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Data Processing for Total RNA-Seq in Mouse Liver Around the Clock.
To quantify the temporal accumulation of pre-mRNA and
mRNA in mouse liver, we used total RNA-seq data from ref. 8
(GEO accession no. GSE73554), in which wild-type C57BL/6J
male mice between 10 and 14 wk of age, under 12-h light/12-h
dark and ad libitum feeding conditions were killed every 2 h
during 1 d (four biological replicates = 48 time points in total).
To assign uniquely mapped paired-end read to exons or introns,
we defined exonic regions if these were covered by at least one of
mRNA transcript (University of California, Santa Cruz, mm10
annotation), and defined intronic regions if these were not
covered by all annotated transcripts. The obtained read counts in
exonic and intronic regions are then proportional to the con-
centrations of mRNAs and pre-mRNAs and the length of the
respective features. Further details are in ref. 8.

Modeling the Temporal Profiles of mRNA and Pre-mRNA. Here, we
modeled the temporal accumulations of mRNA with the fol-
lowing differential equation:

dmðtÞ
dt

= kpðtÞ− γðtÞmðtÞ,

in which mðtÞ and pðtÞ denote the temporal accumulations (con-
centrations) of mRNA (m) and pre-mRNA (p), respectively. γðtÞ
describes temporal variation of mRNA degradation rate. The
parameter k represents the pre-mRNA processing rate (defined
here as the effective rate for processing of pre-mRNA into
mRNA, combining several intermediate steps such as splicing,
pre-mRNA decay, and nuclear export) from pre-mRNA to
mRNA, which is assumed to be fast on the scale of γðtÞ, and
can thus be approximated as a gene-specific constant. Further-
more, to distinguish different regulations, we considered the two
cases that pðtÞ= p0 if the pre-mRNA accumulation is constant,
and pðtÞ= pmin +Apðð1+ cosðωt−φpÞÞ=2Þβ if it is rhythmic. pmin
is the minimum, Ap is the absolute amplitude (different be-
tween the maximum and minimum), ω= 2π=24h−1 is the an-
gular frequency, and φp is the phase of rhythmic pre-mRNA.
Depending on the coefficient β, this parametrization allows
to capture profiles that are more peaked than standard cosine
functions, since temporal profiles of some core clock genes
are sharper than simple cosine function (6). Similarly,
γðtÞ= γ0 and γðtÞ= γ0ð1+ «γ cosðωt−φγÞÞ represent constant
and rhythmic mRNA degradation, respectively, in which γ0
is the mean rate of mRNA degradation, «γ is the relative
amplitude and φγ is the phase of degradation rate. While
we could have used more complicated parameterizations,
the ones described here provided a good compromise be-
tween their number of parameters and ability to accurately
describe pre-mRNA and mRNA profiles.

Model Selection and Parameter Estimation. According to the above
model, the temporal accumulation of mRNA for each gene re-
sults from the balance between constant or rhythmic synthesis and
degradation rates. We thus fitted the measured pre-mRNA and
mRNA profiles with four models (M1–M4), representing the
different combinations of constant (C) or rhythmic (R) synthesis
(S) and degradation (D) with the following notation: CS-CD
(M1), RS-CD (M2), CS-RD (M3), and RS-RD (M4). In par-
ticular, because temporal profiles of pre-mRNA and mRNA
were both quantified from the same total–RNA-seq data, the

absolute levels were used in the model fitting. Then the optimal
model is selected by combining a maximum-likelihood approach
with the Bayesian information criterion (BIC), and the estimated
kinetic parameters are taken from the optimal model. Details of
the model selection and parameter estimation are discussed in
the following paragraphs.

Fitting Temporal mRNA and Pre-mRNA Measurements to the Kinetic
Model.To take into account the noise structure of RNA-seq count
data, we assumed negative binomial distributions RNA-seq read
counts (55, 56). This allowed us to formulate a log-likelihood
function of the measured counts to follow modeled mRNA
[mðtÞ] and pre-mRNA [pðtÞ] levels as follows:

logL=
X
t

logNB
�
nmðtÞjμmðtÞ, αmðtÞ

�
+ logNB

�
npðtÞjμpðtÞ,αpðtÞ

�
,

with

μmðtÞ=mðtÞSmðtÞLm,

μpðtÞ= pðtÞSpðtÞLp.

