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Abstract: Background

Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have
rapidly advanced our understanding of the spatial organization of genomes and
metagenomes. Many variants of these protocols have been developed, each with their
own strengths. Currently there is no systematic means for simulating sequence data
from this family of sequencing protocols, potentially hindering the advancement of
algorithms to exploit this new datatype.

Findings

We describe a computational simulator that, given simple parameters and reference
genome sequences, will simulate Hi-C sequencing on those sequences. The simulator
models the basic spatial structure in genomes that is commonly observed in Hi-C and
3C datasets, including the distance-decay relationship in proximity ligation, differences
in the frequency of interaction within and across chromosomes, and the structure
imposed by cells. A means to model the 3D structure of randomly generated
topologically associating domains (TADs) is provided. The simulator considers several
sources of error common to 3C and Hi-C library preparation and sequencing methods,
including spurious proximity ligation events and sequencing error.

Conclusions

We have introduced the first comprehensive simulator for 3C and Hi-C sequencing
protocols. We expect the simulator to have use in testing of Hi-C data analysis
algorithms, as well as more general value for experimental design, where questions
such as the required depth of sequencing, enzyme choice, and other decisions can be
made in advance in order to ensure adequate statistical power with respect to
experimental hypothesis testing.
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Responses to Reviewer #1 feedback:

1. Overly long

The manuscript has been shortened in the initial description and a figure of limited
value (empirical distribution) has been removed.

2. Goals of simulator are not clear

The introduction has been revised to make the goal/motivations for developing the tool
more clear.

3. Details obfuscate main goal

Clarification of goals was added to the introduction.

4. Too many figures, condense.

We have removed figure 2 as it was of limited value. The three following figures (3,4,5)
have been combined into one.
We do not wish to combine heatmap figures any further as they would lose their detail
if further shrunk and combine too many concerns into a single caption.

5. Real data sets exist

Availability of real data will always be limited and the precision of a priori knowledge
even more so. Simulation meanwhile can offer explicit control over and exact
knowledge of data characteristics, which can be crucial for algorithm development. Not
just in solving the initial problem effectively, but also knowing when we have failed and
where we might likely fail. We currently accept “best we can do” when testing or we
avoid approaches entirely because of lack of sufficient a priori data or unavailability of
precise enough, finely grained enough real data series.

6. Are all replicons treated as circular

Community replicons can be treated as either wholly circular or linear. We have a
working branch where a more expressive community definition is possible. Due to the
unavoidable -- though hopefully slight -- increased complexity, our intention is to take
greater advantage of this change prior to merging back with the main branch. In
particular, an additional goal would be modelling externally determined structural
details.

7. TADs, how are they decided upon

TADs are treated as being drawn uniformly random. The option to supply locations has
been considered for future versions. Our present intention with random modelling of
smaller structural features is to guard against the possibility that, were they entirely
absent, it might result in data that is so simplistic that algorithms to analyse
metagenomic Hi-C data might perform unrealistically well. Further work is required
(and on-going) to allow users to define regions of interaction. When done we hope this
would include structures such as centromeres.

8. Combine figure 1 and 2

Figure 2 has been removed and figures 3, 4 and 5 have been combined.

Fig 8. No description for C and D
The caption for this figure was inadvertently replaced with the wrong text during the
final draft process. This has now been corrected.

Responses to Reviewer #2 feedback:
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1. Provide more explanation and technical details

The revised manuscript attempts to improve the clarity of description without adding
length, in order to strike a balance between this request for added detail and the
previous reviewer’s concern that it was already too long.

2. Fig 3. Log scale x and y.

Taking feedback of both reviewers, we have elected instead to remove this figure (of
limited value) and condense the manuscript.

3. Add chromatin loops as a simulation choice?

The main focus of our own work has been microbial communities, and as a
consequence the simulation of features seen in large multicellular organisms, although
of much merit, has taken lower priority. As it stands, the simulator cannot reproduce
such structural details as seen in eukaryotic genomes. We do wish to provide this in
future, however.

4. Is it reproducible? How does it compare to real replicates

Sim3C makes consistent use of random seeds throughout the simulation, therefore run
to run using the same runtime parameters, we would expect there to be no variation.
Were a user to vary only the seed value to produce replicates, we would expect run to
run variation to be much less than real replicates, particularly when simulating the
simplest model, with no TAD approximation. Primarily, this is because Sim3C treats
experimental parameters offered on the command-line as exact values and does not
apply any type of noise. More run to run variation could be introduced by varying
runtime parameters besides the seed. This is something we regard as outside of the
core simulation and instead as one of the many user-driven use cases that Sim3C can
support. Also, due to their random generation, if TAD approximation is enabled,
variation would of course be larger but run to run simulations would now represent
systematically different chromosomal folding.

5. Human and mouse data sims?

Were Sim3C able to model structural details present only in these genomes or offer
models driven by externally determined observations (motif detection, experimentally
determined coordinates) then we would also agree in the necessity of including such
genomes as human or mouse. As it stands, the present Sim3C feature set is effectively
demonstrated with yeast as the most complex single genome.

6. Hi-C vs HiC, sciHiC vs sciHi-C

The terms have been changed to Hi-C and sciHi-C. Our original motivation to omit
hyphens in these short labels was in consideration of the treatment of hyphens within
search indexing.
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Abstract

Background

Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have
rapidly advanced our understanding of the spatial organization of genomes and
metagenomes. Many variants of these protocols have been developed, each with their
own strengths. Currently there is no systematic means for simulating sequence data
from this family of sequencing protocols, potentially hindering the advancement of
algorithms to exploit this new datatype.

