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MODELING OF THE STATICS AND THE DYNAMICS OF THE CONTACT LINE ON A SOFT

SOLID

A. Theoretical model

The mechanical equilibrium in the bulk of the incompressible soft elastic layer is described by

the Navier equations:

∇⃗ · σ = 0⃗ and ∇⃗ · u⃗ = 0 (1)

where u⃗ is the displacement field and σ is the stress tensor. This set of equations is completed by the

condition of stress continuity at the boundary:

σ · n⃗ = t⃗+ γsn⃗(∇⃗ · n⃗) (2)

where n⃗ and t⃗ are the unit normal vector to the surface and traction forces exerted at the substrate

boundary, respectively. γs is the surface tension of the solid. Note that we assume the surface tension

of the gel to be the same for both the wetted and the dry parts of the gel. Hence there is no traction

jump along the surface tangent of In addition, the soft elastic layer is bounded at the bottom , i.e at

y = −h0:

u⃗(x,−h0) = 0⃗ (3)

1. Static problem

Let us first consider the problem of a static force distribution t⃗ = (tx(x), ty(x)) applied at the free

boundary of a purely elastic solid with surface tension γS. Within this framework, the stress tensor

σ is given, in component form, by the following constitutive relationship:

σij = μ0

(
∂ui
∂xj

+
∂uj
∂xi

)
− pδi,j (4)

where δi,j is the Kronecker delta symbol and p is the pressure field. This field is introduced as a

Lagrange multiplier to enforce the incompressibility constraint.The equilibrium equations reduce

to the Navier equations:

∇⃗ · u⃗ = 0 and μ0△u⃗− ∇⃗p = 0 (5)

In order for the linear elastic theory to be valid, the slope of the surface profile uy(x, y = 0) =

ζ(x) must be small everywhere, i.e ζ ′(x) ≪ 1 where the prime denotes the derivative with respect
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to x. Within this approximation, the boundary conditions (2)-(3) take the form:

σyy = 2μ0
∂uy
∂y

− p = ty(x) + γS
d2ζ
dx2

(6)

σxy = μ0

(
∂uy
∂x

+
∂ux
∂y

)
= tx(x) (7)

ux(x,−h0) = 0 (8)

uy(x,−h0) = 0 (9)

This problem can be solved by using a potential function φ for the displacement field defined as:

ux = −∂φ
∂y

and uy =
∂φ
∂x

(10)

With this definition, the incompressiblity condition∇ · u⃗ = 0 is automatically satisfied. Inserting

the potential function into the Navier equations and rearranging the terms yields the biharmonic

equation:

△2φ = 0; (11)

We now introduce the Fourier transform φ̃ of the potential function φ:

φ(x, y) = 1
2π

∫ ∞

−∞
dkφ̃(k, y)eikx (12)

Plugging this expression into the biharmonic equation yields a simple fourth-order linear differen-

tial equation for φ̃(k, z):
∂4φ̃
∂y4

− 2k2∂
2φ̃
∂y2

+ k4φ̃ = 0 (13)

This equation has the following general solution:

φ̃(k, y) = Aeky + Be−ky + Cyeky + Dye−ky (14)

Now the four unknown constant A, B, C and D have to be determined using the boundary con-

ditions (6)-(7)-(8)-(9). Written in terms of φ̃(k, z), these BCs reads:

2μ0ik
∂φ̃
∂y

−
μ0i
k

(
∂3φ̃
∂y3

− k2∂φ̃
∂y

)
= t̃y(k)− γSik

3ζ̃ at y = 0 (15)

μ0

(
−k2φ̃ +

∂φ̃
∂x

)
= t̃x(k) at y = 0 (16)

∂φ̃
∂y

|y=−h0 = 0 (17)

φ̃(x,−h0) = 0 (18)
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This system of equation leads to the following expression for the Fourier transform ζ̃ of the surface

displacement field ζ:

ζ̃(k) =
t̃y(k)(sinh(2h0k)− 2h0k)− 2ih20k2t̃x(k)

k
(
2
(
h0k2(2h0μ0 − γs) + μ0

)
+ γsk sinh(2h0k) + 2μ0 cosh(2h0k)

) (19)

or in a more compact form:

ζ̃(k) = 1
γs

[
k2 +

μ0
γsK(k)

]−1 (
t̃y − it̃x

2h20k2

sinh(2h0k)− 2h0k

)
(20)

where:

K(k) =
[

sinh(2h0k)− 2h0k
2h20k2 + cosh(2h0k) + 1

]
1
2k

(21)

