBS 6054 [6]. Grey dashed lines and alternating light and dark grey axes
demarcate the boundaries between chromosomes. (b) Simulated data elicits a flat
field and the clearly evident higher rate of intra- to inter- interactions makes for easily
observable chromosomal boundaries within the map. (a) Contrastingly for real data,
the similar rates of intra-chr and inter-chr interactions reveals the physical constraints
imposed by centromere-SPB tethering on all eight chromosomes [38].

Metagenomic 306

In the deconvolution of metagenomes, proximity ligation methods hold great potential 307

as new sources of information and have been investigated by the construction and 308

sequencing of synthetic communities [4, 6, 26]. We selected two previously constructed 309

synthetic bacterial communities, one employing traditional HiC and the other Meta3C 310
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(table 1). Intended as “proof of concept” experiments, neither community reflects a real 311

environment, but rather were intended to be easily interpreted and include interesting 312

features, such as: range of GC, single and multi- chromosomal genomes and strain-level 313

divergence. The HiC community involved five genotypes from four species, one genome 314

of two chromosomes (B. thailandensis), E. coli strains BL21 and K12 (Average 315

Nucleotide Identity, ANI 99%) and a wide overall GC range of 37-68% (table 2). Of 316

lower complexity, the Meta3C community involved three genomes from three species, 317

included one genome of two chromosomes (V. cholerae) and had a narrower GC range 318

of 44-51% (table 3). Relative to the single genome experiments above, a lower depth of 319

sequencing resulted in a lower overall contact map intensity (figure 8). This is 320

particularly the case for Meta3C, where, by the nature of the method, a large proportion 321

(approx. 99%) of the sequencing yield is in reality conventional WGS read-pair data [26]. 322

As a direct result, in binning the Meta3C dataset, there were insufficient counts to fully 323

establish finer detail within the contact maps, leaving a smoother appearance. 324

As with single-genome experiments, metagenomic contact maps are locally 325

modulated by factors such as mappability and cut-site density. Importantly now for 326

metagenomes, the factors of relative abundance and GC content interact to alter the 327

observed intensity of each chromosome within the contact map. 328

As a first approximation and assuming agreement in nucleotide sampling frequency, 329

we expect n0 = L/4λ recognition sites for an enzyme of site length λ and DNA sequence 330

length L. The degree to which an enzyme and DNA sequence deviate from this estimate 331

could be described as how well they match, m = nx/n0. Poorer quality matches (m < 1) 332

occur when an enzyme’s recognition site is underrepresented, while conversely, better 333

quality matches (m > 1) describe a situation of more recognition sites than expected. 334

When multiple chromosomes are taken as a community, the relative proportion of 335

sites from each represents an observational bias when conducting 3C-based experiments. 336

For community C, the number of sites nx from chromosome x determines the number of 337

potential PL pairings Nx within C which involve x (equation 8). The number of 338

intra-chromosomal and inter-chromosomal potential pairs thus respectively vary 339

quadratically and linearly with nx. Regarding the process of observing a PL event 340

(read-pair) from the community as a random draw with replacement, and the selection 341

pool as comprised of all potential events from all chromosomes, then variation in match 342

quality constitutes a per-chromosome bias. In real laboratory experiments, the 343

composition of the selection pool is further modified by variation in other factors, such 344

as cellular lysis efficiency, unintended DNA fragmentation and relative abundance. In 345

particular, when relative abundances A are introduced, the odds of observing a PL 346

event involving chromosome x is then proportional the product px ∝ AxNx/NC . 347

Although the processes of intra-chromosomal, inter-chromosomal, and inter-cellular 348

(spurious) ligation are treated independently in our simulation model, in this manner, 349

per-chromosome intensity (observation rate of chromosome x) can vary significantly 350

within a metagenome. 351

Nx = n2x + nx
∑

ny∈C\nx

ny (8)

Though the original laboratory experiments reported by Beitel et al. 2014 and 352

Marbouty et al. 2014 intended o create synthetic communities with uniform relative 353

abundances, in practice each possesses a non-uniform profile. The variation in GC 354

content is largest for the HiC experiment and together with non-uniform relative 355

abundances produces a wide range of chromosome intensity for both real and simulated 356

data (figure 8a,b). For both the real and simulated HiC maps, the frequent observation 357

of PL events involving P. pentosaceus (Pp) and L. brevis (Lb), suggests the possibility 358
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that inter-cellular interaction is significant. Within the simulated map at least, 359

inter-cellular pairs are produced exclusively through the process of spurious ligation 360