Findings

We describe a computational simulator that, given simple parameters and reference
genome sequences, will simulate Hi-C sequencing on those sequences. The simulator
models the basic spatial structure in genomes that is commonly observed in Hi-C and
3C datasets, including the distance-decay relationship in proximity ligation, differences
in the frequency of interaction within and across chromosomes, and the structure
imposed by cells. A means to model the 3D structure of randomly generated
topologically associating domains (TADs) is provided. The simulator considers several
sources of error common to 3C and Hi-C library preparation and sequencing methods,
including spurious proximity ligation events and sequencing error.

Conclusions

We have introduced the first comprehensive simulator for 3C and Hi-C sequencing
protocols. We expect the simulator to have use in testing of Hi-C data analysis
algorithms, as well as more general value for experimental design, where questions such
as the required depth of sequencing, enzyme choice, and other decisions can be made in
advance in order to ensure adequate statistical power with respect to experimental
hypothesis testing.
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Findings 1

Software testing 2

To the casual observer, formal software testing is often thought to begin and end with 3

the validation of fine-grained behavioural (functional) aspects; such as the correct 4

execution of individual methods. In day to day use however, what can matter most to 5

end-users are broader system attributes such as speed, scalability, reproducibility and 6

ease of use. To ensure a project offers maximum value, a thorough testing process 7

would collectively examine all aspects. 8

For inferential software within scientific fields, the system-level attributes of 9

precision and accuracy are of primary interest, and their quantification is best 10

accomplished by comparison to a known truth (gold standard). Therefore, any testing 11

methodology capable of providing an a priori gold standard, particularly without 12

estimation, improves this facet of testing significantly. 13

Purpose-built bioinformatics software ultimately acts on experimentally collected 14

observations. The inherent noise and variation that comes with experimental data 15

means achieving testing thoroughness is a great challenge. Ready access to sufficient 16

data sources is a fundamental necessity for adequate software testing. 17

For established experimental methods, public data archives are a first choice for the 18

necessary testing data. When high quality metadata is available, testing driven by real 19

data becomes possible. However, even when sufficient depth and description of data is 20

available, difficulty can remain in matching desired test data characteristics to what 21

actually exists in one or several public dataset(s). Further, fine-grained whole-corpus 22

querying of metadata on remote data archives is not always possible, frequently making 23

the up-front job of data selection a difficult task. Once selected, obtaining said real data 24

can be time-consuming or even infeasible in locations with lower network speeds and/or 25

high bandwidth costs. In advancing fields such as DNA sequencing, new experimental 26

datatypes can appear for which the public data archives contain only a handful of 27

examples and few researchers would have the time and financial resources to commit to 28

experimental generation of new data purely for software testing. 29

Though performance on real data is the ultimate arbiter of analytical value, 30

advantaged by explicit control over its characteristics, a faithful simulation of real data 31

can act as a valuable proxy. Simulation-driven development and testing has proven to 32

be a highly cost effective and time efficient approach. It offers the possibility to explore 33

a near continuum of data characteristics, subjecting software to an otherwise 34

unavailable degree of testing thoroughness. Certainty and control makes attaining the 35

twin objectives of rigorous testing and an a priori gold standard straightforward. This 36

enables us not only to be more certain about when we have failed, but also to 37

extrapolate this process to infer the limits of success within the experimental parameter 38

space. 39

Tools for simulating DNA sequencing reads have existed from the very early days of 40

genomics, beginning with the many anonymous implementations of simple DNA 41

shearing algorithms, up to the most recent highly detailed empirical model 42

simulators [14,15, 20,31]. From read simulation in isolation, field advancements such as 43

metagenomics have been accompanied soon after by simulators reflecting their specific 44

data characteristics and evolving experimental methodology [2, 17,36]. 45

We introduce Sim3C, a software package designed to simulate data generated by 46

Hi-C and other 3C-based proximity ligation (PL) sequencing protocols. The software 47

includes flexible support for a range of sequencing project scenarios and choice of three 48

3C methods (Hi-C, Meta3C, DNase Hi-C). The resulting output (paired-end FastQ) is 49

easily assimilated into existing analysis workflows. It is our intention that Sim3C 50

provide the Hi-C/3C research community with means to further validate existing 51
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software projects, to support new experimental or analysis development initiatives and 52

as a platform for exploration, such as the comparative analysis of clustering 53

algorithms [9]. 54

3C sequencing 55

3C-based sequencing protocols, including Hi-C, 4C-seq, and Meta3C, have great 56

potential to address questions directed at the spatial organization of DNA in samples 57

ranging from eukaryotic tissue, to single cells, to microbial communities. The growing 58

use of these protocols creates a legitimate need for a simulator capable of generating 59

data with relevant characteristics. 60

Chromosome conformation capture (3C) was originally designed as a PCR-based 61

assay to measure interactions among a small number of defined regions of eukaryotic 62

chromosomes [8]. In 2009 Lieberman-Aiden [22] reported an extension of the protocol to 63

high throughput sequencing, enabling the global spatial arrangement of chromosomes to 64

be reconstructed at unprecedented resolution. All 3C protocols depend on an initial 65

formalin fixation step, which crosslinks proteins bound to DNA in vivo. Subsequently 66

cells are lysed and the DNA:protein complexes are sheared enzymatically and/or 67

physically to create free ends in the bound DNA strands. These free ends are then 68

subjected to a proximity ligation reaction, in which ligation of free ends preferentially 69

occurs among DNA strands cobound in a protein complex. The DNA:protein crosslinks 70

are then reversed, the DNA is purified, and an Illumina-compatible sequencing library is 71

constructed. In Hi-C protocols, the proximity ligation junctions can then be further 72

purified in the sequencing library. 73

3C-derived methods have found several applications beyond their initial use to 74

reconstruct 3D chromosome structure. For example, it has been shown that 3C-derived 75

data provide a valuable signal for genome scaffolding [5, 11], as well as a signal that can 76

support genome-wide haplotype phasing [18,38]. 3C-derived data has also proven 77

valuable for metagenomics, where initial studies on mock communities demonstrated 78

that highly accurate genome reconstruction in mixed microbial communities could be 79

facilitated by proximity ligation sequence data [4, 6, 27]. Subsequent application to 80

naturally occurring microbial communities has also suggested that bacteriophage can be 81

linked to their hosts with this data type [25]. 82

In the remainder of this manuscript we describe the Sim3C software and 83

demonstrate how it can be used to simulate data for various 3C-derived experiments. 84