In real space, the solution ζ(x) is thus given by:

ζ(x) = 1
2π

∫ ∞

−∞
dkζ̃(k)eikx (22)

The single contact line

When the surface force is a line force, ie, when tx = fxδ(x) and ty = fyδ(x), then

ζ(x) =
fy

2πγs

∫ ∞

−∞
dk cos kx

[
k2 +

μ0
γsK(k)

]−1

+
fx

2πγs

∫ ∞

−∞
dk sin kx

(
2h20k2

sinh(2h0k)− 2h0k

)[
k2 +

μ0
γsK(k)

]−1

(23)

Note that because of the finite thickness and the incompressibility constraint, the tangential fx force

also induces vertical displacements. When h0 → ∞, the second term of the right-hand side of the

equation above vanishes and we recover the infinite depth result of Limat [1]:

ζ∞(x) =
fy

2πμ0

∫ ∞

1/Δ

cos kx
k+ γS

2μ0
k2
dk (24)

where Δ is a macroscopic cut-off length due to the 2-D nature of the problem. Note that for an

infinite depth, the vertical (tangent) force only produces a vertical (tangent) displacement.

The 2D rivulet

In the case of a 2D rivulet of width 2R similar to the one treated by Dervaux and Limat [2], the

force distribution is given by tx = γ(cos(π−θ)−cos(π−θeq))δ(x−R)+γ(cos(θ)−cos(θeq))δ(x+R)

and ty = γ sin(π− θ)δ(x−R)+ γ sin(θ)δ(x+R)+ γ sin(θ)/R ∗H(x+R)H(R− x), whereH is the
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h = 44 µm0 

h = 67 µm0 

h = 87 µm0 

h = 228 µm0 

h = 381 µm0 

a b

Figure 1. Prediction of the dimple depth as a function of (a) the droplet radius for various substrate thick-

nesses in the static case and (b) the thickness of the gel layer for a droplet with a contact radius of 1.3 mm.

Heaviside step function. The terms involving the difference between the cosines of the measured

contact angle θ and the equilibrium contact angle θeq reflect the presence of hysteresis. For a set

of experiments performed under identical conditions, the equilibrium contact angle is defined as

the average of the measured contact angles. Even though the measured hysteresis is small, it has a

significant effect on the depth of the dimple. Comparisons with experimental data in Fig. 2d of the

main text and Fig. 1 below use this definition of the contact forces plugged into equation 23, and an

effective radius of half the experimental radius in order to obtain the same Laplace pressure inside

the drop, together with a surface tension of 40mN m−1.

2. Dynamic problem

General solution for arbitrary rheology: We now consider the dynamical problem of a moving

contact line on a soft solid, i.e the surface traction t⃗ = (tx(x, t), ty(x, t)) now explicitly depends on

time. In addition, and in stark contrast with the wetting problem on rigid substrate, dissipation

now occurs mainly in the solid substrate. As documented by earlier studies, it is necessary to take

into account the time-dependent response of the soft substrate in order to describe the motion of

the contact line. In general linear viscoelastic materials, the stresses and strains are related through

the linear relation:

σ (⃗x, t) =
∫ t

−∞
μ(t− t′) ∂

∂t′
dt′ − p(⃗x, t)I (25)

with I the identity matrix. The Fourier transform with respect to time of Eq. 25 reads:

σ̂(⃗x,ω) = μ(ω)ε(⃗x,ω)− p̂(⃗x,ω)I (26)
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with the particular definition of μ(ω):

μ(ω) = iω
∫ ∞

0
μ(t)e−iωtdt (27)

Using these definitions and Fourier-transforming equations (1), the moving contact line prob-

lem is described by the following equilibrium equation:

∇⃗ · ⃗̂u = 0 and μ(ω)△⃗̂u− ∇⃗p̂ = 0 (28)

Under the time Fourier-transform, the boundary conditions (2)-(3) take the form:

σ̂yy = 2μ(ω)
∂ûy
∂y

− p̂ = t̂y(ω) + γS
d2ζ̂
dx2

(29)

σ̂xy = μ(ω)
(
∂ûy
∂x

+
∂ûx
∂y

)
= t̂x(ω) (30)

ûx(x,−h0) = 0 (31)

ûy(x,−h0) = 0 (32)

Note that equations (28)-(29)-(30)-(31)-(32), which describe the behavior of the time-Fourier-

transforms of ⃗̂u and p̂, are strictly identical to the set of equation (1)-(6)-(7)-(8)-(9) of the static

problem for u⃗ and p. The solution of the problem is therefore straightforward and reads:

ζ̃(k, t) = 1
γs

[
k2 + μ(ω)

γsK(k)

]−1(
˜̂ty(k,ω)− i ˜̂tx(k,ω)

2h20k2

sinh(2h0k)− 2h0k

)
= ˜̂ty(k,ω)S(k,ω)+˜̂tx(k,ω)Q(k,ω)

(33)

If we now focus on the case of a contact line moving at constant velocity, ie tx = γ(cos θeq −

cos θdyn)δ(x − vt) and ty = γ sin θδ(x − vt), then the double Fourier-transform with respect to

both time and space preserve the shape of the traction. In this case, we have simply: ˜̂tx(k,ω) =

γ(cos θeq − cos θdyn)δ(ω + vk) and ˜̂ty(k,ω) = γ sin θδ(ω + vk) and thus:

˜̂ζ(k,ω) = γ sin θδ(ω + vk)S(k,ω) + γ(cos θeq − cos θdyn)δ(ω + vk)Q(k,ω) (34)

The solution (33) can be inverted straightforwardly with respect to ω to give:

ζ̃(k, t) = e−ikvt γ sin θ
γs

[
k2 + μ(−kv)

γsK(k)

]−1

−ie−ikvt γ(cos θeq − cos θdyn)
γs

[
k2 + μ(−kv)

γsK(k)

]−1 2h20k2

sinh(2h0k)− 2h0k
(35)

The solution in real space is thus given by:

ζ(x, t) = γ sin θ
2πγs

∫ ∞

−∞
dkeik(x−vt)

[
k2 + μ(−kv)

γsK(k)

]−1

(36)

+
γ(cos θeq − cos θdyn)

2πγs

∫ ∞

−∞
dkeik(x−vt)

[
k2 + μ(−kv)

γsK(k)

]−1 2h20k2

sinh(2h0k)− 2h0k
(37)
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In the co-moving frame (x′ = x − vt), the profile of the deformation h(x′) is independent of

time:

h(x′) = γ sin θ
2πγs

∫ ∞

−∞
dkeikx′

[
k2 + μ(−kv)

γsK(k)

]−1

(38)

+
γ(cos θeq − cos θdyn)

2πγs

∫ ∞

−∞
dkeikx′

[
k2 + μ(−kv)

γsK(k)

]−1 2h20k2

sinh(2h0k)− 2h0k
(39)

This expression is valid for arbitrary rheology at long time following the application of the line

force and does not account for any transient regime that might occurs immediately following the

application of the line force. In the formulation of the viscoelastic problem presented here, we

are only focusing on the deformation induced by a single contact line because experimental re-

sults indicate that the dynamic contact angle does not depend on the droplet size. Because we are

assuming that the surface tension of the gel is the same for both the wetted and the dry parts of

the gel, we are therefore dealing with a pure traction boundary condition problem where the same

(time-dependent) boundary condition is applied to the entire free boundary. In that case the cor-

respondence principle applies [3] This principle would not apply if the Laplace pressure term was

also included in the boundary condition or if different surface tensions act on the wetted and dry

parts of the gels. In those cases, different boundary conditions would be applied to disjoint com-

plementary sub-regions of the free boundary. Because these regions would change over time, the

integral transform of the boundary conditions would not be obtainable and more work would be

needed to solve this viscoelastic problem.

Selection of the dynamic contact angle: During dynamical wetting, the contact angle does not

satisfy the Young’s equation and there is a driving force at the contact line resulting from the im-

balance of surface tension. This driving force is responsible for setting the contact line into motion.

It is seen experimentally that there exists a relationship linking the dynamic contact angle and the

velocity of the contact line. A huge amount of theoretical, numerical and experimental work has

been devoted to the determination of this relation on rigid substrate. In general, the relation be-

tween dynamical contact angle and spreading velocity is found by balancing the dissipation in the

liquid with the work done by the driving force at the contact line. In the case of wetting on soft

substrate, the spreading velocity is orders of magnitude smaller than its rigid counterpart. This is

due to the viscous dissipation in the solid substrate itself, as elastomer material usually possess very

high viscous constants. We expand here an earlier result [4] for the case of a solid with surface
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tension and for arbitrary velocities. The dissipation Pfilm in the substrate is given by:

Pfilm =

∫
B
d2xσ : ε̇ (40)

where the integration is performed over the volumeB of the substrate. Let us express the dissipation

in terms of the time-Fourier-transform:

