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SUPPLEMENTARY MATERIAL	
 
S1) Deep Learning – a brief introduction 

Deep learning (LeCun et al., 2015) is a data-driven process that allows an algorithm to adjust itself to 
perform specific tasks. It does so by exposing the algorithm to a large set of data that exhibits a desired and 
distinct behaviour. Deep learning as used in our study requires the relevant parts of the data to be 
appropriately labelled. Typically, deep learning is used to train a class of algorithms known as neural 
networks to perform specific tasks, such as image recognition or anomaly detection. Deep neural networks 
have proven to be highly effective for a diverse range of applications, including aiding medical diagnoses 
(Litjens et al., 2017; Miotto et al., 2017). Similar to the brain, neural networks can contain millions of 
tunable connectivity strengths that must be able to adapt to perform the task at hand. Deep learning tunes 
these connections in a highly generalisable way so that a given network can be trained to perform almost 
any arbitrary task. Learning occurs via a process of reinforcement, whereby the network is optimised based 
on the errors it is making while analysing the training dataset.  
 
In the context of seizure prediction, the training dataset consists of preictal and interictal iEEG segments 
and the corresponding labels. The neural network is trained on this training dataset to discriminate between 
these two classes. On the other hand, the test or inference dataset consists of continuous iEEG signal 
including all interictal, preictal and ictal segments.    
 
S2) System Architecture 
 

 
 
Fig. S1: System architecture. The 16 channels of the raw iEEG signal (1) collected through an electrode 
array are transformed into 16 spectrograms (2). An image representing time of day (ToD) information is 
appended as a 17th channel (2). Data are then passed into a convolutional neural network (CNN) for 
training and classification (3). The output of this CNN, a prediction of whether a data segment is inter- or 
preictal (4) is then passed into the post-processing layer (5), where the final output is computed using an 
integrate-and-fire neuron. 
 
a. Data Preparation  

 

i. Conversion of iEEG Signals into Spectrograms 

The dataset used was collected during a previous trial undertaken in (Cook et al., 2013). Upon completion 
of this initial study, the dataset was labelled by expert investigators, using iEEG data as well as secondary 
seizure evidence (such as audio recordings and patients' seizure diaries). For the purpose of this study, 
clinical (identified using iEEG and audio recordings/patient diaries) and clinically equivalent (identified 
using iEEG data only) seizures were treated equally.  
 
For each patient, the recorded iEEG signal was processed before it was ready for being fed into a CNN. 
Processing involved the following steps: 

1. Dropout removal: The recorded signal was first scanned for "dropouts" – occurrences of ongoing 
zeros or missing entries ('NaN' values) simultaneously in all electrode channels. Dropouts are 
typically the result of data acquisition system failure due to low battery power or the receiver 
being too far away. These missing values were removed from the signal. 



2. Filtering: Next, the signal was bandpass filtered from 1 Hz to 140 Hz and notch filtered at 50 Hz 
(mains removal). Both operations were using zero phase second order non-causal Butterworth 
filters.  

3. Definition of preictals and interictals: The previously annotated clinical or clinically equivalent 
seizures were assigned the ictal class. A 15-minute segment before each seizure was defined as 
being preictal, starting 16 minutes before an ictal segment and ending one minute before. Parts of 
the signal that were neither preictal nor ictal were defined as interictal. 

4. Conversion to spectrograms: Previous studies have shown that analysing the iEEG signal in the 
frequency domain can be effective for seizure prediction (Howbert et al., 2014; Korshunova et al., 
2017). Building on that, we converted the recorded iEEG time series signal into spectrograms.   
Each 30-sec segment of the time series was partitioned into overlapping 0.445 second frames and 
within each frame the amplitude spectrum was computed. The generated spectrograms were 
resized into 32x32 images for feeding into the neural network. Note that, each 30-sec segment of 
the signal led to the generation of 16 spectrograms corresponding to the 16 electrodes. 

5. Extraction of preictal and interictal training segments: Once the preictals, interictals, and ictals 
were marked, the first step in creating the training set was to extract preictal segments.  Next, an 
equal number of interictal samples was randomly selected. Note that although there is a much 
larger number of interictal than preictal segments in the original signal, a balanced set was 
extracted to train the network. Moreover, the training set didn't include any ictal samples. 
However, to mimic a real-world situation, the continuous signal, containing all interictal, preictal, 
and ictal segments, was used for testing. 

 
ii. Inclusion of Time of Day 

It has recently been shown that epilepsy is characterized by a periodic dynamics that increase seizure 
likelihood at certain times of day (Karoly et al., 2016; Loddenkemper et al., 2011). In the data, we used the 
specific time of day (24-hour cycle) of when a seizure occurred was noted for each seizure and each 
patient. This phenomenon suggests that, for these patients, seizures are likely to happen during a certain 
time of the day or night. For example, Fig. S2 shows the distribution for Patient 9 and Patient 10 which 
depicts its localized nature and motivates including this data on a patient-specific basis. 
 

