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SI Methods
Considering Different Halfway Points for Signaling, Endocytosis, and
Cross-Regulation.We start with the model equations (Eqs. 1, 2, 5,
and 6 in the main text) with different halfway points for signaling
(kij) endocytosis (eij), and cross-regulation (rij):
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Now, the dimensionless equations with the normalized variables,
~Cij =Cij=kij, depend on four additional parameters: ~eij = eij=kij,
~rij = rij=kij (for convenience we do not keep the ∼ sign):
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Solving for the nullclines yields
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The nullclines described in the main text (Eqs. 24 and 25 in Meth-
ods) are with eij, rij = 1. Having different values for eij, rij may change

the position of the fixed points but has small effect on the shape of
the nullclines and therefore does not affect the stability.

Proof that Down-Regulation on C12 Is Necessary and Sufficient for the
Existence of Parameters Under Which the Circuit Has an ON State.
First, we show that the zero fixed point, X1,X2 = 0, is stable for
all circuits, meaning that a small deviation away from the OFF
state eventually flows back to it. The eigenvalues (evi) of the
system (Eqs. 16–19 in Methods) in the OFF state where the cells
and GFs are zero are negative for all circuits and all values of
parameters: ev1 = ev2 = ev3 =−1, ev4 =−μ. Therefore, the OFF
state is always stable and has a certain basin of attraction.
Let us assume that there is no down-regulation on C12.

Therefore, X2 does not endocytose C12, a12 = 0, and the other
GF, C21, does not cross-inhibit C12 gene expression, θ≠ − 1.
We now show that in the absence of down-regulation on C12

there is no finite ON-state solution. The cells will either flow to
the OFF state or grow until X1 reaches their carrying capacity and
X2 reaches carrying capacity that is not introduced in the model.
We will prove this by analyzing the stability of each fixed point

using the following approach: We compute the direction of the
flow of the cell numbers ( _X1, _X2) on every region on the phase
portrait, where each region differs in the sign of the derivatives
of the cell numbers. Using these flows, we can determine
whether the fixed points are stable or not (see ref. 1, section 6).
We will separate the proof for the case of β22 = 0 and for the

case β22 ≠ 0.
If β22 = 0, without endocytosis the first nullcline (Eq. 24 in

Methods) is not defined since it is divided by zero. Therefore, we
need to go back to the original equation for the first nullcline
(Eq. 20 in Methods) and substitute there β22, α12 = 0:
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Note that Eq. S11 does not depend on X2, and therefore this
nullcline is solved independently of X2. For θ= 0, 1 Eq. S11 yields
a single solution for X1:

X1 =
θðλ1 − 1Þ+ 1
λ1θ+ λ2 − 1

. [S12]

Since there is only a single solution for X1, this nullcline can
intersect the second nullcline (Eq. 25 in Methods) at a single
point. This fixed point is unstable, because the zero fixed point
is always stable as we showed previously (Fig. S3A).
If β22 ≠ 0, without endocytosis we can use Eq. 24 (in Methods)

for the first nullcline, which becomes a decreasing function in X1:
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The second nullcline (Eq. 25 in Methods) is a curve that diverges
to infinity as X1 → ð1− 1=λ1Þ. This curve behaves differently for
small X1 depending on three regimes of the autocrine secretion
rate, β11.
If β11 <A, A≡ λ1=ðλ1 − 1Þ2 + α21=λ1, then the second nullcline

is a positive monotonic increasing function in X1. Recall that the
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first nullcline (Eqs. S13 and S14) is a decreasing function of X1.
Therefore, there is only one possible intersection point between
the two nullclines, which is unstable due to the stability of the
zero fixed point (Fig. S3B).
There exists a value, B, such that A<B. If A< β11 <B, the

second nullcline is a positive hyperbolic function which decreases
for X1 < < 1 and increases for larger values of X1, diverging as
X1 → ð1− 1=λ1Þ. In this case, the two nullclines may intersect
twice, but we show graphically that the two fixed points are
unstable (Fig. S3C).
If β11 >B, then the second nullcline has the same shape as the

