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Model Selection from Data
The usual discussion of model selection takes place after observ-
ing data x . If we wish to compare some models* labeled by
d , each with some prior pd(θ), then one prescription is to
choose the model with the largest p(x ). Labeling this explicitly,
we write

p(x |d) =

∫
Θd

dθ p(x |θ) pd(θ), pd(θ) > 0 on Θd ⊂ Θ. [S1]

If the Bayes factor p(x |d)/p(x |d ′) is larger than one, then
(absent any other information) d is preferred over d ′ (1).†In the
usual asymptotic limit m →∞, this idea leads to minimizing the
BIC (2),

− log p(x |d) ≈ − log p(x |θ̂d) +
d

2
logm +O(m0),

where − log p(x |θ̂d) = 1
2
χ2 = 1

2

∑m
i=1 [xi − yi(θ̂d)]

2
/σ2 ∼

O(m), and θ̂d is a maximum-likelihood estimator for x , con-
strained to the appropriate subspace:

θ̂d(x ) = argmax
θ∈Θd

p(x |θ).

The term d logm penalizes models with more parameters, even
though they can usually fit the data more closely. Despite the
name this procedure is not very Bayesian: One chooses the effec-
tive model (and hence the prior) after seeing the data, rather
than simply updating according to Bayes’ theorem.‡

Related prescriptions can be derived from MDL ideas. To
allow reconstruction of the data we transmit both the fitted
parameters and the residual errors, and minimizing the (com-
pressed) length of this transmission drives a tradeoff between
error and complexity (5–7). A convenient version of this is NML
(8, 9) and chooses the model d which maximizes

pNML
d (x ) =

p
(
x |θ̂d(x )

)
Zd

, Zd =

∫
Θd

dx ′ p
(
x ′|θ̂d(x ′)

)
. [S2]

This is not Bayesian in origin and does not depend on the prior
on each effective model d , only its support Θd . The function
pNML
d (x ) is not expected data in the sense of p(x )—it is not

the convolution of the likelihood with any prior.§ In the asymp-

*The word model unfortunately means several things in the literature. We mean param-
eter space Θd always equipped with a likelihood function p(x|θ) and usually with a
prior pd (θ). When this is a subspace of some larger model ΘD (whose likelihood func-
tion agrees, but whose prior may be unrelated), then we term the smaller one an effec-
tive model, or a reduced model, although we do not always write the adjective. The
optimal prior p?(θ) defines an effective model in this sense. Its support will typically be
on several boundaries of ΘD. If the boundaries of ΘD (of all dimensions) are regarded
as a canonical list of reduced models, then p?(θ) is seldom a submodel of any one
of them.

†If one of the priors is improper, say
∫

dθ pd (θ) = ∞, then p(x|d) will also be infinite.
In this sense the Bayes factor behaves worse than the posterior p(θ|x), which can still
be finite.

‡Terms penalizing more complex models can be translated into shrinkage priors, which
concentrate weight near simpler models (3). Perhaps the shrinkage priors closest to the
ones in this paper are the penalized complexity priors of ref. 4. Those are also reparame-
terization invariant and also concentrate weight on a subspace of Θ, often a boundary.
However, both the subspace (or base model) and the degree of concentration (scaling
parameter) are chosen by hand, rather than being deduced from p(x|θ).

§This relevant optimization problem can be described as minimizing worst-case expected
regret, written (8) as

pNML
d = argmin

q
max

x
log

p(x|θ̂d (x))

q(x)
, θ̂d (x) ∈ Θd.

totic limit pNML
d (x ) approaches p(x ) from the Jeffreys prior,

and this criterion agrees with BIC (6), but away from this limit
they differ.

In Fig. S1 we apply these two prescriptions to the exponential
example treated in the main text. At each ~x ∈ X we indicate
which one of a list of models is preferred.¶ Fig. S2 instead draws
the distributions being used.

• Fig. S1A compares three models: the complete model (with the
Jeffreys prior), the optimal model described by discrete prior
p?(~y), and an even simpler model with weight only on the three
vertices ~y = (0, 0), ( 1

2
, 1

2
), (1, 1).

• Fig. S1B instead compares the complete model to three differ-
ent one-parameter models (along the three boundaries of the
allowed region of the ~y plane) and a zero-parameter model
(one point~y , in no particularly special place). In terms of decay
rates the three lines are limits k1 = k2, k1 = 0, and k2 =∞.

Different effective models are preferred for different values
of data x . At a given point x , if several models contain the same
θ̂(x ), then the simplest among them is preferred, which in the
NML case means precisely the one with the smallest denom-
inator Zd . In fact, a trivial model consisting of just one point
Θ0 = θ̂(x ) would always be preferred if it were among those
considered—there is no automatic preference for models which
can produce a wide range of possible data.

By contrast, our prior selection approach aims to be able to
distinguish as many possible outcomes in X as possible. Applied
to the same list of models as in Fig. S1, this gives the following
fixed scores (base e):

Ifull = 1.296, I? = 1.630, Icorners = 1.098

and

Iupper = 0.852, Ilower-left = 0.845,

Ilower-right = 1.418, Ione-point = 0.
[S3]

By definition p?(θ) has the highest score. In second place is
the line along the lower edge (corresponding to k1 = k2). The
shorter lines are strongly disfavored because they cover a much
smaller range of possible data.

