
S1 Text
The potential impact of case-area targeted interventions in

response to cholera outbreaks: A modeling study

Quantification of spatiotemporal clustering

We use the τ statistic introduced by Lessler et al. (2016), which has been shown to
be a good measure of global spatial clustering for epidemiological applications (Salje
et al. 2012, Grabowski et al. 2014, Salje et al. 2016, 2017), to quantify spatiotemporal
clustering of cholera cases. Here, we consider two cases to be potentially transmission
related (e.g. to potentially share a recent common ancestor) if they occurred within
a time interval of 0 to 4 days from each other (using upper bounds between 2 and
6 days gives similar results, S10 Fig). τ is then defined as the relative risk that a
person in a given distance range [d1, d2] from a disease case also becomes a case that is
potentially transmission related (i.e. to become infected within a time interval of 0 to
4 days), compared to the risk of any person in the population becoming a potentially
transmission related case. τ̂(d1, d2) can be computed by dividing the estimated odds
ratio θ̂(d1, d2) of the number of potentially transmission related cases against non-
transmission related cases within [d1, d2] by the same odds ratio computed for the
whole domain θ(0,∞) (Lessler et al. 2016):

θ̂(d1, d2) =

∑
i

∑
j I1(i, j)∑

i

∑
j I2(i, j)

(1)

τ̂(d1, d2) =
θ̂(d1, d2)

θ̂(0,∞)
, (2)

where I1(i, j) denotes an indicator function which is equal to one if cases i and j are
within the distance range [d1, d2] from each other and within the time interval of 0 to 4
days, and zero otherwise. I2(i, j) is an indicator function which is equal to one if cases
i and j are within the distance range [d1, d2] from each other but not transmission
related (i.e. with the time interval between the cases longer than 4 days), and zero
otherwise.
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Epidemiological model

We employ a spatially explicit, individual-based stochastic epidemiological model (see
e.g. Keeling & Rohani (2008)) with a timestep ∆t of one day. The N individuals in the
model space are assigned random positions according to the population distribution
(Section Spatial setup and population distribution) and can either be susceptible (S),
exposed (E), infected (I) or recovered (R). A power-law-distribution shaped isotropic
kernel (K1) originating from the position of every infected and decreasing with distance
d accounts for the local transmission of the disease, whereas a constant, distance-
invariant kernel (K2) accounts for long-distance transmission:

K1(d) =
a− 2

2π
(
d−a+2

0 − d−a+2
max

)d−a (3)

K2 =
1

π (d2
max − d2

0)
(4)

K(d) = (1− c)K1(d) + cK2. (5)

The shape of K1 is determined by the parameter a defined to be greater than
2. The minimal distance d0 is fixed to 15 m, half the grid size of our case study,
and the upper distance limit dmax is set to 30 km, the approximate diameter of the
study domain (Section Spatial setup and population distribution). The constant c
determines the probability of random, long-distance transmission events with respect
to local transmission events. In the main analysis, this constant is set to 0. To evaluate
the influence of long-distance transmission events, an additional analysis with c = 0.05
has been performed (Section The role of long distance transmission).
The force of infection Fi affecting a susceptible i depends on his position in the

model space relative to infected individuals and can be computed by taking the sum of
the kernels originating from all infected evaluated at the position of i and multiplying
it with individual exposure parameters, as well as a term accounting for rainfall:

Fi(t) = βi (1 + λr(t))

N∑
j=1
j 6=i

II(j)θjK(di,j), (6)

where βi is an individual exposure parameter, II(j) is an indicator function whose
value is equal to 1 if individual j is infected and 0 otherwise and θj is fixed to 1 in the
main analysis. λ is a parameter that multiplies daily precipitation r(t).
Exposure events are assumed to follow a Poisson process with rate Fi(t). The

resulting probability of susceptible i being exposed during ∆t is given in (7). A fraction
σi of infections is symptomatic. Asymptomatic individuals recover immediately after
exposure, their contribution to the environmental bacterial concentration is assumed
to be negligible (Nelson et al. 2009). Symptomatic individuals stay in the exposed
state for a time tE and in the infected state for a time tI , which are drawn from
gamma distributions according to (8) (Azman et al. 2013) and (9) (Kaper et al. 1995).
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P (Si → Ei) =
(

