
Additional file 6: Accounting for the uncertainty in malaria
incidence

To account for the uncertainty in malaria incidence, we consider two possible scenarios:
(A) predictive samples or measures of uncertainty from the model used to estimate malaria
incidence are available; (B) the data on malaria incidence are available. In what follows, we
shall useMij to denote the mean of the predictive distribution of malaria incidence during
the first year of life of the j-th child at location xi.

Scenario (A). Let M(r)
ij ; r = 1, 2, . . . , R be predictive samples of malaria incidence for the

j-th child at location xi. The resulting likelihood function is now obtained by averaging over
the samplesM(r)

ij , i.e.
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where [·] is a shorthand notation for “the distribution of ·” and [Yij|S(xi), Ui,M(r)
ij ] is a

Gaussian distribution with mean as in equation (1) of the main manuscript and variance ω2.
The expression for [Yij|M(r)

ij ] is given in “Additional file 1”. The resulting estimate of δ and
its standard error based on (AF6.1) incorporate the uncertainty inMij.

However, due to limited computer memory, the predictive samplesM(r)
ij may not have been

stored but summaries of the overall dispersion, such as standard errors, might instead be
available. Let v2

ij denote the variance of the predictive distribution for malaria incidence. By
approximating this with a log-Gaussian distribution, we then generate samplesM(r)

ij on the
logarithmic scale by simulating from a Gaussian distribution with mean
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Finally, we can use the resulting samplesM(r)
ij as in (AF6.1). However, the validity of this

approach largely depends on the accuracy of the log-Gaussian approximation which is not
feasible in cases whereMij = 0.

Scenario (B). In this scenario, the availability of data on malaria would allow us to develop
a bivariate model for HAZ and the number of malaria episodes, denoted by Wij, experienced
by a child during his first year of life. This is preferred to Scenario A because we can
then model the underlying process of malaria incidence within a geostatistical framework
that is consistent with our approach used for HAZ. More specifically, we would assume that
Wij, conditionally on a spatial Gaussian process S̃(xi), are mutually independent Poisson
variables, such that

log {Mij} = ẽ>
ij γ̃ + d̃(xi)>β̃ + S̃(xi), (AF6.2)
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where ẽij and d̃(xi) are child-specific and spatially referenced explanatory variables with
associated regression coefficients γ̃ and β̃, respectively. The joint likelihood for Yij and Wij

is then given by

[Yij,Wij] =
∫ ∫ ∫

[S(xi)][Ui][Mij][Yij|S(xi), Ui,Mij][Wij|Mij] dUi dS(xi) dMij. (AF6.3)

Monte Carlo methods could then be used to approximate the above integral which is not
available in closed form; see, for example, [1].
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