Pfilm =
1

4π2

∫
B
d2x

∫ ∞

−∞
dωdω′(iω′)ei(ω+ω′)tμ(ω)ûij(⃗x,ω)ûij(⃗x,ω′) (41)

Following Long, Adjari, Leibler, we will assume that the four terms in the integral above con-

tribute about equal quantities and we retain only the variation along the x-direction of the displace-

ment in the z-direction. Dropping the factor 1/(4π2), we get:

Pfilm ∼
∫
B
d2x

∫ ∞

−∞
dωdω′(iω′)ei(ω+ω′)tμ(ω)∂ ζ̂

∂x
(⃗x,ω)∂ ζ̂

∂x
(⃗x,ω′) (42)

According to the Plancherel theorem, the previous integral can be rewritten as:

Pfilm ∼
∫ 0

−h0
dz

∫ ∞

−∞
dωdω′(iω′)ei(ω+ω′)tμ(ω)

∫ ∞

−∞
k2˜̂ζ(k,ω)˜̂ζ(−k,ω)dk (43)

Using (34), the dual integral over the frequency domain is easily resolved. For the sake of sim-

plicity we only retain terms in sin2 θ in equation (34) and we get:

Pfilm ∼
∫ 0

−h0
dz

∫ ∞

−∞
(ikv)μ(−kv)k2γ2 sin2 θS(k,−kv)S(−k, kv)dk (44)

Because the deformation penetrate to a depth of |k|−1, the previous integral is further simplified as:

Pfilm ∼ γ2v sin2 θ
∫ ∞

−∞
(ik)μ(−kv)ksign(k)S(k,−kv)S(−k, kv)dk (45)

For a purely elastic material μ(ω) = cste and the above integral is purely imaginary. We now use

the Chasset-Thirion model defined by:

μ(ω) = μ0(1+ (iωτ)m) (46)

Inserting this definition in (45), we get:

Pfilm ∼ μ0γ
2v sin2 θ|vτ|m

∫ ∞

0
|k|m+2S(k,−kv)S(−k, kv)dk (47)

or:

Pfilm ∼
(
γ sin θ
γs

)2

vμ0|vτ|
m
∫ ∞

0

|k|m+2(
k2 + μ(−kv)

γsK(k)

)(
k2 + μ(kv)

γsK(−k)

)dk (48)
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The dissipated power Pfilm is equal to the work vγ(cos θ − cos θeq) of the driving force to yield:

(cos θ − cos θeq)
sin2 θ

∼
(
γ
γs

)
μ0
γs
|vτ|m

∫ ∞

0

|k|m+2(
k2 + μ(−kv)

γsK(k)

)(
k2 + μ(kv)

γsK(−k)

)dk (49)

As shown in Fig. 3a and Fig. 3b in the paper, the relation (49) provides a very accurate descrip-

tion of the experimental data, for all velocities and thickness values. Furthermore, the quantity
(cos θ−cos θeq)

sin2 θ is indeed proportional to vm, for the full range of velocity investigated experimentally.

This demonstrates that the previous expression can be approximated by the following somewhat

simpler low velocity expression:

(cos θ − cos θeq)
sin2 θ

∼
(
γ
γs

)
μ0
γs
|vτ|m

∫ ∞

0

|k|m+2(
k2 + μ0

γsK(k)

)2dk (50)

B. ”Neumann-like” force balance at the triple line cannot explain the experimental data

We now present another theory to describe the selection of the contact angle, introduced in

[5]. The hypothesis behind the model is that the Neumann construction that is valid at equilib-

rium still holds in the dynamical case. Because the ridge rotates during its propagation by an angle

φ = θ − θeq, the apparent contact angle should also rotate to accommodate the rotation of the

ridge. According to [5], the rotation of the ridge φ is given by the symmetric part of the surface

deformation profile in the co-moving frame, i.e:

tanφ = lim
x→0

1
2
(h′(x)− h′(−x)) (51)

=
γ sin θ
2πγs

∫ ∞

−∞
R

 −ik
k2 + μ(−kv)

γsK(k)

 dk (52)

As in the dissipated power model, for a purely elastic material μ(ω) = cste, the above integral is

purely imaginary. At low enough velocities, the above expression reduces to:

tan(θ − θeq)
sin θ

=

(
γ
πγs

)
μ0
γs
|vτ|m

∫ ∞

0

|k|m+1

K(k)
(
k2 + μ0

γsK(k)

)2dk (53)