 
Fig. S2: Example of distribution of seizures over time of day for: A Patient 9, B Patient 10 
 
Hence, we decided to include this information with the input. As discussed in Section S2a(i), we first 
generated 16 spectrograms of size 32x32 corresponding to the 16 deployed electrodes for each 
sample. Next, the time of day information was appended as a 17th channel to these samples. Note that the 
way we were preparing the data meant that a single preictal segment could lead to the generation of 
multiple samples. Each of these samples were annotated with a specific time of day information. 
 
The steps for inclusion of a particular seizure at time 𝑥 to a given preictal segment are outlined below: 

1. A vector 𝑇 of size 24x1 is created and the 𝑥-th position of 𝑇 is set to k while the other 23 positions 
are set to 0, where k is a positive value. 

2. A matrix 𝑇𝑂𝐷 of size 24x24 is created by multiplying 𝑇 and 𝑇’ (𝑇𝑂𝐷	 = 	𝑇 ∗ 𝑇’). Hence, in TOD 
the entry at (𝑥, 𝑥)	is 1 while the others are 0.  



3. 𝑇𝑂𝐷 is resized to have a shape of 32x32 and appended to the 16 spectrograms we already had for 
the 16 electrodes. 

4. Note that resizing TOD i.e. a 24x24 matrix to a 32x32 matrix through interpolation adds the time 
of day information as gradually diminishing probabilities to the neigbouring time segments. 

 
iii. Accounting for Nonstationary iEEG Data in a Real-Time System 

The proposed system has been developed for application in a real-world scenario where data is acquired 
continuously and in real-time. Typically, to develop machine learning algorithms, the split of the available 
data into training and testing set is done by using a cross-validation technique. During cross-validation, a 
dataset is randomly split into different sets of training and testing data to compute an average performance. 
However, in the context of a prediction system like ours, this method would result in the inclusion of future 
data in the training set. Hence, to mimic the real-world scenario, we created training and test sets in such a 
way that the test set was always chronologically ahead of the training set. 
 
Since we are using iEEG signals, another important aspect of the data is its non-stationary nature (Sillay	 et	
al.,	 2013;	 Ung	 et	 al.,	 2017) i.e. the data gradually changes over time. This means that using randomly 
shuffled data (from cross-validation) would make the task unrealistically easy for a prediction system. 
Furthermore, to address the non-stationarity of the data, we retrain our model on a regular basis, using only 
the most recent data. The retraining interval is loosely based on the patient's seizure rate, which led us to 
retrain the models for patients 1, 2, and 14 every 90 days, while all other models were retrained every 30 
days. If a given period chosen for extracting the training data doesn't have any seizures, we use the previous 
period.   

 
b. Deep Neural Network Topology 

We used Convolutional Neural Networks (CNN) to classify between preictals and interictals and thereby 
predict seizures. Different CNN structures were implemented in TensorFlow (“TensorFlow,” 2015) on a 
desktop computer and in the custom developed IBM TrueNorth Neurosynaptic System (Esser et al., 2016). 
Both CNN structures are described in the tables below. Here Conv2D, Maxpooling2D, FC, Dropout, ReLU 
and SoftMax denote two-dimensional convolution, two-dimensional max-pooling, fully-connected layer, 
dropout, rectified linear unit non-linearity, and the softmax function respectively.   
  

Layer Index Name Relevant parameters  
(number of filters, kernel size, number of output neurons, 
dropout) 

1 Conv2D 16@3x3 
2 ReLU NA 
3 Maxpooling2D 2 
4 Dropout 0·7 
5 Conv2D 32@3x3 
6 ReLU NA 
7 Maxpooling2D 2 
8 Dropout 0·7 
9 Conv2D 32@3x3 

10 ReLU NA 
11 Maxpooling2D 2 
12 Dropout 0·7 
13 FC 32 
14 ReLU NA 
15 Dropout 0·5 
16 FC 2 
17 SoftMax NA 

ST1) TensorFlow Network. 
 
 
 
 
 
 



 
 
 

Layer Index Name Relevant parameters  
(number of filters, kernel size, number of output neurons, 
dropout, padding, stride) 

1 Conv2D 12@3x3 
2 Conv2D 126@4x4, P=1, S=2 
3 Conv2D 128@1x1 
4 Conv2D 128@2x2, S=2 
5 Conv2D 256@3x3, P=1 
5 Conv2D 256@1x1 
6 Conv2D 256@1x1 
7 Dropout 0·5 
8 Conv2D 256@1x1 
9 Conv2D 256@2x2, S=2 

10 Conv2D 512@3x3, P=1 
11 Dropout 0·5 
12 Conv2D 512@1x1 
13 Conv2D 512@2x2, S=2 
14 Conv2D 512@1x1 
15 Conv2D 512@1x1 
16 Dropout 0·5 
17 Conv2D 1020@1x1 
18 FC 2 

ST2) TrueNorth Network. (a ReLU non-linearity is applied to the output of each Conv2D layer). 
 