1− eFi(t)∆t
)

(7)

tE ∼ Γ (2, 0.5) (8)
tI ∼ Γ (10, 0.5) . (9)

A timestep t of a model simulation thus consists of the following steps:

1. update states of individuals from E to I or from I to R if their tE or tI is reached

2. compute Fi(t) (6) at the position of every susceptible i

3. use (7) to determine susceptibles who get exposed by drawing a uniform random
number pi for each of them: if pi < P (Si → Ei) the individual gets exposed

4. for every exposed individual, draw a random number qi to determine if she/he
gets symptomatic or asymptomatic: if qi < σi, the infection is symptomatic and
the individual goes to the infected class I, otherwise she/he recovers and goes to
class R.

To accelerate the model run for large populations and vast areas, the model space is
a discrete grid (Section Spatial setup and population distribution) and the convolution
between the kernel and the distance matrix is done using the Fast Fourier Transform.

Spatial setup and population distribution

The domain of our model is the city of N’Djamena, Chad, subdivided into regular grid
cells (30 m by 30 m). The remotely sensed built-up density (S2 Fig) (Esch et al. 2011,
2017) was used as a proxy for the small scale spatial population density.
Every inhabitant (993 500 individuals) was randomly assigned to a grid cell with

a probability proportional to the estimated average built-up density of the cell. The
euclidean distances between the centers of the two cells between persons who live in
distinct grid cells were used to compute the value of the infection kernel (4). A distance
of 10 m was assumed between two persons living in the same grid cell.

Rainfall data

Daily precipitation (S11 Fig) was obtained from the NASA TRMM Version 7 Daily
Precipitation Estimates (Huffman et al. 2010)∗.

∗http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GES-DAAC/.TRMM_L3/.TRMM_3B42/.v7/
.daily/.precipitation/X/15.0/15.25/RANGEEDGES/Y/12/12.25/RANGEEDGES/T/(01%20Apr%
202011)(01%20May%202012)RANGEEDGES/, accessed on June 29, 2016
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Initial conditions

An initial number of 25 randomly chosen individuals in the model space are set to be
symptomatically infected. They are assumed to be infectious for a period tI according
to (9), starting from a point in time between 4 and 1 days before the start of the
model. The remaining part of the population is assumed to be susceptible.

Calibration

In the absence of treatments, parameter values are assumed to be the same for all
individuals (i.e. βi = β and σi = σ). Four free parameters of our model (σ, β, a and
λ) were calibrated to match the characteristics of the real epidemic in N’Djamena.
We employed a Python implementation of the Approximate Bayesian Computation

Population Monte Carlo (ABC-PMC) algorithm (Beaumont et al. 2009, Akeret et al.
2015). Two summary statistics were used: the sum of squared residuals (10) on the
reported number of cases (Fig. 2A) and on the τ statistic over 3 different distance
ranges (15 m to 45 m, 45 m to 105 m and 105 m to 225 m) and with a time range of 2 to 4
days (Fig. 2B). The distance ranges have been chosen to fit the spatial discretization of
the model domain (Section Spatial setup and population distribution). The calibration
implied running the model with a high number of particles (i.e. parameter sets), which
were accepted if the resulting summary statistics were under certain thresholds (130 000
and 140 during the first calibration step). A step was completed after 512 particles had
been accepted, the acceptance rate varied between 15% initially and 2% during the last
step. After each calibration step the thresholds were adapted to the 85th percentile of
the summary statistic values taken by the particles of the previous step (Akeret et al.
2015). Particles for a new calibration step were drawn from the accepted particles of
the previous step and perturbed using a multivariate normal kernel with optimal local
covariance matrix (Filippi et al. 2013, Akeret et al. 2015). The calibration was stopped
after 15 steps because the acceptance rate had fallen below 2% and the posterior had
reached a stable state (Akeret et al. 2015). The final thresholds for the two summary
statistics were 41 923 and 1.94 respectively. Samples from the posterior parameter
distribution are shown in S3 Fig.