We can now check the validity of model (52). First it should be noted that, up to a multiplicative

factor, the model (53) converge to the dissipation model (49) in the limits where φ,V ≪ 1 and

h0 → ∞ (since limh0→∞ K(k) = 1/(2k)). In that case, we have:

θ − θeq =
(
γ sin θeq

γs

)
n2n

sin (nπ)

(
vτμ0
γs

)m

(54)
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Experiments (V= 0.1mm/s)

Neumann triangle (ɣ  = 23mN/m) s

Dissipation model 

Neumann triangle (ɣ  = 40mN/m) s

Figure 2. ”Neumann-like” force balance at the triple line cannot explain the experimental data. Comparison

between the dissipation model (equation (49)) and the Neumann construction (equation (53)). Using the

value for γs = 40mN/mobtained from the static profiles yields a very poor fit to the experimental data (green

dot-dashed line). Letting γs be a free parameter, the best fit was obtained for γs = 23mN/m. As mentioned

above, this reproduces rather well the experimental data at large thickness but fail to capture the data at small

h0.

So we expect that at large thickness, this model should provide an accurate description of the ex-

perimental data (up to a multiplicative constant). As can be seen on Fig. 2, the Neumann triangle

indeed yields a very poor fit to the experimental data (green dot-dashed line) using the value for

γs = 40mN/m obtained from the static profiles. Letting γs be a free parameter (the best fit was

obtained for γs = 23mN/m), this model however reproduces rather well the experimental data at

large thickness but fail to capture the data at small h0.

C. Independence of the static contact angle on the elasticity of the substrate

A careful examination of the asymptotics of the vertical displacement ζ(x) with respect to the

wavenumber k of the displacement in the static case sheds some light on the physical explanation

of the reason why the static contact angle is independent of the elasticity of the substrate.

Our analysis is inspired by the one followed by Style and Dufresne in their 2012 paper [6]. We

consider the large droplet limit where the contact angle is independent of the droplet size. The

10



vertical displacement is given by Eq. 20:

ζ̃(k) = 1
γs

[
k2 +

μ0
γsK(k)

]−1 (
t̃y − it̃x

2h20k2

sinh(2h0k)− 2h0k

)
(55)

where:

K(k) =
[

sinh(2h0k)− 2h0k
2h20k2 + cosh(2h0k) + 1

]
1
2k

(56)

The interesting part of this expression is the amplitude term:

A(h0, k) =
1
γs

[
k2 +

μ0
γsK(k)

]−1

=

[
γsk

2(1+
μ0

γsk2K(k)
)

]−1 (57)

as it contains all of the information on the physics of the problem and, specifically, on the contri-

butions of the properties of the gel, such as its interfacial tension γs and its shear modulus μ0, to the

damping of the displacement.

We shall then focus on the asymptotic of A(h0, k) for large wavenumbers k, i.e. short wave-

lengths. In this limit, the elastic term μ0(γsk2K(k))−1 vanishes for all values of h0: perturbation

damping is controlled by surface tension at large wavenumbers. We can also show that elasticity is

the main contributor to the damping at small wavenumbers, i.e. large wavelengths.

Fromwhat we have just established, it is clear that the amplitude of displacements in the vicinity

of the contact line is set by the ratio of the traction force to the surface tension of the solid, with no

contribution of elasticity. A direct consequence of this is that strains, and hence slopes and angles,

close to the contact line are also independent of the elastic response of the bulk. As the latter is

dependent on the thickness of the sample, we conclude that thickness does not play a role in setting

the static contact angle.

Thickness affects in fact the cross-over wavelength between the long-wavelength and the short-

wavelength responses. When the sample is thick, A(h0, k) involves a characteristic length that is

the elastocapillary length ℓs = γs/μ0 while this length scale becomes ℓt = (γsh30μ−1
0 )1/4 in the thin-

coating limit. These two lengths set the crossover between the two wavelength regimes depending

on the thickness of the sample. Note that this crossover had already been identified by Style and

Dufresne[6] although they did not provide an expression for ℓt. These length-scales do not affect the

dependence of the contact angles on the thickness of the sample that we established at the previous

paragraph.
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D. Testing the importance of 3D effects

Our model is bidimensional and neglects effects due to the size of the droplets in the dynamic

case. We have made this assumption as measurements of the relation between the dynamic con-

tact angle and the velocity of the receding contact line for droplets of different sizes showed no

dependence on the latter (Fig. 3).

Figure 3. Test of the dependence of the relation between the dynamic contact angle and the velocity at which

the contact line recedes on the size of the droplet.
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