Here, nmðtÞ [or npðtÞ] denotes the read count for mRNA (or pre-
mRNA) at time t. αmðtÞ [or αpðtÞ] is the time-dependent and
gene-specific dispersion parameter for mRNA (or pre-mRNA)
in the negative binomial distribution. Before maximizing the log-
likelihood, these dispersion parameters were estimated with
DESeq2 (55) using four biological replicates at each time point.
μmðtÞ [or μpðtÞ] is the expected count, given by the product of the
concentration of mRNA mðtÞ [or pðtÞ for pre-mRNA], the exon
length Lm (or Lp for intron length), and the scaling factor of each
sample (which depends on the sampling depth of each library)
SmðtÞ [or SpðtÞ], which was also estimated with DESeq2. More-
over, the concentrations of mRNA and pre-mRNA, mðtÞ and
pðtÞ, are numerically calculated (using numerical integration)
from the kinetic model in the previous section for given kinetic
parameters. Some of the parameters needed to be constrained,
for example, the relative amplitude, can only take values be-
tween 0 and 1. Since we experience that relative amplitude
near 1 renders the optimization very sensitive, the constraint
at 1 has been implemented using a sigmoid function, which
penalizes relative amplitude beyond 0.8 in our case. The log-
likelihoods for each model, M1, M2, M3, and M4, were max-
imized using the function “optim” with L-BFGS-B method in
R. In addition, to avoid local minima, 10 initial parameter
values for M2 and 12 for M3 and M4 were sampled to start
the optimization, and the solution with the best log-likelihood
was selected. After the parameters were estimated, the corre-
sponding Hessian matrix was calculated to obtain SEs for the
estimated parameters.

Model Selection with BIC. To select the optimal model for each
gene, given the measured read counts of mRNA and pre-
mRNA, the BIC was used: BIC=−logðLÞ+K logðNÞ in
which logðLÞ is the log-likelihood, K is the number of pa-
rameters, and N is the number of data points. Thereafter, the
probability of each model can be approximated using Schwarz
weight: wj = e1=2 ΔBICj=

P
e1=2 ΔBICj, where ΔBICj =BICj −BICmin

with BICmin the minimum value. In our analysis, only genes with
weight wj > 0.5 for the optimal model j were used.
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Outlier Detection. Because the data at the different time points
were collected from individual mice, variations across biological
replicates could be quite large. Consequently, some data points
appear as outliers when we fit the data to the model. These
outliers may contribute dominantly to the BIC score and weaken
the penalty term. To alleviate the effects from outliers, we fol-
lowed an establishedmethod (57) to be appropriate for significant
sample sizes (we used 48 samples for both mRNA and pre-
mRNA), which allowed us to identify outliers iteratively. Spe-
cifically, for each iteration, after fitting the data to models M2–
M4, we examined the contribution of –log-likelihood of each
time point and identified outliers if these were out of range
[Q1 − 1.5 × IQR, Q3 + 1.5 × IQR], where Q1 and Q3 are the
first and third quartiles, respectively, and IQR is the interquartile
range. Fixing the maximum number of outliers to be six (out of
48 measurements), we removed shared outliers across models
M2–M4 and fitted again the resulting reduced data to all models
until shared outliers were no longer found.

Identifiability Analysis for Kinetic Parameters. Depending on the
data for each gene, some kinetic parameters, notably k, γ0, «γ, and
φγ in models M3 and M4, were practically nonidentifiable (37),
because the estimation of parameters for rhythmic degradation
relied on the phase shift and amplitude ratio between mRNA
and pre-mRNA and also the shape of temporal profiles. In
particular, the mRNA degradation parameters solely depend on
the mRNA profiles in M3 (because the pre-mRNA was flat) and
thus easily became practically nonidentifiable. It is also clear that
k is underdetermined if γ0 is, because only the ratio of both is
constrained by the data. To mitigate the parameter non-
identifiability in the fitting, we first chose combinations of pa-
rameters that can be identified easily from the data: a= k=γ0,

«′γ = «γγ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20 +ω2

q
, φ′

γ =φγ + atanðω=γ0Þ with ω= 2π=24h−1. The
good identifiability of those combinations can be understood
from the approximations described in ref. 9. Second, we imple-
mented the profile likelihood (PL) (37), which allowed us to
assess, gene by gene, if the mean degradation rate γ0 is identi-
fiable. Specifically, we followed ref. 37: the parameter γ0 was
sampled in its whole range of values and the likelihood is
remaximized for each value of γ0. γ0 is structurally non-
identifiable if the likelihood does not change; and γ0 is practically
nonidentifiable if the log-likelihood varies within certain
threshold; otherwise, γ0 is well estimated. Here, we found γ0 was
either practically nonidentifiable or well estimated. In addition,
the SEs of parameter combinations a, «′γ, and φ′