Experiment scenarios 85

Beyond simple monochromosomal genome sequencing experiments, Sim3C offers 86

support for the more complex scenarios of multi-chromosomal genomes and 87

metagenomes. A scenario is defined by way of a community profile; assigning a 88

copy-number and containing genome to each chromosome and a relative abundance to 89

each genome. The profile and supporting reference sequences form a skeleton definition 90

with which to initialize the weighted random sampling process within a simulation. The 91

user can elect to supply a profile either as an explicit table (listing 1, 2) or allow Sim3C 92

to draw abundances at runtime from one of three distributions (equal abundance, 93

uniformly random, log-normal distribution) for communities made up of strictly 94

mono-chromosomal genomes. 95
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�
#chrom cell abund copynum
chr1 bac1 0.4 1
plas1 bac1 0.4 1
chr2 bac2 0.6 1 �
Listing 1. A mock two genome community. For demonstration purposes, we
assume that the plasmid (plas1) is present in four copies and that there is a 0.4/0.6
relative abundance split between the two organisms (bac1, bac2) in the community�
#chrom cell abund copynum
chr1 euk1 1 1
chr2 euk1 1 1
chr3 euk1 1 1
chr4 euk1 1 2 �
Listing 2. A mock four chromosome genome. Cellular abundance is a constant
across the profile, while chr4 exists in two copies. Note that relative abundances specified
in a profile are not required to sum to 1, but are normalised internally.

Error Modelling 96

Sim3C models three forms of experimental noise: machine-based sequencing error, the 97

formation of spurious ligation products and the contamination of PL libraries with 98

WGS read-pairs. 99

To simulate machine-based sequencing error, the paired-end mode from 100

art illumina [15] has been reimplemented as a Python module (Art.py). This 101

approach was taken as delegating read-pair generation to native invocations of 102

art illumina proved cumbersome. More explicitly, a loosely coupled solution (via 103

subprocess calls but without an IPC mechanism) lacked sufficient control to generate 104

PL read-pairs in an efficient and robust manner. On the other hand, tightly coupling 105

Sim3C to the ART C/C++ source code (i.e. implementing hooks) would have left 106

Sim3C vulnerable to changes in a non-public external API (i.e. a codebase without 107

formal definition or guarantee of stability). Reimplementation also meant Art’s many 108

empirically derived machine profiles are available for use by Sim3C, allowing equivalent 109

treatment of machine-error when experiments involve both PL (Sim3C) and pure WGS 110

(art illumina) libraries. 111

The production of spurious ligation products is an inherent source of noise in PL 112

library construction [29]. Sim3C models spurious pairs as the uniformly random ligation 113

of any two cut-sites across all source genomes. While this process disregards cellular 114

organisation, it respects the relative abundance of chromosomes. Spurious pairs, and to 115

a lesser extent sequencing error, represent an important confounding signal to 116

downstream analyses that attempt to infer the cellular or chromosomal organisation of 117

DNA sequences. 118

Lastly, conventional WGS read-pairs represent a source of contamination within a 119

PL library, which even after Hi-C enrichment steps, are not completely eliminated. The 120

rates at which spurious and WGS read-pairs are injected into a simulation run are 121

controllable by the end-user. 122
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Simulation modes 123

Since Hi-C was first introduced [22], the development of variants and extensions has 124

been continual [12,27,33,34]. Variants have often strived to further enhance the 125

discriminatory power of the original experiment, while seemingly adding yet more 126

complexity to an already challenging protocol (in-situ DNase Hi-C, sciHi-C) [34]. 127

Others instead have sought compromise, with the aim of lessening the burden on the 128

laboratory (Meta3C). While not considering more recent and complex extensions, 129

Sim3C offers three simulation modes: traditional Hi-C, Meta3C and DNase Hi-C. The 130

first two of these modes were chosen as representing the fundamental basis (traditional 131

Hi-C) and an attractive and pragmatic simplification of the original (Meta3C). The 132

third mode (DNase Hi-C) replaces the restriction endonuclease driven production of the 133

free-ends, used to form PL products, with an ideally-free process of DNA fragmentation. 134

In the laboratory, this ideally-free process could be carried out by DNase digestion or 135

mechanical shearing via sonication. 136

The most notable difference between the methods of Hi-C and the more recent 137

Meta3C, is that after restriction digest, Hi-C employs additional steps leading to the 138

incorporation of biotin tags at each PL junction. This biotinylation permits Hi-C 139

libraries to be subsequently enriched for fragments containing PL junctions by 140

streptavidin-mediated affinity purification. Without enrichment, the simpler Meta3C 141

protocol results in a gross mixture of both WGS and PL read-pairs, where only a small 142

percentage of the total read-pair yield (approx. 1%) will possess PL junctions [23]. The 143

enrichment process within Hi-C, however, is not perfectly efficient and WGS read-pairs 144

are still observed (approx. 10–50% of reads contain a PL product) [23]. DNase Hi-C 145

replaces restriction digest with a non-specific endonuclease (e.g. DNase I) [24] or 146

mechanical DNA shearing process (e.g. sonication) [12]. In this operational mode, 147

Sim3C treats DNA cleavage as a completely unbiased (free) process and as such all 148

genomic positions have equal probability of participating in proximity ligation events. 149