previous case only now it becomes negative for a certain in-
termediate range of X1 and therefore will intersect the nullcline,
X2 = 0, twice. Graphically, one can see that the intermediate in-
tersection with X2 = 0 is unstable and the higher intersection (larger
X1) is stable. This leads to the fact that the intersection points
between the two curved nullclines are unstable as well (Fig. S3D).
To summarize, we showed that in the lack of down-regulation

on C12 there is no stable ON state.
We now show that introducing either endocytosis of C12,

namely α12 > 0, or down-regulation by C21 (in the absence of
autocrine of C12), namely θ=−1, is sufficient for a certain range
of parameters in which there is a stable ON state.
If α12 > 0, the nullcines (Eqs. 24 and 25 in Methods) become
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The first nullcline (Eq. S15) is a nonmonotonic function of X1
that first rises and then declines with X1 for θ=−1 (Fig. S3E), a
linear increasing line for θ= 0 (Fig. S3F), and an increasing curve
for θ= 1 (Fig. S3G). For all values of θ,ω there is a range of
parameters in which the two nullclines intersect twice, and there-
fore there is a stable ON state (Fig. S3 E–G). This can be seen by
considering the points where the nullclines cross the X2 axis,
meaning substituting X1 = 0 in Eqs. S15 and S16. There is a range
of parameters (e.g., large α12) in which the point on the X2 axis of
the second nullcline (Eq. S16) is larger than the point on the X2
axis of the first nullcline (Eq. S15). There is also a range of
parameters (large β11) in which the second nullcline (Eq. S16)
becomes negative for an intermediate range of X1, and then it
rises and diverges at X1 → ð1− 1=λ1Þ. Therefore, the nullclines
must intersect twice for this range of parameters.
If α12 = 0, θ=−1, the first nullcline (Eq. S15) becomes (for
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This curve (Eq. S17) is a nonmonotonic function of X1 that first
declines and then increases with X1. Therefore, for some range
of parameters it will cross the other nullcline (Eq. S16), which is
an increasing function of X1, three times. These intersection
points are unstable (Fig. S3H). Therefore, in the case of no
endocytosis, having autocrine on C12 breaks the stability.
If there is no autocrine secretion of C12, namely β22 = 0, the

equation for the first nullcline (Eq. S15) becomes
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This equation is independent of X2 and has two solutions for X1:
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The two solutions for X1 (Eq. S19) are both positive
for 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ31=ð−1+ λ1Þ4ð−1+ λ2Þ2

q
+ λ1 + λ21=ð−1+ λ1Þ2ð−1+ λ2Þ≤ 1.

Therefore, for a certain range of parameters we have two in-
tersection points between the two nullclines—the first is un-
stable and the second is the stable ON state (Fig. S3I).
To summarize, down-regulation on C12 by C21 (in the absence

of autocrine on C12) or endocytosis of C12 is sufficient for a stable
ON state for a certain range of parameters.

Two-Cell Circuits Where Both Cells Are Far from Carrying Capacity
Cannot Reach Stable ON State. We model two-cell circuits similar
to the model presented in the main text (Eqs. 16–19 in Methods)
only without the carrying capacity term for X1:
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The nullclines for these circuits are now
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These nullclines are simply the nullclines of the original model
(Eqs. 24 and 25 in Methods), when taking the limit of X1 cells
that are far below their carrying capacity, X1 << 1.
Both nullclines (Eqs. 24 and 25) are linear in X1 and therefore

can intersect only once (except for the points where X1 = 0 or
X2 = 0). There are five different cases for the way these two lines
cross: one of them decreases and the other one increases, or vice
versa, both are increasing, and both are decreasing where one
line intersect the x2 axis higher than the other, and vice versa. In
all five cases the intersection point is not stable, as can be seen in
the phase portraits (Fig. S3 J–N).