Algorithms
The standard algorithm for maximizing channel capacity (of dis-
crete memoryless channels) was written independently by Blahut
(11) and Arimoto (12). This aspect of rate-distortion theory
is mathematically the same as the problem we consider, of

Perhaps the closest formulation of our maximum MI problem is that our p?(x), the dis-
tribution on X and not the prior, can be found as (10)

p? = argmin
q∈B

max
θ

∫
X

dx p(x|θ) log
p(x|θ)

q(x)
,

where q(x) is constrained to be a Bayes strategy, i.e., to arise from some prior p?(θ). Note
the absence of θ̂d (x) and the presence of an integral over X, corresponding to the fact
that this maximization takes place without being given a subspace Θd or seeing data x.
The resulting distributions on X are also different, as drawn in Fig. S2. If plotted on Fig.
5B, pNML

2 (x) from the full model would be somewhere between the two expected data
p(x) lines there. But it is not a comparable object; its purpose is model comparison as in
Fig. S1.
¶Recall that~x is ~y corrupted by Gaussian noise, and ~y is constrained to the area shown

in Fig. 4A because it arises from decay rates kµ via Eq. 5. We may regard either yt or
kµ as being the parameters, generically θ.
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maximizing MI by choosing the prior. The algorithm starts with
p0(θ) = const. and then at each time step updates this by

pτ+1(θ) =
1

Zτ
e fKL(θ)pτ (θ), [S4]

where Zτ =
∫
dθ′ e fKL(θ′)pτ (θ′) maintains normalization, and

fKL(θ) = DKL [p(x |θ) q p(x )] is computed with pτ (θ). Since this
is a convex optimization problem, the algorithm is guaranteed to
converge to the global maximum. This makes it a good tool to
see discreteness emerging.

Fig. 2 and Fig. S3 show the progress of this algorithm for the
1D and 2D models in the main text. We stress that the number
and positions of the peaks which form are unchanged when the
discretization of θ is made much finer. Note also that the conver-
gence to delta functions happens much sooner near the bound-
aries than in the interior. The convergence to the correct value
of MI, and toward the optimum distribution on data space p(x ),
happens much faster than the convergence to the correct number
of delta functions.

Because θ must be discretized for this procedure, it is poorly
suited to high-dimensional parameter spaces. However, once we
know that p?(θ) is discrete it is natural to consider algorithms

exploiting this. With K atoms, we can adjust their positions ~θa
and weights λa using gradients

∂MI

∂θµa
= λa

∫
dx

∂p(x |~θ)
∂θµ

log
p(x |~θ)
p(x )

∣∣∣∣
~θ=~θa

∂MI

∂λa
= fKL(~θa)− 1.

[S5]

Figs. 1 and 3A and the square plot points in Fig. 4 were gener-
ated this way. This optimization is not a convex problem (there is
some tendency to place two atoms on top of each other and thus
use too few points of support) but it can often find the optimum
solution. We can confirm this by calculating fKL(θ) everywhere—
any points for which this is larger than its value at the atoms indi-
cate that we do not have the optimal solution and should add an
atom.

Monte Carlo algorithms for this problem have been investi-
gated in the literature (refs. 13 and 14 and especially ref. 15).
(Incidentally, we observe that ref. 13’s table 1 contains a version
of scaling law Eq. 4 with ζ ≈ 1/2. No attempt was made there to
use the optimal number of atoms, only to calculate the channel
capacity to sufficient accuracy.)
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Fig. S1. Model selection from data point x. Each large plot shows which one of a list of effective models is preferred after observing data x ∈ X. In A and B,
Left the criterion is maximizing Eq. S1, and in A and B, Right the criterion is Eq. S2. We study the same exponential model considered above, with σ = 1/10.
A compares our optimal effective model with prior p?(θ) to the full model (with the Jeffreys prior) and to an even simpler model whose prior is just three
delta functions (these are shown in A, Lower). B compares the full model to three different one-dimensional models, each allowing only one edge of Θ (with
a uniform prior along this, i.e., the one-dimensional Jeffreys prior), and also to a trivial model (just one point), again with colors as indicated in B, Lower.
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Fig. S2. Distributions over X. A shows p(x|d) (Eq. S1) and pNML
d (x) (Eq. S2) for the one-parameter Gaussian example Eq. 2 with σ = 1/10. The three models

being compared are the full model (with a flat prior), the simpler model defined by p?(θ), and a model with just the endpoints of the line. Under the Bayes
factor comparison, the p?(θ) model would never be preferred here. B draws pNML

d (x) for the two-parameter exponential model (Eq. 5), for the complete
model, for the effective model defined by the support of p?(θ), and for an even simpler model allowing only three points—the same three models compared
in Fig. S1A. Note that pNML

d (x) is always a constant on the allowed region x ∈ y(Θd).

Fig. S3. Convergence of the BA algorithm (Eq. S4) for the exponential model. This shows p?(~y) for the case σ = 1/50, with~y discretized on a grid of spacing
1/100 in the bulk and 1/200 along the boundaries of the allowed region.
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