Within Sim3C, each of the three methodological variations is conceptualised as a 150

sequencing strategy (figure 1) and each iteration of a strategy produces one read-pair 151

(PL or WGS in origin). For all strategies, an iteration begins by drawing a 3-tuple of 152

insert parameters: length, direction and junction point (Lins, dir, xjunc). 153

After obtaining insert parameters, the Hi-C strategy (figure 1a) first tests if the 154

insert will represent a WGS or PL read-pair (∼ Bern(peff )), where efficiency peff is 155

defined in the sense of enrichment. When peff = 1, there is perfect filtering and all 156

WGS read-pairs are eliminated from the experiment. In the case of WGS, the iteration 157

reaches an end-point and the simulation emits a conventional read-pair drawn from the 158

community definition. In the case of PL, a cut-site 3-tuple is drawn (gen1, chr1, x1), 159

where the categorical distribution over chromosomes is weighted by relative abundances 160

(A) and chromosomal copy-numbers (ncpy); genomic position is sampled uniformly from 161

the set of restriction sites (sites(chr1)); and parent genome (gen1) is implicit from the 162

chromosome. Next, a spurious ligation test is performed (∼ Bern(pspur)). If a spurious 163

event has occurred, the 3-tuple defining the second cut-site (gen2, chr2, x2) is drawn 164

i.i.d. as the first. If not spurious, next a test for inter-chromosomal (trans) ligation is 165

performed. Only source chromosome and position (chr2, x2) need be drawn as the 166

second genome is implicitly the same as the first (gen2 = gen1). Here, chr2 is selected 167

without replacement from the set of chromosomes of genome (gen1), where the 168

categorical distribution is adjusted by removal of chr1. Finally, an intra-chromosomal 169

(cis) ligation must have occurred. As now both genome and chromosome are implicit 170

(gen2 = gen1, chr2 = chr1), all that is left is to draw genomic position x2. The pair of 171

positions (x1, x2) are constrained by their separation (s = |x2 − x1|), which is 172

represented by a mixture model of the geometric and uniform distributions (equation 1). 173

This relation possesses rapid falloff with increasing separation and non-zero probability 174
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for all chromosomal positions, as has been commonly observed in real experimental 175

data [10,22]. 176

Pr(X = s|α, β, l) = β(1− α)sα+ (1− β)/l (1)

where β is a mixing parameter, α the geometric distribution shape parameter and l 177

chromosome length. 178

For Meta3C (figure 1b) after insert parameters are determined, in the same fashion 179

as a regular WGS read, an initial free genomic position is drawn (chr1, x
∗
1), uniformly 180

distributed over the extent of chr1 rather than only over its cut-sites. In real datasets, it 181

has been observed that neither the restriction digestion nor the re-ligation of free ends 182

are perfectly efficient. Taken as independent probabilities, in our model we 183

conceptualise their joint occurrence as an efficiency factor, peff and a Bernoulli trial 184

(Bern(peff )) determines whether a sequence read is successful in containing an 185

observable proximity ligation event. Failing this coverage test relegates the iteration and 186

end-point and emit a WGS read-pair. Successful candidates instead continue akin to the 187

Hi-C decision tree, beginning with the test for spurious ligation. 188

For both Hi-C and Meta3C, PL read-pairs are produced by joining the free-ends 189

drawn above as defined by the fragment parameters (figure 2a). Here the location of the 190

PL junction within the insert is determined by xjunc. At the junction, Hi-C differs from 191

Meta3C as the process of biotinylation results in the duplication of the restriction 192

cut-site overhang sequence. The overhang duplication in Hi-C is included in the 193

simulation. 194

DNase Hi-C is handled similarly to traditional Hi-C, with the exception that, as 195

in-silico digestion trivially leads to all sites, the simulated digestion is unnecessary to 196

perform and positions can be drawn directly from the uniform distribution over the 197

interval [0..Lchr). Site duplication, attributable to the likely production of random 198

overhangs in this scenario, is not presently simulated. 199
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a b

Figure 1. Logical schema used within Sim3C. (a) Hi-C and (b) Meta3C simulation
strategies. Gold diamonds represent simple Bernoulli trials. Blue boxes represent
sampling distributions defined by runtime input data (community profile, genomic
sequences, enzyme) and the empirically derived distribution for intra-chromosome (cis)
interaction probability (equation 1). Logical end-points to a single iteration of either
algorithm are represented as red (producing a WGS read-pair) and green boxes (producing
a PL read-pair). Due to the elimination of the biotinylation step, Meta3C does not
produce a duplication of the restriction cut-site overhang (grey boxes).

Structurally related interactions 200

Independent of any 3D structure that might exist, the primary and most frequently 201

observed interactions are those which occur along a chromosome (intra-arm) (figure 2b), 202

seen as the primary (y ' x) diagonal in the contact map. Sim3C can approximate the 203

7/24

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



less frequent interactions occurring between chromosomal arms (inter-arm) [19], which 204

are visible as anti-diagonal (y ' L− x) in the contact map. 205

At progressively smaller scales, the hierarchical 3D folding of DNA into topologically 206

associated domains (TADs) produces overlapping regions of interaction visible in the 207

contact map as block-like intensity modulations. Though the agents responsible for 208

their formation vary [1, 3], the characteristic patterns evident in real-data derived 3C 209

contact maps have been observed across all three domains [10,19,39]. Sim3C can 210

optionally approximate the sense of TAD related modulation by means of a recursive 211

stochastic process. 212

Our approximation of hierarchical folding begins from the full extent L of a 213

chromosome (figure 2c). Folding is portrayed by the division of the interval [0..L) into a 214

set of non-overlapping sub-intervals {[0, x1), [x1, x2), · · · , [xn−1, xn)}, the number and 215

widths of which are drawn at random (U(lmin, lmax), U(nmin, nmax)). The procedure is 216

then recursively applied to each sub-interval until a depth d, producing a nested set of 217

coverings of the full interval [0..L) at progressively finer scales. Across this hierarchical 218

collection each interval is assigned a uniformly distributed random probability pi and 219

empirical distribution fi(s|θi) (equation 1) for separation s parameterised by shape 220

parameter αTAD and interval length linv = xi+1 − xi, where θ = (αTAD, β, linv). 221