ssr(x, x̂) =

N∑
i=1

(xi − x̂i)2 (10)

Simulation

To run a simulation, a parameter set is drawn from the posterior distribution and
used to run the model. All results and figures presented are derived from a set of 1000
simulation runs. Note that the outcome of two model runs with identical parameter
sets may differ because of stochastic processes. Simulations are run either until the
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end of the epidemic (no infected or exposed present in the model), or up to a maximal
duration of 1 year.

Implementation of interventions

We consider three different types of preventive interventions and combinations thereof:
the administration of a single dose of antibiotics, household scale water, sanitation
and hygiene (POUWT, stands for point-of-use water treatment) measures and the
administration of a single dose of oral cholera vaccine (OCV). The implementation
of the effects of those interventions are described below. Values and references are
summarized in Table 1 in the main text and S14 Fig. In addition to these types of
interventions and their possible combinations, we also consider different strategies to
select people to benefit from the interventions, and different points in time when the
application of interventions start. S1 Table summarizes all interventions tested for this
study along with their outcome.

Antibiotics
We consider the joint effect of two mechanisms of protection against cholera by an-
tibiotics: a reduced probability of acquiring infection (Reveiz et al. 2011) and a lower
probability to get symptoms if exposed (Echevarria et al. 1995). As studies have not
yet quantified the combined effect (Reveiz et al. 2011), we follow Lewnard et al. (2016)
and estimate the joint effect by multiplying individual effects. Finally, the joint effect
is translated into a relative risk of symptomatic infection of 0.045 [95% CI 0.001 to
0.296] multiplied with parameter σi.
Antibiotics have also been found to reduce the duration of bacterial shedding (Leibovici-

Weissman et al. 2014, Lewnard et al. 2016), which we model through a reduction of
tI by -2.74 [95% CI -3.07 to -2.40] days.
We estimate that the beneficial effects of antibiotics last for 2 days, as the drug

concentration in stools has been shown to be sufficient to eliminate Vibrio Cholerae
during this period of time after the administration of a single dose of Azithromycin in
a clinical trial (Khan et al. 2002).

OCV
The administration of a single dose of OCV affects the chances of an exposed individual
i to get symptomatic (e.g. to get severe cholera) by multiplying parameter σi with the
relative risk of symptomatic infection 0.37 [95% CI 0.18 to 0.76], which corresponds
to one minus the vaccine efficacy reported by Qadri et al. (2016) for severe cholera
episodes. As beneficial effects of the vaccine have only been confirmed after a lag of
7 days (Qadri et al. 2016), we assume that the vaccine takes effect only 1 week after
administration.
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POUWT
WaSH and in particular POUWT interventions reduce the probability of individuals to
get exposed to an infectious dose of Vibrio Cholerae. In the model, this is achieved by
multiplying the exposure parameter βi for targeted individuals i with the relative risk
of exposure 0.74 [95% CI 0.65 to 0.85], reported by Fewtrell et al. (2005) for household
scale water quality interventions in (peri-)urban settings.

Combined interventions
We also consider combinations between the three main type of interventions (S1 Ta-
ble). This is achieved by simultaneously applying the estimated effects of several
interventions to the targeted population.

