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Figure S1: Phylogenetic signal of 16S gene copy numbers (original SILVA tree). (A) Pearson autocorrelation
function of 16S GCNs depending on phylogenetic distance between tip pairs, estimated based on ∼6,800 sequenced
genomes. (B) Distances of tips in the SILVA tree to the nearest sequenced genome. Each bar spans an NSTD interval of
2%. (C) Cross-validated coefficients of determination (R2

cv) for 16S GCNs predicted on the SILVA tree and depending
on the minimum NSTD of the tips tested, for various ancestral state reconstruction algorithms (PIC: phylogenetic
independent contrasts,WSCP:weighted squared-change parsimony, SA: subtree averaging,MPR:maximumparsimony
reconstruction, Mk: continuous-time Markov chain model with equal-rates transition matrix). MPR transition costs
either increased exponentially with transition size (“exp”), proportionally to transition size (“pr”) or were equal for all
transitions (“ae”).
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Figure S2: Comparisons of 16S GCNs calculated for genomes by this study and the rrnDB. 16S GCN estimates
provided by rrnDB (Stoddard et al., 2014) compared to GCNs counted for genomes in this study (“high-quality genome
set”). One point per genome. The diagonal line is shown for reference. The fraction of explained variance (R2, X-axis
explaining Y -axis) and the number of genomes (n) are written in the figure.
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Figure S3: Predicted 16S GCN frequency distributions across Greengenes. Frequency distributions of 16S GCNs
predicted by CopyRighter (A), PICRUSt (B) and PAPRICA (C) across the Greengenes 16S rRNA reference database
(release October 2012 for CopyRighter, release May 2013 for PICRUSt and PAPRICA; McDonald et al., 2012). For
CopyRighter and PICRUSt, frequency distributions were calculated directly from the precomputed tables obtained
from each project’s website (see Methods). In (C), representative sequences of OTUs (99% similarity) in Greengenes
(release May 2013) were used as input to PAPRICA. Sample sizes (n) are written inside the figures.
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Figure S4: 16S GCN frequency distributions across genomes. Frequency distributions of 16S GCNs across se-
quenced genomes, known based on the genome sequence (counted in this study) (A), as well as predicted by Copy-
Righter (B), PICRUSt (C) and PAPRICA (D) using phylogenetic methods. Sample sizes (n) are written in each figure.
Precise genome subsets differ between tools due to methodological constraints. Non-integer GCN predictions were
rounded to the nearest integer.
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Figure S5: Agreement of GCN prediction tools in microbial communities, depending on the NSTI. (A) Agreement
between 16SGCNs predicted by CopyRighter and PICRUSt (in terms of the fraction of variance in the former explained
by the latter, R2) for non-animal-associated microbial communities, compared to the nearest sequenced taxon index
(NSTI, i.e. the weighted mean NSTD) of each community. Each point represents the R2 and the NSTI of one microbial
community sample. Horizontal bars span two (weighted) standard deviations of NSTDs for each sample. (B,C) Similar
to (A), but comparing PICRUSt to PAPRICA (B) and CopyRighter to PAPRICA (C). (D–F) Similar to A–C, but for
animal-associated samples. In all figures, grey diagonal lines show linear regressions. Pearson correlations between
R2 and NSTI (r2, written in each figure) were statistically significant (P < 0.01) in all cases. Points are shaped and
colored according to the original study, as listed in the legend. Apart from the horizontal bars, this figure is the same
as Fig. 4 in the main text.
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Figure S6: Comparisons of 16S GCN predictions between tools for microbial communities. (A–C) 16S GCNs
predicted by (A) CopyRighter Angly et al., 2014 and PICRUSt Langille et al., 2013, (B) PICRUSt and PAPRICA
(Bowman et al., 2015) and (C) CopyRighter and PAPRICA for prokaryotic OTUs (97% identity) found in a water
sample from Yanga Lake, Australia (SRA sample accession SAMN04102871; Woodhouse et al., 2016). One point
per OTU. Diagonal lines are shown for reference. Fractions of explained variance (R2, X-axis explaining Y -axis) and
sample sizes (n) are written in each figure. (D–F) Similarly to (A–C), but for prokaryotic OTUs found in an Atlantic
ocean surface sample (SAMEA3641572; Milici et al., 2016). (G–I) Similarly to (A–C), but for prokaryotic OTUs
found in a USA grassland soil sample (SAMN02746099). (J–L) Similarly to (A–C), but for prokaryotic OTUs found
in an Indian hot spring (SAMN03393659; Sahoo et al., 2017). For a comparison of relative deviations between tools
and NSTDs, see Fig. S8.
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Figure S7: Comparisons of 16S GCN predictions between tools for animal-associated microbial communities.
(A–C) 16S GCNs predicted by (A) CopyRighter Angly et al., 2014 and PICRUSt Langille et al., 2013, (B) PICRUSt
and PAPRICA (Bowman et al., 2015) and (C) CopyRighter and PAPRICA for prokaryotic OTUs (97% identity) found
in a human child gut (SRA sample accession SAMN07184108). One point per OTU. Diagonal lines are shown for
reference. Fractions of explained variance (R2, X-axis explaining Y -axis) and sample sizes (n) are written in each
figure. (D–F) Similarly to (A–C), but for prokaryotic OTUs found in a porcine gut (SAMN06640712). (G–I) Similarly
to (A–C), but for prokaryotic OTUs found in a bird gut (SAMEA4071486). For a comparison of relative deviations
between tools and NSTDs, see Fig. S9.
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Figure S8: Relative deviations between 16S GCN predictions, compared to NSTDs in non-animal-associated
microbial communities. Each figure shows relative deviations between GCNs predicted by two tools (vertical axis)
compared to NSTDs (horizontal axis) for each OTU in amicrobial community (one point per OTU). Left column: Com-
paring CopyRighter and PICRUSt. Middle column: Comparing PICRUSt and PAPRICA. Right column: Comparing
CopyRighter and PAPRICA. Each row shows a different sample (samples as in Fig. S6).
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Figure S9: Relative deviations between 16S GCN predictions, compared to NSTDs in animal-associated micro-
bial communities. Each figure shows relative deviations betweenGCNs predicted by two tools (vertical axis) compared
to NSTDs (horizontal axis) for each OTU in a microbial community (one point per OTU). Left column: Comparing
CopyRighter and PICRUSt. Middle column: Comparing PICRUSt and PAPRICA. Right column: Comparing Copy-
Righter and PAPRICA. Each row shows a different sample (samples as in Fig. S7).
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