The process of drawing samples of separation begins by determining the set of 222

intervals {linv} which contain an initial point x0. The intervals, as tuples (pi, fi(s|θi)), 223

then form a categorical distribution (equation (7)), from which a governing distribution 224

fi(s|θi) is drawn and finally a sample of separation is taken, s ∼ fi(s|θi). To efficiently 225

sample from the full collection, an interval-tree data structure is employed. When 226

queried, an interval-tree returns the set of intervals {l} overlapping a position x in order 227

O(log n+m), where n is number of intervals and m is number of intervals returned by 228

the query. 229

f = {f0(s|θ0), f1(s|θ1), · · · , fi(s|θi)} (2)

N = number of distributions = |f | (3)

p = {p0, p1, · · · , pi} (4)

pi ∼ U(0, 1) and
∑

pi = 1 (5)

n ∼ Cat(N,p) (6)

f(s|n) =

N−1∏
i=0

fi(s|θi)[i=n] (7)

where [i = n] is the Iverson bracket.
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Lx1x30
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0 Lx1 x2x3

d=2
x4 x5

0 Lx1 x2
d=1

0 L

{

a b

c

Figure 2. Model details. Generation of proximity ligation inserts (a) involves joining
two randomly drawn parts (red and blue), from which the read-pair (R1, R2) is then
simulated. The junction point (xjunc) varies over the interval [0..L) and reproduction
of read-through events is possible. For an unbounded chromosome (b) (circular here),
besides strictly primary separation (black arrow) spatial proximity can be induced from
successive folding (red, green arrows). When the spatial arrangement is consistent across
the population of cells, this will be observable as modulations in the contact frequencies.
Sim3C models simple structurally related modulation of observed contact frequencies (c).
Beyond primary interactions forming the main diagonal, users can reproduce inter-arm
mediated anti-diagonals. Finer scale modulations attributed to topologically associated
domains (TADs) can optionally be randomly simulated. Primary interactions f0(s|θ0)
(equation 1) cover the full interval [0, L). Each level of recursion (d = 1, 2 · · ·n) generates
a finer set of intervals, to which a distribution fi(s|θi) and probability pi is assigned.
The final covering of intervals each define a range (green, curly braces) over which a set
of probabilities and empirical distribution pairs govern interaction separation s.

Example scenarios 230

In the following, three use-cases are presented to demonstrate aspects of the resulting 231

simulation output: bacterial genome, multi-chromosomal eukaryotic (yeast) genome, 232

and metagenome. For each use-case, 3C contact maps have been used to pit simulation 233

output against the corresponding real experimental data (table 1). 234
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Bacterial 235

A monochromosomal bacterial genome is perhaps the simplest scenario to which 236

proximity ligation methods have been applied, making for a sensible entry point from 237

which to make comparison. Due to the smaller extent, a bright and high resolution 238

contact map (10 kbp bin size) is possible for a practical volume of sequencing data, 239

potentially revealing fine detail not easily discerned with larger bin sizes (50-100 kbp 240

bin size). 241

The genome of Caulobacter crescentus NA1000, a model organism in the study of 242

cellular differentiation and regulation of the cell cycle, is comprised of a single 4 Mbp 243

circular chromosome [28]. Deep Hi-C sequencing of C. crescentus has been used to 244

explore the degree to which bacterial chromosomes can be regarded as organised and 245

provided evidence for the existence of so called chromosomal interaction domains 246

(CIDs) [19]. As a prokaryotic analog of topologically associated domains (TADs) from 247

eukaryotic literature [1, 30,32], these regions are believed to promote intra-domain loci 248

interactions and thereby act to functionally compartmentalize the genome. This 249

chromosomal structure was observed to be at once disruptable through rifampicin 250

mediated inhibition of transcription and malleable by the movement of highly expressed 251

genes [19]. 252

For the raw contact map of C. crescentus, prominent rectilinear features are 253

apparent for both real and simulated traditional Hi-C sequencing data (figure 3a,b), 254

while notably for simulated unrestricted Hi-C the field is much smoother (figure 3c). 255

Within the Sim3C model, a single distribution governs both intra- and inter-arm 256

interactions. Inspection of the real-data contact map (figure 3a) suggests that the true 257

relationship governing inter-arm interactions is more dispersed. This perhaps is not 258

surprising, where different arms associating spatially possess a greater number of 259

potential configurations than can be taken on by the primary chromosome backbone. 260

Additionally for the real contact map, long-range interactions away from either diagonal 261

can be seen to drop to a lower threshold than that produced from simulation. 262

Within the unrestricted Hi-C map, the fine zero-intensity rectilinear features are a 263

direct result of poor mappability (non-unique sequence), where their small size reflects 264

the extent of the non-unique regions (example: rRNA genes) and the single base-pair 265

resolution of the less constrained read generation process. The process of enzymatic 266

digestion is the only difference between the unrestricted and traditional Hi-C simulation 267

models. The clear contrast in their contact maps is thus a combination of factors either 268

directly inherent to digestion (cut-site density) or a byproduct of downstream 269

bioinformatics analysis (e.g. filtering heuristics). Though the problem of mappability 270

exists for any reference based representation, for real and simulated traditional Hi-C, 271

zero-intensity rectilinear features mark regions devoid of cut-sites over at least 10 kbp. 272