(noise) and are observed at a higher rate than in the real data, indicating that as 361

expected, spurious ligation rates across species are correlated with their relative 362

abundances. 363

Further for the HiC data, the two-chromosome genome of B. thailandensis (Bt1, 364

Bt2) (figure 8a) has a greater rate of inter-chromosomal interaction than expected from 365

comparing it to simulation (figure 8b). Meanwhile, the clear delineation of E. coli 366

strains BL21 and K12 (ANI > 99%), with little inter-cellular signal, helps to support 367

the notion that the inter-chromosomal interactions observed between B. thailandensis 368

chromosomes (ANI ' 83%) are real and not a by-product of inadequate filtering. 369

Figure 8. Metagenomic contact maps. Observed HiC interactions (a) real and
(b) simulated data from the eight chromosome genome of Scheffersomyces stipitis CBS
6054 [6]. Grey dashed lines and alternating light and dark grey axes demarcate the
boundaries between chromosomes. (b) Simulated data elicits a flat field and the clearly
evident higher rate of intra- to inter- interactions makes for easily observable chromosomal
boundaries within the map. (a) Contrastingly for real data, the similar rates of intra-chr
and inter-chr interactions reveals the physical constraints imposed by centromere-SPB
tethering on all eight chromosomes [38].
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Authors Type Method Accession Sequencing details Mapped
reads

Beitel et al [4] Synthetic bacterial
metagenome

HiC SRX377733
MiSeq 160bp PE
insert range: 280-420bp
enzyme: HindIII

20552775

Burton et al [6] Synthetic yeast
metagenome

HiC SRX527868
HiSeq2500 100bp PE
insert range: 450-550bp
enzyme: HindIII

9704944

Le et al [18] Single bacterial
genome

HiC SRX263925
HiSeq2000 40bp PE
insert range: 200-600bp
enzyme: NcoI

22324360

Marbouty et al [25] Synthetic bacterial
metagenome

Meta3C doi:10.5061/
dryad.gv595

HiSeq2000 100bp PE
insert range: 400-800bp
enzyme: HpaII

7975740

Table 1. Real HiC and Meta3C data-sets used within this work. The total
off-diagonal weight of the contact map was used to calibrate the amount of simulated
sequencing required to approximately match the outcome of the real experiments.

Name Replicons Accession Chr abbr. A ncpy %GC nx m

Burkholderia
thailandensis E264

2
NC 007651
NC 007650

Bt1
Bt2

0.054 1
67.29
68.07

225
144

0.24
0.20

Escherichia coli BL21 1 NC 012892 BL21 0.242 1 50.83 508 0.46

Escherichia coli K12
DH10B

1 NC 010473 K12 0.166 1 50.78 568 0.50

Lactobacillus brevis
ATCC 367

3
NC 008497
NC 008498
NC 008499

Lb
-
-

0.436 1
46.22
38.64
38.51

629
3
16

1.12
0.92
1.84

Pediococcus pentosaceus
ATCC 25745

1 NC 008525 Pp 0.102 1 37.36 863 1.93

Table 2. Synthetic HiC community. A synthetic community used to demonstrate
the utility of HiC sequencing data in resolving a microbial metagenome [4]. It is composed
of 5 bacteria, including two closely related strains (E. coli K12 and BL21), a genome with
two plasmids (L. brevis) and a two-chromosome genome (B. thailandensis). A is relative
abundance, ncpy is copy number, nx is number of restriction sites, and m = nx/n0 is
match quality between chromosome and enzyme choice: m < 1 is worse, m > 1 is better.