γ were obtained
using the Hessian matrix; then the associated SEs for the pa-
rameters k, «γ, and φγ were computed using error propagations.
Due to the dependence of φγ on γ0, SEs for φγ became very large
when the degradation rate γ0 was nonidentifiable (in Dataset S1,
the SEs were cut at a maximum value of 12 h).
For the analyses of degradation parameters (Figs. 3–5), we

focused on genes with high-confidence estimates. We filtered for
coefficient of variation (CV) of estimated half-life <0.4 for Fig.
3; CV of relative amplitude of degradation rate <0.4 and SE of
estimated degradation phase <1 h for Fig. 4. In addition to such
filters, only genes with sufficiently rhythmic mRNAs and pre-
mRNAs (FDR < 0.05 rhythmicity test, and relative ampli-
tude > 0.1) were considered in Fig. 5.

Validation of the Method with Simulations. To validate our model
selection and parameter estimation, we tested the method with
simulated data for models (M1–M4), taking kinetic parameters
from realistic distributions. For M1 to M4, read counts of
mRNA and pre-mRNA for 200 synthetic genes were simulated.
To mimic the real data, the same number of samples with the
same time resolution was simulated. The read counts of pre-

mRNA and mRNA were sampled from negative binomial (NB)
distribution using the dispersion αmðtÞ and αpðtÞ, exon lengths Lm,
and intron lengths Lp, p0, or pmin of randomly chosen genes in real
data as well as sample scaling factors SmðtÞ and SpðtÞ. The absolute
amplitudes Ap and the sharpness parameter β for pre-mRNAs
were sampled from the distributions obtained from rhythmic
pre-mRNAs in the real data. In particular, the relative amplitudes
of mRNA degradation («γ) were sampled from the normal distri-
bution Nð0.2, 0.2Þ with the boundary of [0.05, 0.8]; and the mRNA
half-life [logð2Þ=γ0] is sampled from a log-normal distribution
logNð3, 1Þ that resembles the distribution of mRNA half-lives
measured in mouse NIH 3T3 cells (38). Comparisons between
the identified and true models, as well as the comparison between
the estimated and true values of parameters, are shown in Fig. S2.

Inference of mRNA Binding Proteins Involved in Rhythmic mRNA
Degradation Using a Linear Model with Elastic-Net Regularization.
To infer mRNA binding proteins (mRBPs) with rhythmic ac-
tivities from the identified rhythmic mRNA degradations, we
used genes from group 1 (569 mRNAs rhythmic in both AL and
RFWT and RF Bmal1−/−) and group 2 (292 mRNAs rhythmic in
AL and RF WT), and mRBP motif library in ref. 47. 3′-UTR of
mRNAs (RefSeq) for those genes were scanned with FIMO (58)
to find hits to mRBP motifs, which are potentially responsible for
rhythmic mRNA degradation. The rhythmic variation of mRNA
degradation (in log-scale) was assumed as a linear combination
of diurnal activities of mRBP motifs [analogous to linear models
for transcription factor activities (35, 48)]:

log 2
�
γgðtÞ

�
=NgmAmðtÞ+ noise,

where γgðtÞ is the rhythmic degradation rate for gene g at time t;
Ngm is the number of occurrence for mRBP motif m, and AmðtÞ
represents the temporal activity of motif m at time t. Here, we
performed the linear regression in the subspace of 24-h periodic
functions, which uses directly our estimated parameters γ0, «γ,
and φγ. To control for overfitting and also redundancy of motifs,
we employed elastic-net penalty [implemented in R package
glmnet (59)]. Splicing factors were excluded from the motif oc-
currence matrix Ngm. In addition, the inference was done sepa-
rately for genes in group 1 and 2 because of their distinct phase
distribution of rhythmic degradation; and the glmnet mixing pa-
rameters α= 0.15 was chosen for both groups.

Rhythmicity Assessment of Transcripts in WT and Bmal1−/− Mice. To
decipher the role of systemic cues and the role of the circadian
clock in diurnal mRNA degradation, RNA-seq of WT and
Bmal1−/− mice under night-restricted feeding regiment was re-
trieved from ref. 8. Rhythmicity in mRNA abundances for
transcripts classified in M3 (Dataset S1) in different conditions
was assessed using a model selection approach as described in
ref. 8, in which rhythmicity parameters (amplitudes and phases)
could be specific to an experiments or shared between two or
three conditions. Briefly, profiles from the three datasets (WT ad
libitum, WT restricted feeding, and Bmal1−/− restricted feeding)
were fitted with harmonic regression and BIC was used as a
criterion for model selection.