Enabling TAD approximation in simulated traditional Hi-C (figure 3d) has the effect 273

of modulating map intensity in a manner not particularly distinct from that produced 274

purely from experimental/workflow bias. Discriminating between these two feature 275

sources; one representing experimental signal, the other representing noise; demands 276

attention when developing solutions to problems such as normalisation. Contact map 277

normalisation methods, whether based upon explicit or implicit bias models [37], may 278

leave behind remnants of noise-related features from either a lack of convergence or 279

model limitations. Downstream inferencing should therefore not be made under an 280

assumption of bias-free signal. 281
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Figure 3. Bacterial contact maps. Observed Hi-C interactions for the monochro-
mosomal genome of Caulobacter crescentus NA1000. Comparing (a) real experimental
data [19], to the three simulation choices (b) traditional Hi-C, (c) DNase Hi-C and (d)
traditional Hi-C with TADs enabled. Sharp rectilinear modulations of the intensity
within (a) and (b) indicate a reduction in PL observations within a given bin. Not
due to 3D chromosome structure, rather such features can be attributed largely to
mappability and low cut-site density. (c) Without an enzymatic constraint a significantly
smoother field is apparent, yet still susceptible to mappability. (d) Enabling topologically
associated domains (TADs) highlights the similarity between features produced merely
from biases and what could be truly associated with 3D structure.

Eukaryotic 282

The eight chromosomes of the 15.4 Mbp genome of the native xylose-fermenting yeast 283

Scheffersomyces stipitis CBS 6054 [16] range in size from 970 kbp to 3.5 Mbp. The 284

organism was one of 16 yeasts included in a synthetic community to explore the 285

application of Hi-C sequencing to deconvolving metagenomic assemblies [6] and is 286

divergent enough from other synthetic community members to permit unambiguous 287

read mapping, and thus act as a proxy for a clonal experiment. 288
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From the contact map of real Hi-C data (figure 4a), it can be seen that the rates of 289

intra-chromosomal and inter-chromosomal interactions are roughly equivalent in 290

magnitude. Across the eight chromosomes of S. stipitis, there is significant uniformity in 291

the degree of physical intimacy within and between all chromosomes. The subtleties of 292

this chromosomal organisation reveals a self-similar “fuzzy-x” pattern repeated between 293

all chromosomes across the contact map. The convergence point within the pattern is 294

attributed to centromere-SPB binding and has been used to predict centromere 295

locations [41]. It has been shown that the physical constraints generated from the 296

interaction of centromeres to the spindle pole body (SPB) and telomeres to the nuclear 297

envelope are sufficient to explain a number of experimental observations in real 298

data [13,42]. As Sim3C was derived from study of bacterial datasets, our simulation 299

model does not currently include a notion of these higher organism physical constraints. 300

Consequently, the contact map derived from simulated traditional Hi-C sequencing 301

elicits a flat field (figure 4b), where the intensity variation that does exist is a byproduct 302

of aforementioned factors such as mappability and cut-site density. For the runtime 303

parameters employed, the rate of intra-chromosomal contact is higher than that of 304

inter-chromosomal, making clear the boundaries between the eight chromosomes (figure 305

4b). Though our model is presently incomplete for higher organisms, there remains a 306

potential utility as an analytical or simply observational prior. 307

Figure 4. Eukaryotic contact maps. Observed Hi-C interactions (a) real and (b)
simulated data from the eight chromosome genome of the budding yeast Scheffersomyces
stipitis CBS 6054 [6]. Grey dashed lines and alternating light and dark grey axes
demarcate the boundaries between chromosomes. (b) Simulated data elicits a flat
field and the clearly evident higher rate of intra- to inter- interactions makes for easily
observable chromosomal boundaries within the map. (a) Contrastingly for real data,
the similar rates of intra-chr and inter-chr interactions reveals the physical constraints
imposed by centromere-SPB tethering on all eight chromosomes [41].

Metagenomic 308

In the deconvolution of metagenomes, proximity ligation methods hold great potential 309

as new sources of information and have been investigated by the construction and 310

sequencing of synthetic communities [4, 6, 27]. We selected two previously constructed 311

synthetic bacterial communities, one employing traditional Hi-C and the other Meta3C 312
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(table 1). Intended as “proof of concept” experiments, neither community reflects a real 313

environment, but rather were intended to be easily interpreted and include interesting 314

features, such as: range of GC, single and multi- chromosomal genomes and strain-level 315

divergence. The Hi-C community involved five genotypes from four species, one genome 316

of two chromosomes (B. thailandensis), E. coli strains BL21 and K12 (Average 317

Nucleotide Identity, ANI 99%) and a wide overall GC range of 37-68% (table 2). Of 318

lower complexity, the Meta3C community involved three genomes from three species, 319

included one genome of two chromosomes (V. cholerae) and had a narrower GC range 320

of 44-51% (table 3). Relative to the single genome experiments above, a lower depth of 321

sequencing resulted in a lower overall contact map intensity (figure 5). This is 322

particularly the case for Meta3C, where, by the nature of the method, a large proportion 323

(approx. 99%) of the sequencing yield is in reality conventional WGS read-pair data [27]. 324

As a direct result, in binning the Meta3C dataset, there were insufficient counts to fully 325

establish finer detail within the contact maps, leaving a smoother appearance. 326

As with single-genome experiments, metagenomic contact maps are locally 327

modulated by factors such as mappability and cut-site density. Importantly now for 328

metagenomes, the factors of relative abundance and GC content interact to alter the 329

observed intensity of each chromosome within the contact map. 330

As a first approximation and assuming agreement in nucleotide sampling frequency, 331

we expect n0 = L/4λ recognition sites for an enzyme of site length λ and DNA sequence 332

length L. The degree to which an enzyme and DNA sequence deviate from this estimate 333

could be described as how well they match, m = nx/n0. Poorer quality matches (m < 1) 334

occur when an enzyme’s recognition site is underrepresented, while conversely, better 335

quality matches (m > 1) describe a situation of more recognition sites than expected. 336

