Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201700662

Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH₃NH₃PbI₃: Implications on Solar Cell Degradation and Choice of Electrode

Wenmei Ming, Dongwen Yang, Tianshu Li, Lijun Zhang,* and Mao-Hua Du*

Supporting Information

Formation and diffusion of metal impurities in perovskite solar cell material CH₃NH₃PbI₃: implications on solar cell degradation

and choice of electrode

Wenmei Ming^{1,†}, Dongwen Yang^{2,†}, Tianshu Li,² Lijun Zhang^{2,3}, and Mao-Hua Du¹

¹Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN

37831, USA

²Key Laboratory of Automobile Materials of MOE and Department of Materials Science and Engineering, Jilin University, Changchun 130012, China

³State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

[†]Both authors contributed equally to this work.

Figure S1. Diffusion path and rate limiting barrier E_d of (a) Cu_i^+ , (b) Ag_i^+ , (c) Au_i^+ and (d) Pd_i^0 . The local structures around the impurity at its metastable sites and transition state sites along the diffusion path are given in the inset. The corresponding orientations of the structures are provided by the coordinate axis labeled with each case.

Figure S2. Diffusion path and rate limiting barrier E_d of (a) Cr_i^{2+} , (b) Mo_i^{2+} , and (c) W_i^{2+} . The local structures around the impurity at its metastable sites and transition state sites along the diffusion path are given in the inset. The corresponding orientations of the structures are provided by the coordinate axis labeled with each case.

Figure S3. Diffusion path and rate limiting barrier E_d of (a) Mo_i^{3+} and (b) W_i^{3+} . The local structures around the impurity at its metastable sites and transition state sites along the diffusion path are given in the inset. The corresponding orientations of the structures are provided by the coordinate axis labeled with each case.

Figure S4. Diffusion path and rate limiting barrier E_d of (a) Ni_i^{2+} and (b) Pd_i^{2+} . The local structures around the impurity at its metastable sites and transition state sites along the diffusion path are given in the inset. The corresponding orientations of the structures are provided by the coordinate axis labeled with each case.

Figure S5. Diffusion path and rate limiting barrier E_d of (a) Ni_i^+ , (b) Pd_i^+ , and (c) Co_i^+ . The local structures around the impurity at its metastable sites and transition state sites along the diffusion path are given in the inset. The corresponding orientations of the structures are provided by the coordinate axis labeled with each case.

Figure S6. Structures of (a) Au_{Pb}^{-} , (b) Au_{Pb}^{0} , (c) Au_{Pb}^{+} , (d) Ag_{Pb}^{-} , and Cu_{Pb}^{-} . The numbers (in Å)

give the interatomic distances.