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1 Measured Force-Deflection Curves

Figure 1 shows the experimentally-fitted force-displacement curves for the bistable element with 0.225 m of rail distance
and for magnetic interaction from the previous study, and the corresponding parameters are summarised in Tab. 1.
Refer to the Supplemental Material of Ref. [33] in the manuscript for how these curves are obtained.

Figure 1: (a) Experimental force-deflection curves for the bistable element with the rail distance R = 0.225 m and (b)
inter-element magnetic force.

A p C2 C3 C4

4.95× 10−5 -3.274 217.101 -23,426 449,961

Table 1: System parameters for the baseline lattice

2 Phonon Transmission

Phonon transmission is obtained by linearising the governing equation about the stable equilibria, assuming a traveling
wave solution of the form ūn = Ūei(k̄n−ω̄t̄), where k̄ and ω̄ are the nondimensionalised wave number and frequency.
The dispersion relation in the linear regime is obtained as

k̄ = ±2 arcsin

√
−ω̄2 − iω̄b̄− F̄ ′onsite(ū∗n)

4p
, (1)

where ū∗n represents a static equilibrium position, and the following nondimensionalisation is used:

k̄ = kL, ω̄ = ωT, b̄ =
bT

m
, F̄onsite =

Fonsite

ALp
, T 2 =

m

ALp−1
. (2)
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Figure 2: (a) Dispersion relation of the linearised equation: real (solid line) and imaginary (dashed line) parts of
the nondimensionalised wave number. (b) Analytical solution of the phonon transmission in a lightly damped (b=0.2
Ns/m) lattice under sinusoidal input with a frequency (ω=105 rad/s) within the pass band.

In Fig. 2(a), this relation is plotted for different values of damping. For a conservative lattice (b̄=0), the presence
of the on-site potential acts as distributed elastic surroundings, resulting in a pass band between the low (ω̄=7.13) and
high cutoff frequencies (ω̄=7.99). For dissipative systems (b̄>0), k̄ exhibits an imaginary part (dashed lines) which
contributes to wave attenuation. Hence, phonons can never be stably transmitted in a physical setup. Figure 2(b)
shows the responses of the first five elements in this small-amplitude regime of the lattice system with a low damping
(b=0.2 Ns/m). The phonon transmission is almost completely disintegrated after passing through only a few elements.

3 Minimum Snapping Force in a Lattice

The force-deflection curve for a lattice of multiple unit cells is obtained numerically by applying a load quasi-statically
to the first element and measuring the corresponding deflection at the same site. The minimum snapping force is defined
as the smallest static force that triggers the state change. The numerical simulation shows the same force-deflection
relation for the lattices with more than three unit cells.

Figure 3: Minimum snapping force required to induce the state transition for a single bistable element and an array
of bistable elements.

4 Experimental Responses

The experimental (dashed lines) and numerical responses (solid lines) for two selected cases (periodic lattice and
Ldefect/L = 0.857) are plotted in Figs. 4(a) and (b), respectively. To account for the manufacturing variability of the
bistable elements, the experimental results are adjusted such that the snapping distances match those of numerical
results. Although the details of the motion, such as the propagation velocity and the frequency of the free vibration
after the completion of the state transition, do not match exactly, they still undergo qualitatively similar changes.
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Possible reasons for the discrepancy are the limited order of the quartic potential approximation to describe the on-
site dynamics produced by the bistable elements and the presence of coupled rotational motion. Nevertheless, the
simplicity of the model used in this study captures the qualitative behaviour of the lattice, fulfilling the objectives of
this investigation.

Figure 4: Numerical (solid lines) and experimental (dashed lines) responses around the control site for (a) the periodic
lattice and (b) the lattice spacing defect ratio of 0.857.

5 Energy Analysis

Consider an enclosed system of an infinitely long lattice of bistable elements. At the instant t0 a wave enters the
system, the total available energy in the system is Etot|t0 = Ein +N∆φ, where Ein, ∆φ, and N are the wave energy
transmitted from outside the system, difference between two stable states of the bistable element, and the number of
elements in the system. From the infiniteness of the selected section, Ein � N∆φ and thus Etot|t0 ≈ N∆φ. After
all the wave train passed by (so that all the elements in the system reach the steady states at the lower equilibria),
the total energy at this instant can be written as Etot|t∞ = Netot|t∞ from periodicity of the lattice. etot is the total
energy per unit element which can be expresses as etot = ke + peonsite + pemag + de, where ke, peonsite, pemag, and
de are kinetic energy, on-site potential, potential due to magnetic interaction, and dissipated energy per unit element,
respectively. Etot|t0 should remain constant for the same set of bistable elements, and therefore Etot|t∞ also remain
unaltered even if any other lattice parameters than the on-site potential change. In addition, etot should be conserved
at any time instant from the conservation of total energy in an enclosed system.