When multiple chromosomes are taken as a community, the relative proportion of 337

sites from each represents an observational bias when conducting 3C-based experiments. 338

For community C, the number of sites nx from chromosome x determines the number of 339

potential PL pairings Nx within C which involve x (equation 8). The number of 340

intra-chromosomal and inter-chromosomal potential pairs thus respectively vary 341

quadratically and linearly with nx. Regarding the process of observing a PL event 342

(read-pair) from the community as a random draw with replacement, and the selection 343

pool as comprised of all potential events from all chromosomes, then variation in match 344

quality constitutes a per-chromosome bias. In real laboratory experiments, the 345

composition of the selection pool is further modified by variation in other factors, such 346

as cellular lysis efficiency, unintended DNA fragmentation and relative abundance. In 347

particular, when relative abundances A are introduced, the odds of observing a PL 348

event involving chromosome x is then proportional the product px ∝ AxNx/NC . 349

Although the processes of intra-chromosomal, inter-chromosomal, and inter-cellular 350

(spurious) ligation are treated independently in our simulation model, in this manner, 351

per-chromosome intensity (observation rate of chromosome x) can vary significantly 352

within a metagenome. 353

Nx = n2x + nx
∑

ny∈C\nx

ny (8)

Though the original laboratory experiments reported by Beitel et al. 2014 and 354

Marbouty et al. 2014 intended o create synthetic communities with uniform relative 355

abundances, in practice each possesses a non-uniform profile. The variation in GC 356

content is largest for the Hi-C experiment and together with non-uniform relative 357

abundances produces a wide range of chromosome intensity for both real and simulated 358

data (figure 5a,b). For both the real and simulated Hi-C maps, the frequent observation 359

of PL events involving P. pentosaceus (Pp) and L. brevis (Lb), suggests the possibility 360
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that inter-cellular interaction is significant. Within the simulated map at least, 361

inter-cellular pairs are produced exclusively through the process of spurious ligation 362

(noise) and are observed at a higher rate than in the real data, indicating that as 363

expected, spurious ligation rates across species are correlated with their relative 364

abundances. 365

Further for the Hi-C data, the two-chromosome genome of B. thailandensis (Bt1, 366

Bt2) (figure 5a) has a greater rate of inter-chromosomal interaction than expected from 367

comparing it to simulation (figure 5b). Meanwhile, the clear delineation of E. coli 368

strains BL21 and K12 (ANI > 99%), with little inter-cellular signal, helps to support 369

the notion that the inter-chromosomal interactions observed between B. thailandensis 370

chromosomes (ANI ' 83%) are real and not a by-product of inadequate filtering. 371
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Figure 5. Metagenomic contact maps. From synthetic microbial communities, raw
contact maps from real (a) and simulated (b) traditional HiC, and real (c) and simulated
(d) Meta3C. Chromosome boundaries are demarcated by alternating light and dark
grey bands (tables 2, 3), while the small plasmids of L. brevis are omitted for clarity.
Although the original works [4, 27] intended uniform abundance, the results exhibit
significant variation in abundance. Lysis efficiency (not modelled) and enzyme suitability
are significant factors contributing to the overall intensity of a given chromosome. For
more abundant members of the Hi-C community (P. pentosaceus and L. brevis), signal
due only to spurious ligation can appear to suggest inter-cellular interactions when none
are present (b).

Limitations and future work 372

Sim3C in its current form has several limitations, some of which present opportunities 373

for future work. Sim3C’s repertoire of structural features is currently limited to those 374

found in microbes - circular and linear chromosomes with randomly generated 375

approximations of self-associating domains (CIDs/TADs). Sim3C does not model 376

structural features observed in larger, more complex genomes (CTCF/cohesin loops, 377

A/B compartments, chromosome territories) [22,35]. Such features are becoming 378

increasingly well characterised [40] and a simulator capable of modelling these features 379

would surely be valuable. Mammalian genomes are much larger than microbial genomes 380
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Authors Type Method Accession Sequencing details Mapped
reads

Beitel et al [4] Synthetic bacterial
metagenome

Hi-C SRX377733
MiSeq 160bp PE
insert range: 280-420bp
enzyme: HindIII

20552775

Burton et al [6] Synthetic yeast
metagenome

Hi-C SRX527868
HiSeq2500 100bp PE
insert range: 450-550bp
enzyme: HindIII

9704944

Le et al [19] Single bacterial
genome

Hi-C SRX263925
HiSeq2000 40bp PE
insert range: 200-600bp
enzyme: NcoI

22324360

Marbouty et al [26] Synthetic bacterial
metagenome

Meta3C doi:10.5061/
dryad.gv595

HiSeq2000 100bp PE
insert range: 400-800bp
enzyme: HpaII

7975740

Table 1. Real Hi-C and Meta3C data-sets used within this work. The total
off-diagonal weight of the contact map was used to calibrate the amount of simulated
sequencing required to approximately match the outcome of the real experiments.

however, and additional work to improve scalability of Sim3C will likely be required. 381

Some features of microbial eukaryotes, such as the point centromeres found in 382

budding yeast genomes [7] are computationally simpler [13,41] yet remain unmodelled 383

in Sim3C. The addition of these sorts of model details would be best supported by 384

introducing model initialisation via external data (experimental observations, motif 385

detection, cell phase), which subsequently would require extension of the community 386

profile definition. Careful design would be required to ensure these features could be 387

added without compromising ease-of-use. 388

Methods 389

Reference Data 390

To compare Sim3C against real experiments, we obtained previously published 391

experimental read-pair datasets (table 1) and their accompanying reference genomes 392