Duration of intervention effects
Whereas the duration of the effects of antibiotics is short (2 days, see Antibiotics),
we consider that protection from OCV and POUWT lasts (at least) until the end of
the current epidemic. This implies that people who benefited from OCV or POUWT
interventions once don’t need to be treated again. In the case of antibiotics, as the
effect vanishes rapidly, we consider two scenarios, one in which every person can get
antibiotics only once during the epidemic (main text), and one in which a single person
can be allocated antibiotics several times, with a minimal interval of 2 weeks (Section
Allocation of several doses of antibiotics per person).

Uncertainty of intervention effects
To propagate uncertainty regarding intervention effects we use the distributions shown
in S14 Fig, which have been obtained by fitting normal or log-normal distributions to
the reported 95% confidence intervals shown in Table 1 in the main text or directly from
the cited references. During the simulation, a different set of reduction parameters is
drawn for every person treated.

Intervention timing
We consider three different scenarios as to when interventions start:

early (day 50) interventions are launched during the flat phase early in the epidemic,

peak (day 130) around the paeak of the epidemic,

late (day 180) after the epidemic peak, during the recession phase.

During simulation, we assume that intervention scenarios are only started when at
least 10 new cases were reported during the week before the start date.

6



Allocation strategies

Case-area targeted allocation (CATIs)

In addition to the different kinds of interventions we consider different intervention
strategies. The first strategy takes advantage of the clustering of cases. It consists
in targeting people with an increased risk of getting exposed to V. cholerae because
they are living within a given distance (in time and space) to a known case. Every
time a case gets reported (e.g. when a person in the model changes from the exposed
(E) to the symptomatically infected state (I)), people who live within a distance of
100 m of the reported case’s home are targeted by the intervention. In N’Djamena a
cluster of this radius typically consists of 100 to 500 people (S12 Fig). We also evaluate
the effect of reducing this radius to 70 m, 45 m, 30 m and 15 m, measured within the
gridded model space (S13 Fig). To account for the fact that an intervention team
visiting the target area will not be able to reach all inhabitants because they might
be absent or might not agree to receive preventive treatment or not comply with
POUWT measures, we consider that a random sample of 70% of the people who live
within the designated area can be effectively reached. In addition, we account for the
delay between the reporting of the initial case and the deployment of an intervention
team to the corresponding cluster by drawing it from a distribution given in S15 Fig,
considering that all clusters can be targeted within 7 days counting from the reporting
of the initial case (day 0), with the mode on day 2. We assume that interventions
continue until the end of the epidemic (i.e. no more reported cases) or the maximal
duration of the simulation (Section Simulation).

Mass campaign targeting the same number of people

To estimate the comparative advantage of CATIs, we also simulated a second strategy,
where we allocated the interventions at the same starting time as we would have in
the targeted interventions and to the same total number of people for each simulation
run, though randomly in space. We assume that all interventions can be administered
within 14 days from the start date.

Mass campaign targeting 70% of the population

To estimate the effect of randomly allocated interventions to a high number of people
(i.e. mass interventions), we simulated a strategy where we allocated the interventions
at the same time as we would have in the targeted interventions, but randomly to 70%
of all people living in the city. We consider that all interventions can be administered
within 14 days from the start date.

District-wise mass campaign

An alternative strategy to a mass intervention campaign targeting the entire city is
to target only certain districts, selected by criteria such as number of reported cases
or indicators of vulnerability to cholera, at the advantage to simplify the logistics and
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reduce the required number of doses or intervention teams needed. To explore the
potential advantage of such a strategy we implemented an additional scenario where,
for each simulated epidemic, interventions are allocated to the population of the 3
districts (out of a total of 10, S1 Fig) with the highest attack rate at the time when
interventions start, assuming that 70% of the districts population can be effectively
reached.