Methods 370

Reference Data 371

To compare Sim3C against real experiments, we obtained previously published 372

experimental read-pair datasets (table 1) and their accompanying reference genomes 373

(tables 2, 3) from public archives. In the case of the single genome project of 374

Caulobacter crescentus CB15 [18], sequencing data derived from untreated swarmer cells 375

was chosen and the laboratory strain C. crescentus NA1000 (acc: NC 011916) was used 376

as the reference genome. For the yeast genome, the completed eight chromosome 377

genome of Scheffersomyces stipitis CBS 6054 was used as a reference (acc: 378

PRJNA18881) and the respective reads were extracted from the MY16 yeast synthetic 379

metagenome [6] by direct mapping with BWA MEM. Extraction by mapping in 380

isolation was employed as S. stipitis was the second furthest phylogenetically removed 381

yeast in the synthetic community and was the most contiguous (N50: 60kbp) from the 382

whole synthetic community de novo metagenomic WGS assembly. 383
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Name Replicons Accession Chr abbr. A ncpy %GC nx m

Bacillus subtilis subsp.
subtilis str. 168

1 NC 000964 Bs 0.123 1 43.51 14529 0.88

Escherichia coli str.
K-12 substr. MG1655

1 NC 000913 K12 0.562 1 50.79 24311 1.34

Vibrio cholerae O1
biovar El Tor str.
N16961

2
NC 002505
NC 002506

Vc1
Vc2

0.332 1
47.70
46.91

5909
1802

0.51
0.43

Table 3. Synthetic Meta3C community. A synthetic community used to demon-
strate the utility of Meta3C sequencing data in resolving a microbial metagenome [25,26].
It is composed of three bacteria with one possessing two chromosomes. A is relative
abundance, ncpy is copy number, nx is number of restriction sites, and m = nx/n0 is
match quality between chromosome and enzyme choice: m < 1 is worse, m > 1 is better.

Experiment Insert µ
(bp)

Insert σ
(bp)

Anti
rate

Spurious
rate

Trans
rate

Reads
(×106)

Beitel et al 300 50 0.2 0.05 0.1 7

Burton et al 400 50 0.2 0.5 0.15 1.5

Le et al 400 100 0.2 0.2 0.1 22

Marbouty et al 600 100 0.2 0.2 0.2 7.5

Table 4. Runtime simulation. Parameters supplied to Sim3C during read generation.

Read Generation 384

Experimental parameters used in read simulation were set to agree as closely as 385

reasonably possible to the respective real experiments, employing the same read length 386

and restriction enzyme (table 1). In each experiment, the published fragment size range 387

was approximated by a normal distribution (table 4). For ease of reproducibility, a 388

single random seed (1234) was used in all simulations. As our intent was primarily to 389

demonstrate functionality, rates of inter-chromosomal and spurious events were adjusted 390

per-experiment only through a qualitative process. For simulation of metagenomic 391

datasets, relative abundances were estimated by mapping real experimental reads to the 392

respective reference genomes. From each real experiment, the off-diagonal weight of the 393

resulting contact map was used to calibrate the amount of simulated sequencing 394

required to achieve roughly equivalent intensity (table 4). Both real and simulated 395

read-pair datasets were mapped to their respective reference genomes using BWA MEM 396

(v0.7.15-r1140) [20] 397

Contact Maps 398

Contact maps were produced using our own tool (contact_map.py), where heatmap 399

intensity was plotted as log-scaled observational frequency. All aligned reads were 400

subject to the same basic filtering criteria: BWA MEM mapq > 5 and alignment length 401

≥ 50% of read length, with the added restriction that read alignments must have begun 402

with a match. For methods which employed a restriction enzyme (traditional HiC, 403

Meta3C), we constrained the maximum allowable distance from an aligned read to the 404

nearest upstream cut-site. Calculated per chromosome, this distance constraint could 405

not exceed two-fold the median cut-site spacing. Rather than simply delete the primary 406
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diagonal for the sake of reducing the displayed dynamic range in figures, we instead to 407

reduced its intensity by categorizing properly paired reads with an estimated fragment 408

size of less than 2 of the reported mean as being conventional WGS (non-PL) reads and 409

ignored them. The resolution of contact maps was adjusted between experiments so as 410

to present a sufficiently bright image without undue loss of resolution. The contact map 411

bin sizes employed were: 10000 bp for the single bacterial genome, 25000 bp for the 412

yeast genome and 40000 bp for the HiC and Meta3C metagenomes (tables 2, 3). 413
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Availability of supporting source code and 414

requirements 415

• Project name: sim3C 416

• Project homepage: https://github.com/cerebis/sim3C 417

• Operating system: Platform independent 418

• Programming languages: Python 2.7 419

• License: GNU GPL v3 420
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