(tables 2, 3) from public archives. In the case of the single genome project of 393

Caulobacter crescentus CB15 [19], sequencing data derived from untreated swarmer cells 394

was chosen and the laboratory strain C. crescentus NA1000 (acc: NC 011916) was used 395

as the reference genome. For the yeast genome, the completed eight chromosome 396

genome of Scheffersomyces stipitis CBS 6054 was used as a reference (acc: 397

PRJNA18881) and the respective reads were extracted from the MY16 yeast synthetic 398

metagenome [6] by direct mapping with BWA MEM. Extraction by mapping in 399

isolation was employed as S. stipitis was the second furthest phylogenetically removed 400

yeast in the synthetic community and was the most contiguous (N50: 60kbp) from the 401

whole synthetic community de novo metagenomic WGS assembly. 402

Read Generation 403

Experimental parameters used in read simulation were set to agree as closely as 404

reasonably possible to the respective real experiments, employing the same read length 405

and restriction enzyme (table 1). In each experiment, the published fragment size range 406

was approximated by a normal distribution (table 4). For ease of reproducibility, a 407
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Name Replicons Accession Chr abbr. A ncpy %GC nx m

Burkholderia
thailandensis E264

2
NC 007651
NC 007650

Bt1
Bt2

0.054 1
67.29
68.07

225
144

0.24
0.20

Escherichia coli BL21 1 NC 012892 BL21 0.242 1 50.83 508 0.46

Escherichia coli K12
DH10B

1 NC 010473 K12 0.166 1 50.78 568 0.50

Lactobacillus brevis
ATCC 367

3
NC 008497
NC 008498
NC 008499

Lb
-
-

0.436 1
46.22
38.64
38.51

629
3
16

1.12
0.92
1.84

Pediococcus pentosaceus
ATCC 25745

1 NC 008525 Pp 0.102 1 37.36 863 1.93

Table 2. Synthetic Hi-C community. A synthetic community used to demonstrate
the utility of Hi-C sequencing data in resolving a microbial metagenome [4]. It is
composed of 5 bacteria, including two closely related strains (E. coli K12 and BL21), a
genome with two plasmids (L. brevis) and a two-chromosome genome (B. thailandensis).
A is relative abundance, ncpy is copy number, nx is number of restriction sites, and
m = nx/n0 is match quality between chromosome and enzyme choice: m < 1 is worse,
m > 1 is better.

Name Replicons Accession Chr abbr. A ncpy %GC nx m

Bacillus subtilis subsp.
subtilis str. 168

1 NC 000964 Bs 0.123 1 43.51 14529 0.88

Escherichia coli str.
K-12 substr. MG1655

1 NC 000913 K12 0.562 1 50.79 24311 1.34

Vibrio cholerae O1
biovar El Tor str.
N16961

2
NC 002505
NC 002506

Vc1
Vc2

0.332 1
47.70
46.91

5909
1802

0.51
0.43

Table 3. Synthetic Meta3C community. A synthetic community used to demon-
strate the utility of Meta3C sequencing data in resolving a microbial metagenome [26,27].
It is composed of three bacteria with one possessing two chromosomes. A is relative
abundance, ncpy is copy number, nx is number of restriction sites, and m = nx/n0 is
match quality between chromosome and enzyme choice: m < 1 is worse, m > 1 is better.
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Experiment Insert µ
(bp)

Insert σ
(bp)

Anti
rate

Spurious
rate

Trans
rate

Reads
(×106)

Beitel et al 300 50 0.2 0.05 0.1 7

Burton et al 400 50 0.2 0.5 0.15 1.5

Le et al 400 100 0.2 0.2 0.1 22

Marbouty et al 600 100 0.2 0.2 0.2 7.5

Table 4. Runtime simulation. Parameters supplied to Sim3C during read generation.

single random seed (1234) was used in all simulations. As our intent was primarily to 408

demonstrate functionality, rates of inter-chromosomal and spurious events were adjusted 409

per-experiment only through a qualitative process. For simulation of metagenomic 410

datasets, relative abundances were estimated by mapping real experimental reads to the 411

respective reference genomes. From each real experiment, the off-diagonal weight of the 412

resulting contact map was used to calibrate the amount of simulated sequencing 413

required to achieve roughly equivalent intensity (table 4). Both real and simulated 414

read-pair datasets were mapped to their respective reference genomes using BWA MEM 415

(v0.7.15-r1140) [21] 416

Contact Maps 417

Contact maps were produced using our own tool (contact_map.py), where heatmap 418

intensity was plotted as log-scaled observational frequency. All aligned reads were 419

subject to the same basic filtering criteria: BWA MEM mapq > 5 and alignment length 420

≥ 50% of read length, with the added restriction that read alignments must have begun 421

with a match. For methods which employed a restriction enzyme (traditional Hi-C, 422

Meta3C), we constrained the maximum allowable distance from an aligned read to the 423

nearest upstream cut-site. Calculated per chromosome, this distance constraint could 424

not exceed two-fold the median cut-site spacing. Rather than simply delete the primary 425

diagonal for the sake of reducing the displayed dynamic range in figures, we instead to 426

reduced its intensity by categorizing properly paired reads with an estimated fragment 427

size of less than 2 of the reported mean as being conventional WGS (non-PL) reads and 428

ignored them. The resolution of contact maps was adjusted between experiments so as 429

to present a sufficiently bright image without undue loss of resolution. The contact map 430

bin sizes employed were: 10000 bp for the single bacterial genome, 25000 bp for the 431

yeast genome and 40000 bp for the Hi-C and Meta3C metagenomes (tables 2, 3). 432
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• Project name: sim3C 435

• Project homepage: https://github.com/cerebis/sim3C 436

• Operating system: Platform independent 437

• Programming languages: Python 2.7 438

• License: GNU GPL v3 439
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