Additional results

Allocation of antibiotics to household members and closest
neighbors in combination with allocation of OCV in larger radii
Despite the high efficiency of case-area targeted allocation of antibiotics, especially at
smaller radii or in combination with OCV, the administration of such drugs to a high
number of people unavoidably raises concerns about the development of antimicrobial
resistances. As an alternative, we consider scenarios where antibiotics are administered
only to household members and closest neighbors of cholera patients, combined with
the allocation of OCV in a larger radius, limiting the number people getting antibiotics
and thus the potential risk of widespread antimicrobial resistance. We evaluate the
administration of antibiotics within the same model cell (i.e. a radius of 15 m) as the
reported case and the simultaneous allocation of OCV within a larger radius, varying
between 30 m and 100 m, thus combining the advantage of rapid onset of protection
by antibiotics at short distances with the long lasting protective effect of OCV. More
cases are averted for this strategy than for for OCV alone, particularly at low and
intermediate radii (S8 Fig and S1 Table). Adding the administration of antibiotics
within the first 15 m around cases to an OCV campaign at a radius of 45 m starting
early, the median number of averted cases increases from 469 (95% prediction interval
(PI) -2730 to 4531) to 632 (95% PI -2455 to 4276). The effect is less pronounced
(increase of averted cases from 2986 (95% PI 0 to 11090) to 3036 (95% PI -8 to 10748)
in a radius of 70 m when starting early) at larger radii because OCV alone already
leads to high numbers of averted cases. With respect to the combined administration
of OCV and antibiotics at a radius of 100 m starting early, reducing the radius for
antibiotics to 15 m only leads to a minimal decrease from 3425 (95% PI 38 to 12203)
to 3315 (95% PI 14 to 11893) in the number of averted cases.

Allocation of several doses of antibiotics per person
Restricting the number of doses of antibiotics a person can receive to one during the
whole study period, combined with the short duration of protection offered, limits
the efficiency of CATIs with antibiotics. In an alternative scenario, we assume that
a person can get several doses of antibiotics, with a minimal interval of 2 weeks, if
she/he lives within the intervention radius of several cases reported at different times.
By allowing for repeated targeting of a single person, we see an improved efficacy
of case-area targeted allocation of antibiotics (S1 Table), even at high radii, such as
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100 m. Starting around the epidemic peak, the averted cases increase from 532 (95%
PI -371 to 2220) to 1034 (95% PI 28 to 3698), at the cost of a increase in the number of
people to target from 22477 (95% PI 2539 to 73165) to 34596 (95% PI 2479 to 126474)
(i.e. doses to administrate (S9 Fig)).

The role of long distance transmission
In this study, we aimed at reproducing simulated epidemics that mimic the course and
the global spatial clustering of the N’Djamena epidemic. We thus chose to fit our model
to the epidemic curve and the τ statistic simultaneously. In addition, our model is
based on the assumption that the probability of a transmission event from an infected
to a susceptible individual steadily decreases with distance (Section Epidemiological
model). Long-distance transmission events, which cause the spread of the disease
from one neighborhood to another by the means of travelers and commuters, are thus
unlikely to occur. In this set-up, our model is unable to fit the global spatial structure
of the epidemic (e.g. the spatial distribution among different clusters of cases and
among different neighborhoods), in particular because of the lack of a mechanism
for long-distance transmission and the lack of a calibration criterion quantifying the
mentioned global structure.
We thus performed a sensitivity analysis investigating the influence of adding long-

distance transmission events to the model by the means of setting parameter c to 0.05
(Section Epidemiological model), meaning that 5% of individuals to be infected are
chosen regardless of their position within the city among all susceptible people.
The calibration was stopped after the acceptance rate had fallen below 2%. Cal-

ibration results (S16 Fig and S17 Fig) reveal that the model was able to reproduce
the key characteristics of the epidemic, i.e. the evolution of new cases over time and
the spatiotemporal clustering of cases (τ), even if the quality of the fit was lower with
respect to the results presented in the main paper. This, together with the slower
convergence during calibration, can be explained by the fact that the additional long-
distance transmission added increases the difficulty to fit the clustering statistic τ
because it introduces an additional constraint and leads to a general increase of the
scattering of cases (and clusters thereof) in space.
A comparison of the results of the main CATIs (S18 Fig and S19 Fig) with the two

