Additional file 1: Computational details

Parameter estimation

Let YT = (Y|",...,Y,]), where Y; is the vector of observed HAZs at the i*" cluster, and Let
N =" ;m;. The vector Y has a multivariate Gaussian distribution with mean p = D¢
and covariance matrix X, where D is a matrix of covariates including the cubic spline bases,
with vector of regression coefficients ¢T = (v*',3,8), where 7* consists of coefficients of
child-specific variables, spatial variables and those of the spline bases, and ¥ = C(O’QR +
T2[n)CT + w? Iy, where [R];; = p(u;;; ¢) and

1 if the j* child has been sampled at location x;,

[Cliy =

0 otherwise

Let 07 = (7,02, 7%, w?, ¢) denote the vector of model parameters; the log-likelihood for 6 is

given by
1 Ty—1
L(#) = —5{log[Z] + (v — ) ="'y — w)}. (AF1.1)

Inversion of the covariance matrix X can be simplified using the Woodbury matrix identity

to give
S = (@ 2y — G C[(R+72L,) "+ 7207C] 0T /o, (AF1.2)
where ©? = w?/0? and 72 = 7%/0?%. Using Sylvester’s determinant identity, we can also write
13| = M| @2 CTC(R + 721,) + 1., (AF1.3)

hence, as in (AF1.2), computations are carried out on an n by n matrix.



To maximize L(6), we then use the profile likelihood for given v = (72, &2, ¢). The profile

estimates for ¢ and o? are respectively given by
£(w) = (D'QD)'DTQ 1y

and

1

6*(v) =y — DEW)TQ My — DE(W))

where 02Q = ¥. By plugging £() and 62(6) into (AF1.1), we obtain

L) = —5 { Nloga*(v) + log @1} . (AF1.4)

Finally, numerical optimization can be used to maximize L, (1)) with respect to 1.

Model validation

We carry out model validation to test the validity of the adopted spatial covariance function

as follows.

Let W;(z;) = S(x;)+U;+V; denote the residual variation in HAZ for j-th children at location
x;, where V; ~ N (0,w?) and S(z;) and U(z;) are as defined in the geostatistical model for

HAZ in equation (1) of the manuscript. The theoretical variogram of the random effects is
Yun) = W + 7% + 0(1 — exp{um}) (AF1.5)

where uyy, is the Euclidean distance between location xj; and xy,.

Denote by VVJ(L) the estimated residuals from a standard linear regression for the j-th child

at location ;. Let N(u) = {(h,k) : ||z — zx|| = upk}, i-e. the set of all data-points such



that their distance is uy,. The empirical variogram is the defined as

1 ~ - 2
S — Wizn) — Wi(x)) (AF1.6)
2|N(Uhk)‘ (h,k)EN (u) ( T 7 )

F(unk) =

where |N(upg)| is the number of observations in N (upg).

To generate a 95% bandwidth of the empirical variogram under the fitted model, we first
simulate W;(x;), at observed locations z;, from its marginal multivariate Gaussian distribu-
tion, as defined by the geostatistical model. Conditionally on the simulated values of W;(z;),
we simulate HAZ from the conditional model in equation (1) of the manuscript. We then
compute the empirical variogram in (AF1.6) obtained from the simulated data. We repeat
this process 1,000 times. Finally, we generate 95% tolerance intervals at each of pre-defined

spatial distances of the variogram.

Spatial prediction

Let TT = (T(x}),...,T(z})) denote our target of prediction, where z are ¢ prediction
locations. The conditional distribution of 7" given the data Y = y and all the explanatory

variables at each of the prediction locations x}, is a multivariate Gaussian with mean

D*¢ + PY Yy — DE), (AF1.7)

where D* is the matrix of explanatory variables at the prediction locations, P is the cross-
covariance matrix and & the vector of all the regression coefficients reported in equation (1)

in the manuscript; the covariance matrix is

o*(R* + 7)) — PY7'PT, (AF1.8)

where [R*];; = exp{—u;;/¢} and uj; is the Euclidean distance between any two prediction

locations @7 and z;. When carrying out predictions, we plug-in the maximum likelihood

estimates for each of the model parameters.



In order to quantify the risk of stunting at a location z, we map
Prob(T'(z}) < =2|y),i=1,...,q. (AF1.9)

In the above equation we fix age at 24 months and gender to male, whilst we integrate out
maternal education and wealth index as follows. Let [-] be a shorthand notation for “the

distribution of -”. The predictive distribution of the target 7'(x) is then given by
Tyl = [IPIT@)ly, PldD,i=1,....q (AF1.10)

where D = (W, ), with € corresponding to maternal education and W to wealth index,
and [T'(z;)|y, D] is the i-th component of the multivariate Guassian distribution with mean
and covariance matrix given by (AF1.7) and (AF1.8), respectively. We model the joint
distribution of D as

D] = [€]vi€]

where [£] is estimated using the empirical distribution obtained from the data of a given

survey, and [W|€] is a proportional odds cumulative probit model [1].

To compute (AF1.10), we then generate 10,000 samples from [T'(z})|y] by simulating se-
quentially from [£], [W|E] and [T'(z})|y, D]. Finally, we obtain (AF1.9) by computing the

proportions of simulated samples from [T'(z})|y] that lie below —2, for i =1,...,q.
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