Gene Ontology Analysis. Gene ontology (GO) analysis was per-
formed using the TopGO R package (60). Enrichment analysis
for GO terms derived from “Biological Process” ontology was
done in the different models and significance assessed using the
Fisher exact test. GO terms with P value < 0.05, a minimum
number of three genes, and less than 500 annotated genes were
considered. Genes defined as rhythmic (from all models) were
used as background. All GO terms derived from the GO analysis
can be found in Dataset S4.
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Fig. S1. Rhythmic temporal accumulations of pre-mRNA and mRNA quantified by total RNA-seq in mouse liver. (A) Temporal accumulations pre-mRNA for
core-clock genes quantified by total RNA-seq compared with nascent RNA-seq. (B) Scatterplot of phases of rhythmic pre-mRNAs from total RNA-seq vs. those
from nascent RNA-seq. Circular correlation: pval < 10e-4. (C and D) Distribution of phase (C) and peak-to-trough amplitude (D) for rhythmic pre-mRNAs (Left)
and mRNAs (Right) (FDR < 0.05 harmonic regression). (E) Scatterplot of peak times (Left) and relative amplitude (Right), defined as the difference between the
maximum and minimum levels divided by twice the average expression, between pre-mRNA and mRNA accumulations. Red lines (Left) show circular regression
predicting a phase delay of 1.7 h.
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Fig. S2. Validation of model selection and parameter estimation by simulated data and analysis of parameter identifiability. (A) Fractions of simulated genes
generated from known models (x axis) identified as M1 (gray), M2 (green), M3 (red), or M4 (black) by the model selection. (B) Rhythmicity (P values, harmonic
regression) and relative amplitudes of mRNA for simulated genes generated from M3. Colors represent the model chosen by the model selection algorithm
(M1, gray; M2, green; M3, red; M4, black). The blue horizontal and vertical lines indicate thresholds of P value of 0.05 and relative amplitude of 0.05. Most
incorrectly classified mRNAs had low relative amplitudes and blurred rhythm. (C) Ratios of relative amplitude («m=«s) and phase delays (φm −φs) between mRNA
(m) and pre-mRNA (s) for simulated genes generated from M4 (same color coding as B). The theoretical relationship for genes generated from M2 was in-
dicated by blue curve. For incorrectly classified mRNAs, the rhythmic degradation did not affect mRNA amplitudes or phases. For these mRNA, which are very
close to the blue curve, the model selection between M2 and M4 relies solely on the shape of temporal profiles of pre-mRNA and mRNA and does not allow for
a reliable discrimination between them. (D) Comparisons between true values of parameters and parameter combinations (e.g., rel.amp.degr.norm, phase.
degr.norm, Materials and Methods) for the simulated data and estimated by our method. (E) For each pair of half-life and relative amplitude of rhythmic
degradation displayed as a cell on the grid, 50 realizations of pre-mRNA and mRNA temporal read counts in M3 were simulated by sampling the negative-
binomial distributed noise (α=10−4) and keeping other parameters constant. The comparison (mean of log2ratio) between the estimated and true half-life is
shown by the color scale. High values of the mean log2ratio (red) indicate an overestimation of half-lives, which happens for short half-lives and small relative
amplitude of rhythmic degradation, while low values (blue) indicate an underestimation of half-lives. (F) Profile likelihood (PL) as a function of half-life
sampled in its parameter range for three scenarios: half-lives nonidentifiable and overestimated (Left, associated to the red area in E), identifiable (Middle,
associated to the green area in E), and nonidentifiable and underestimated (Right, associated to the blue area in E). The red asterisk indicates the estimated
values of half-life, and the green lines, the true values. Two gray dashed horizontal lines represent pointwise and simultaneous confident intervals.
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Fig. S3. Temporal profiles of mRNA and pre-mRNA of genes assigned to models M2–M4. (A) Two examples of genes identified as M2 (RS-CD). Data for mRNA
(blue) and pre-mRNA (green) with error bars (SEM over four biological replicates) are shown in as relative expression, that is, the total normalized counts
divided by the average value over time. Solids curves are the fitting for the optimal model and estimated parameters (blue, mRNA; green, pre-mRNA; red,
degradation). Peak times (phase) and amplitudes are summarized in circle plots. Absolute half-lives [logð2Þ=γ0, in hours] are labeled. (B) Idem for M3. Here, the
half-life was identifiable and is indicated on the plot. (C) Idem for M4. Half-life of Nr1d1 was estimated to be 1.3 h, whereas half-lives were nonidentifiable for
Arntl and Cry1. (D) Mean expression levels [log2(RPKM)] for pre-mRNA and mRNA in M1–M4. (E) P values of rhythmicity (Harmonic regression) of poly(A) tail
length for genes classified in M1–M4. Blue horizontal line indicates a P value threshold of 0.01.
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Fig. S4. Estimated kinetic parameters for mRNA degradation. (A) Scatterplot of half-lives (in hours) vs. processing times (in minutes) for transcripts with
identifiable parameters (R = 0.78, P < 10−16). Colors indicate the model that best described the synthesis–degradation dynamics (green for M2, red for M3, and
black for M4). (B, Left) Scatterplot of half-lives (in hours) measured in NIH 3T3 cells in ref. 38 vs. ones estimated by our method (R = 0.35, P < 10−17). (Right)
Scatterplot of half-lives (in hours) measured in NIH 3T3 cells (21) vs. ones in mES cells in ref. 41 shows similar correlation (R = 0.37). (C) Comparisons of phases
and relative amplitudes between our method and those obtained from the PA test. The relative amplitudes estimated by our method show a soft cutoff
around 0.9 due to a penalizing sigmoid function used in the optimization algorithm. (D) Polar plot of rhythmic degradation rate (log2 peak-to-trough am-
plitude, radial axis) vs. phase (angular axis) of transcripts classified in M3 (Left) or M4 (Right) with identifiable degradation parameters (Materials and
Methods).
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Fig. S5. Individual examples illustrating the distinct roles of rhythmic mRNA degradation in transmitting diurnal rhythms from transcription to mRNA. (A)
Temporal relative expression profiles (absolute levels divided by the average expression over time) of pre-mRNA (green) and mRNA (blue) of C1 genes Cbs and
Acat3 (error bars show SEM over four biological replicates). The gray line shows predicted mRNA profile under assumption of constant degradation (relative
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Dataset S1. Selected models and estimated kinetic parameters for genome-wide mRNAs by combining a maximum-likelihood approach
with the Bayesian information criterion (BIC)