Effect of Mass Change

From the above argument, etot’s of two different lattices with the same on-site elements are conserved:

ke(1) + pe
(1)
onsite + pe(1)

mag + de(1) = ke(2) + pe
(2)
onsite + pe(2)

mag + de(2), (3)

where superscript indicates a lattice with a different set of parameters. During the displacement of mass from zero to

an arbitrary deflection ∆, it is reasonable to assume |pe(2)
mag − pe(1)

mag| � 1 from the compactness of the transition wave
(can span as small as a single element according to Ref. [33]). This leads to

(
1

2
mv2)(1) +((((((peonsite|x=∆ + (

∫ t(x=∆)

t(x=0)

bv2dt)(1) = (
1

2
mv2)(2) +((((((peonsite|x=∆ + (

∫ t(x=∆)

t(x=0)

bv2dt)(2)

⇒ (
1

2
mv2)(1) + (

∫ ∆

0

bvdx)(1) = (
1

2
mv2)(2) + (

∫ ∆

0

bvdx)(2).

(4)

Letting m(1) > m(2) and assuming a fixed b, it can be easily concluded that v(1) < v(2) for all ∆. Now, dissecting the
energy components when the element reaches its maximum potential (therefore ke = 0),

peonsite|x=∆1
+

∫ ∆1

0

bv(1)dx = peonsite|x=∆2
+

∫ ∆2

0

bv(2)dx. (5)
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If ∆1 < ∆2, then peonsite|x=∆1
< peonsite|x=∆2

. The equality (5) can never hold since v(1) is always less than v(2)

(
∫ ∆1

0
bv(1)dx <

∫ ∆2

0
bv(2)dx). On the other hand, the equality can satisfy for ∆1 > ∆2, which conclude that the a

larger mass yields a larger amplitude.

Effect of Inter-element Forcing Change

As derived in the manuscript, pe
(1,2)
mag = − A

p+1 (x2 − x1 + L(1,2))p+1. Since p+ 1 is in general negative, pe
(1)
mag < pe

(2)
mag

for L(1) > L(2) . Substituting this relation into Eq. (3), we obtain the following inequality:

(
1

2
mv2)(1) +((((((peonsite|x=∆ + (

∫ ∆

0

bvdx)(1) < (
1

2
mv2)(2) +((((((peonsite|x=∆ + (

∫ ∆

0

bvdx)(2). (6)

Similar to the case of mass change, it can be shown that v(1) < v(2) for all ∆ if L(1) > L(2). At the instant that pe
becomes maximum, the inequality becomes

peonsite|x=∆1
+

∫ ∆1

0

bv(1)dx < peonsite|x=∆2
+

∫ ∆2

0

bv(2)dx. (7)

Following the same process, if ∆1 > ∆2, peonsite|x=∆1
> peonsite|x=∆2

. The inequality may be satisfied this time since

v(1) < v(2). If ∆1 < ∆2, then peonsite|x=∆1
< peonsite|x=∆2

and
∫ ∆1

0
bv(1)dx <

∫ ∆2

0
bv(2)dx so that the inequality

always holds. Therefore, the effect of the inter-element forcing change (or lattice spacing change) is inconclusive; it
may or may not induce a larger amplitude.

6 Time Progression of the Breather-like Mode

Figure 5: Time progression of a breather-like mode in the spatial configuration. A spatially localised inter-well
oscillation is generated while the main transition wave continues to propagate. The dashed red line indicates the
boundary (59th site) of the defect section.
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7 Experimental Setup for Electromechanical Conversion Performance

Figure 6(a) shows the bistable element with embedded piezoelectric transducers and its placement in the experimental
setup. The specific location of the transducers are determined based on the FE analysis [Fig. 6(b)], which shows that
the largest in-plain strains of the fundamental mode in the length direction of the element occur near the roots.

Figure 6: (a) Piezoelectric transducer attachment to a bistable element and its installation within the lattice. (b)
In-plane strain distribution of the fundamental mode in the length direction of the bistable element from FE analysis.
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