The last fully connected layer in each of the networks (FC) outputs two distinct neurons, each indicating 
the likelihood of a given sample being interictal or preictal. In the Tensorflow implementation, a SoftMax 
layer forces the sum of the output of both neurons to be equal to one. The output of the preictal neuron was 
subsequently used during post-processing to predict ictal events. When using TrueNorth, the inverse of the 
interictal output neuron of the last fully connected layer is used. 
 
While in TensorFlow (“TensorFlow,” 2015) we used the Adaptive Moment Estimation (Adam) method to 
train the CNN, in TrueNorth  a custom gradient descent backpropagation rule (Esser et al., 2016) was used. 
Since TrueNorth is composed of binary synapses, traditional optimisers cannot be directly used to train 
networks implemented in TrueNorth. Hence, we employed a custom learning rule capable of performing 
weight updates in a binary neural network. Moreover, to achieve extreme power efficiency, TrueNorth 
imposes hardware constraints on network structure and weight precision. Hence, the CNN implemented in 
TrueNorth requires more neurons and synapses that its TensorFlow counterpart. 
 
c. Post-processing Layer:  

A post-processing layer is used to translate network outputs to device alarms. It integrates the output of the 
CNN using an exponentially weighted moving average filter. A threshold crossing triggered a preictal 
alarm indicating an upcoming seizure. It was adjusted each month to reflect the changes over time in data 
and model. Performance of the post-processing layer relied on three adjustable parameters, each of which 
will be described in more detail below. 
 
The 50%-thresholded output of the preictal neuron of the SoftMax layer (Tensorflow) or inverse of the 
predictions of the interictal neuron (TrueNorth) is fed into a leaky integrate and fire neuron with variable 
firing threshold Vth and decay time τ (see Fig. S3). The prediction output increments a running variable by 
one with each preictal prediction. With each interictal prediction, the value of the running variable decays 
exponentially with the time constant τ. Every time the threshold Vth is crossed, a spike is generated and the 
running variable is set to zero. A spike in the spiking output layer triggers an alarm of the system with a 
variable alarm length ta.  
 
To find the optimal values of the parameters Vth, τ, and ta, a grid search is performed and sensitivity (S), 
time in warning (TiW), and improvement over chance (IoC = S-TiW) are computed (see Section S3 for 
details).  



 
The optimal operating point, as determined through maximisation of an objective function for month i, popt,i 
= f(Vth, opt, τopt, ta, opt) is computed and stored. For the full validation, the objective was to maximise 
improvement over chance.  For the case study, the objective function was modified slightly (see Section 
S3) to reflect the relative priority given to sensitivity or time in warning. In order to compute the operating 
point for the next month, pi+1, each parameter was weighed by the number of seizures in the corresponding 
month, leading to a post-processing layer with memory that gradually adjusted to the updating models: 
pi+1 = 1/Ns * Σm=(0 to i) (popt,i * ns,i), 
where Ns is the total number of seizures until the next month, and ns,i is the number of seizures in month i.  
 
In order to ensure we did not use data that is not yet available at the time of prediction, performance was 
computed using the optimal parameters derived from historical data only. 
  

 
Fig. S3: Post-processing layer: The preictal output neuron (TF) or the inverse interictal output neuron 
(TN) was passed to an integrate-and-fire neuron. A positive prediction (marked × at position 1) led to a 
linear increase of the running variable (pink trace). A negative prediction (marked × at position 0) led to an 
exponential decay of the running variable. Once the running variable crossed a threshold (1 in this 
example), the post-processing layer predicted an upcoming seizure (red spike). A positive prediction after 
post-processing then invoked an alarm of a certain alarm length (not displayed). Seizures (black spike) that 
fell within this alarm window were counted as true positives, seizures outside an alarm window as false 
negative. Threshold, decay time, and alarm window were optimized as described above. 
 
S3) Performance Measures:  

Sensitivity: While any seizure that occurred while the system was in the alarm state were regarded as a true 
positive (TP), seizures occurring outside alarms were regarded as false negatives (FN). Sensitivity S is 
defined by: 
 
S = TP/(TP+FN). 
 
Time in warning: Time in warning (TiW) is the percentage of time (after removal of any dropout occurring 
in the data) the system spends in the warning state. 
 
Improvement over chance: For the purpose of evaluating our system, we defined the improvement over 
chance IoC as:  
 
IoC = S-TiW. 
 
Intuitively, this can be explained by imagining a system that spends either 100% or 0% in the warning 
state, predicting 100%, and 0% of seizures, respectively (see Fig. S4). Sensitivity values for any given time 
in warning can be derived through interpolation between these two extremes. To find the optimal operating 
point during post-processing popt,I for each month, S, TiW, and IoC were computed. The operating point was 
determined by selecting the values that satisfied max(wSens*S – wTiW*TiW), with wSens and wTiW being the 
relative weights (importance) assigned to sensitivity and time in warning. 
 



 

Fig. S4: Performance reporting: The parameter set resulting in the largest improvement over chance in 
month 2 (and later all previous months) was used to inform which parameter set is used for testing in the 
following month in order to enable a pseudo-prospective study. 
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