Explicit Modeling of Receptor Internalization.Receptors, such as the
CSF1 receptor and the PDGF receptor, are usually internalized and
degraded together with their ligand. To model this, we introduce an
equation for the receptors Ri, made by Xi cells and where removal is
due to internalization due to binding of the GF, Cji, and to receptor
degradation-dilution at rate αRi [degradation rate is typically on
order of 1/h (2–4), exceeding the effects of dilution by cell growth]:

dRi

dt
= βRi – αjih

�
Cji

�
Ri − αRiRi. [S26]
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The equation for the ligandCji is a balance of production at rate βji
from cells Xj and the same internalization rate (due to the stoi-
chiometry in which ligand and receptor are internalized together):

dCji

dt
= βjiXjf

�
Ri

Ri,T
, h
�
Cij

�
, θ
�
− αjih

�
Cji

�
RiXi − γCji, [S27]

where f ðRi=Ri,T , hðCijÞ, θÞ= fRi=Ri,Tð1− hðCijÞÞ, 1,Ri=Ri,ThðCijÞg
for θ= f−1,0,1g respectively describes the cross-regulation due to
the other GF Cij signaling which depends on the fraction of free
receptors on the cell surface, Ri=Ri,T, where Ri,T ≡ βRi=αRi is the
amount of receptors per cell when there is no endocytosis, αji = 0.
The equation for the cell Xi is a balance of proliferation and

removal as before where the proliferation term is multiplied by
the signaling factor, Ri=Ri,ThðCjiÞ:
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�
− μi

�
. [S28]

Using the fact that receptor and GF removal rates are faster than
cell removal rates, we can consider the steady state of the recep-
tor, Ri,st, in the signaling factor and in the internalization term:
Ri,sthðCjiÞ= βRi=ðαjiðCji=kji +CjiÞ+ αRiÞCji=ðkji +CjiÞ= βRi=ðαRi

+ αjiÞCji=ðαRi=ðαRi + αjiÞkji +CjiÞ.
Thus, we get a Michaelis–Menten function of the GF with a new

halfway point, ~kji = αRi=ðαRi + αjiÞkji, and a prefactor, βRi=ðαRi + αjiÞ,
that can be collapsed into the model rate parameters.
To simulate this, we consider the dimensionless equations

where the dimensionless variables for the GFs and cells are as
described in Methods and the receptors ~Ri =Ri=ðβRi=αRiÞ (for
convenience we do not keep the ∼ sign):
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�
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We use the fact that the timescale of cells in much slower than
the timescale of receptors and GFs to set Eqs. S29–S32 to
zero. Therefore, there are two more dimensionless parameters
when we consider receptor internalization: α1 = α21=αR1 and
α2 = α12=αR2. In Fig. S5B we plot the phase portrait of this
system (Eqs. S29–S34) for the same dimensionless parameters
as in Fig. 1E only with slightly adjusted proliferation to removal
rate ratios, ~λi, which are still within the biological plausible
range, and for equal GF internalization and receptor removal
rates (αi = 1), which results in very similar phase portrait as in
Fig. 1E (Fig. S5B).
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Fig. S1. Dynamics of the GF concentration calculated by solving numerically the four-equation model (Eqs. 1–4 in Results section, in blue) and by solving the
equations for the cells (Eqs. 1 and 2 in Results) while considering a quasi-steady state for the GFs (setting Eqs. 3 and 4 in Results to zero, in orange).
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Fig. S2. All 144 possible two-cell circuits in the two-cell circuit screen with the 48 stable circuits marked. The 24 circuits that show also the ON–OFF state are marked in green, and the observed FB–MP circuit marked in light purple.
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Fig. S4. Two more combinations of parameters from the model showing how many fixed points the two-cell circuits have in these parameter ranges.
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Fig. S5. (A) Simulations of the observed FB–MP circuit with a negative feedback on the GF receptor levels with the same dimensionless parameters as in Fig.
1E. (B) Phase portrait of the observed FB–MP circuit with receptor internalization through endocytosis with the same dimensionless parameters as in Fig. 1E
only with ~λ1 = 5,~λ2 = 4 and α1 = α2 = 1.
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Fig. S6. (A–C) Three additional three-cell circuits and (D–F) three additional four-cell circuits that implement our hypothesized generalized condition for
stability show a stable ON state of all cell types.
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