values of c reveals that the general rank order of types of intervention with respect
to numbers of averted cases is nearly unchanged. The lower medians of averted cases
with OCV and POUWT with long-distance transmission can be explained by the fact
that the long-distance transmission introduces more infections into areas previously
not targeted by interventions, and the higher spread of the distributions are due to
the above-mentioned higher variability in the simulated epidemic curves due to the
quality of the fit (S16 Fig). The increased number of averted cases when administering
antibiotics results from a higher proportion of people in targeted areas who have not
previously received antibiotics because the clusters of cases are generally further apart.
This effect is especially important due to the short duration of protection offered and
the limitation of one dose per person throughout the study period (Section Allocation
of several doses of antibiotics per person). Similarly, the number of persons targeted
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is generally higher with all three types of interventions because the targeted clusters
have less overlap. The average number of clusters targeted is lower for Antibiotics
and POUWT when comparing to the simulations without long-distance transmission
because epidemics are averted more efficiently.

Potential impact of asymptomatic shedding
There is an ongoing debate about the importance of the role of asymptomatic shed-
ding in sustaining cholera outbreaks and how to translate the underlying processes into
mechanistic models (Grad et al. 2012, Fung 2014). Asymptomatic patients are known
to shed Vibrio cholerae, however, the rate as well as the duration of shedding are signif-
icantly lower than for symptomatically infected (Nelson et al. 2009, Cash et al. 1974).
Thus, in our primary analysis we assumed that asymptomatics do not significantly con-
tribute to the force of infection. To investigate the potential impact of asymptomatic
shedding on the intervention results we performed an extensive sensitivity analysis, in
which we assumed that each asymptomatically infected contributes 10% as much to
the force of infection as a symptomatic at the same geographical position would have
by setting parameter θj to 0.1 for those individuals (Section Epidemiological model).
The shedding duration was fixed to 1 day for asymptomatic individuals (Nelson et al.
2009). Parameters were recalibrated except for σ, which was kept fixed to its mean
value resulting from the main analysis to facilitate convergence. The calibration was
stopped after the acceptance rate had fallen below 2%. Calibration results reveal that
the model was able to reproduce the key characteristics of the epidemic, i.e. the evolu-
tion of new cases over time and the spatiotemporal clustering of cases (τ), even if the
quality of the fit was lower with respect to the results presented in the main paper.
A comparison of the results of CATIs in a 100 m radius with all three intervention

types with and without asymptomatic shedding reveals that even if the impact of
CATIs are lower the general rank order of interventions did not change (S23 Fig).
A notable difference is the lower reduction of epidemic time for early interventions,
possibly due to asymptomatic shedders causing the simulated outbreaks to revamp.
Another result from these analyses is that antibiotics become significantly less effective
to the point of having close to no effect, which can be attributed to the asymptomatics
shedding duration (one day) which is not further decreased by the intervention. Using
CATIs with OCV in a 100 m radius around peak time in a model with asymptomatic
shedders 21% (IQR 15% to 31%) of cases were averted and epidemic durations reduced
by 21% (IQR 12% to 30%), against 43% (IQR 35% to 49%) and 35% (IQR 26% to
66%) respectively in our primary analysis.

The effect of imperfect CATI targeting
A set of key assumption of this study is that (1) all symptomatic cases get reported and
(2) 70% of the neighbors of all reported cases get targeted by CATIs. We performed a
sensitivity analysis to explore the impact of CATIs when relaxing those assumptions by
lowering the fraction of symptomatic cases which result in a 100 m ring being targeted
by OCV in different scenarii to 80%, 60%, 40% or 5%.