Dataset S1

(Sheet 1) The lengths and read counts of pre-mRNAs and mRNAs identified from the time-resolved total RNA-seq data (8) as well as the rhythmicity analysis
using RPKM transformed read counts in log2 scale. (Sheet 2) Time-dependent dispersion parameters for pre-mRNAs and mRNAs estimated with DEseq2 (58); the
identified outliers and parameter pre-mRNAs and mRNAs were also included. The optimal model selected with BIC, associated probabilities, estimated
parameters, and SEs/mean (CV) are provided. In addition, identifiability analysis with profile likelihood (PL) for parameter γ0 are also indicated. (Sheet 3)
Explanation of column headers.

Dataset S2. Functional enrichment analysis for genes identified in M2–M4 performed using the DAVID Bioinformatics Resources 6.7

Dataset S2

Dataset S3. P values of PA test, estimated amplitudes, and phase of rhythmic mRNA degradation

Dataset S3

Results obtained by using mRNA half-lives measured from cell lines as described in ref. 9.
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Dataset S4. GO analyses

Dataset S4

(A) Significant GO terms (P value < 0.001, hypergeometric test) of genes with rhythmic degradation in M4 model. GO term enrichment was performed in a
6-h sliding window to group genes with similar phases of mRNA degradation. (B and C) Functional enrichment analysis for genes with rhythmic mRNA
accumulation in both WT and Bmal1−/− (B) and for genes with rhythmic mRNA accumulation in WT only (C). (D) Annotation of genes mentioned in the main
text.

Dataset S5. Comparison of mRNA expression in ad libitum (AD) vs. restricted feeding (RF) conditions and in wild-type (WT) vs. Bmal1−/−

(KO) mice

Dataset S5

(A) mRNA expression (mRNA-seq, log2 of counts per million reads), average level, phase, and amplitude of M3 transcripts in AL-WT, RF-WT, and RF-KO.
Classification of each transcript into models describing their rhythmic pattern in each condition (rhythmic or constant, with similar phase and amplitude or not).
(B) A column names and model ID descriptions.

Dataset S6. Prediction of mRBP activities

Dataset S6

(A) Phase and amplitude of predicted activities of mRBP motifs in both group (BMAL1-dependent and independent). (B) Estimation of phase and amplitude
and SE on the estimates of mRNA binding proteins abundance profiles from ref. 50. FDR values for the assessment of their rhythmicity.
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