10



Even when only a fraction of the symptomatic cases are assumed to trigger a CATI,
they remain similarly effective as shown in our primary analyses (S20 Fig and S21
Fig). Targeting 100 m rings around 60% of all symptomatic cases with OCV at peak
time lead to 1711 (IQR 780 to 2830) averted cases, compared to 1784 (IQR 825 to
2987) when targeting around all symptomatic cases. The number of targeted persons
increased to 13092 (IQR 6848 to 21421) and the number of targeted clusters dropped
to 386 (IQR 190 to 695). The epidemic duration was reduced by 89 (IQR 57 to 138)
days, compared to 97 (IQR 62 to 140) when targeting around all symptomatics. As
expected, when targeting CATIs within 100 m around a low proportion of symptomatic
cases (5%), we saw a significant reduction in intervention effect. When CATIs started
around the epidemic peak the averted cases decreased to 150 (IQR 27 to 442) and the
reduction of epidemic time to 32 (IQR 5 to 69) days, which is lower than the reductions
achieved by district targeted mass campaigns.
The outcome of CATIs is thus robust to a decrease in the number of targeted rings,

which can be attributed to the fact that many rings overlap. This could reveal crucial
in practical applications because of imperfect surveillance systems and/or logistical
constraints may limit the number of rings that can be targeted, even if full coverage
has been shown feasible (Parker et al. 2017).

Reduction of the symptomatic fraction through POUWT
Our parametrization of POUWT interventions relies on the assumption that the mech-
anism which leads to protection through POUWT is a reduced concentration of Vibrio
choleræ in drinking water, which in term reduces the force of infection acting upon
individuals and thus the probability of getting infected. This mechanism, in which the
likelihood of infection depends on the ingested dose, has been observed in experimen-
tal human challenge studies (Hornick et al. 1971). However, as noted by Grad et al.
(2012) and Fung (2014), not only the likelihood of infection but also the likelihood of
an infection being symptomatic is dose-dependent (Hornick et al. 1971), suggesting the
reduction of the symptomatic fraction as another mechanism of action of POUWT.
To determine if the effect of CATIs using POUWT is dependent on the mechanism

assumed, we re-run POUWT simulations using this second mechanism (i.e. assum-
ing a relative risk of symptomatic infection of 0.74 (95% CI 0.65, 0.85) for targeted
individuals instead of a relative risk of exposure). Results show that the benefits of
CATIs using POUWT in a 100 m radius around cases are higher when considering
this second mechanism, but still lower than effects with CATIs using OCV (S22 Fig).
When intervening at peak time the number of averted cases was 1649 (IQR 742 to
2656) and the reduction in epidemic days 67 (IQR 36 to 107) against 833 (IQR 355 to
1530) cases and 39 (IQR 8 to 74) days in our primary analysis.

Previous immunity in CATIs
In CATIs, contacts of cases are more likely than randomly-selected individuals to have
been previously infected (symptomatically or asymptomatically) and thus to benefit
from acquired immunity. This is why a higher proportion of intervention resources
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may go to previously immune than with other modes of intervention allocation. Of
note, as shown in our primary analysis, CATIs are more ressource efficient than mass
interventions overall because they target people most at risk to get cholera.
To give a sense for how much wastage there could be through CATIs compared to

perfect targeting around households of susceptible individuals, we performed 1000 new
simulations where at each of the three intervention starting times, we chose 100 house-
holds of infected individuals and 100 households of susceptible individuals. Within
100 m around each household we calculated the number of people immune to cholera
and then combined results to have the relative risk of wasting an intervention com-
paring interventions around cases to those around susceptible people. In this extreme
example, we found that the risk of targeting a person who may benefit from interven-
tions (i.e., not immune) was reduced 1.7-fold (IQR 1.6 to 1.8) when interventions were
targeted within 100 m around households of cases compared to interventions targeted
around susceptible households at the start of the epidemic. This reduction increased
later in the epidemic, with a 2.3-fold (IQR 2.1 to 2.5) reduction with CATIs starting
around peak and a 2.2-fold (IQR 2.0 to 2.3) reduction with CATIs starting at the end
of epidemics.
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