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Rotarod Test. For the rotarod test, mice were placed onto the
ENV-577M Rotarod system (Med Associates) at a walking speed
of 4 rpm. Then, the speed was increased to 40 rpm in 300 s.
Latency for the animal to fall off the rotarod was recorded (1).

Grip Strength Test.Each individual’s forelimbs were tested for grip
strength by pulling on a wire attached to a Chatillon DFE-
002 force gauge (Chatillon Force Measurement Systems). Five
pulls were performed for each mouse. The mean of the re-
cordings was determined.

Open-Field Test. Animals were placed in the center of a defined
open-field region (43 × 43 cm) (Med Associates) and left without
disruption for 30 min. The center zone was defined as a 10.2-cm2

area equidistant from the peripheral walls. The tracking software
(Activity Monitor version 4; Med Associates) recorded the ex-
ploratory behavior. The apparatus was cleaned with 70% ethanol
before testing the next mouse.

Elevated Plus Maze Test. The test was conducted essentially as
reported (2). A mouse with a high level of anxiety will spend more
time in the closed arms rather than venture into the open arms.
The apparatus consists of two closed arms (30 × 5 × 15 cm) with
high walls and two open arms (30 × 5 × 2.5 cm) with low walls.
The mice were placed individually in the center of the maze for a
period of 5 min. A digital camera tracked the movements of the
mouse with the video analyzed by ANY-maze software (Stoelting).

MotoRater Test. To record gait, we used the MotoRater (TSE
Systems), a quantitative video system designed for kinematically
evaluating rodent movement. Mice were filmed on a transparent
runway with a ladder at the end, and amirror system recorded gait
from the bottom, left, and right sides of the runway. Mice were
placed at the start of the runway behind a Plexiglas door. The door
was removed to signal the beginning of the trial. Mice moved
freely to the end of the runway where they climbed a ladder to re-
enter their cage. If necessary, mice were assisted in climbing the
ladder. Each mouse was allowed three practice trials 24–48 h
before testing. Trials were successful if the mouse walked three
consecutive steps in the forward direction without pausing. If the
mouse paused, it was lightly prodded until it began moving again.
Mice unable to complete one successful trial after three attempts
were excluded from the study. On test day, each mouse com-
pleted two successful trials. Mice unable to complete one suc-
cessful trial after four attempts were excluded from the study.
Between mice, the setup was cleaned with 70% ethanol. SIMI
Motion software (SIMI Reality Motion Systems) was used to
analyze the behavior. The 2D coordinates were tracked continually
for at least three consecutive steps. The process was semiautomatic,
and each frame was reviewed for tracking errors.

Forced Swim Test.The forced swim test, as originally described (3),
assesses the tendency to give up attempting to escape from an
unpleasant environment, whereby fewer attempts are interpreted
as behavioral despair. The apparatus was a glass beaker (17.5 cm
diameter, 24 cm high), filled with water (23–26 °C) to a height of
15 cm. The time mice spent floating (immobility time) during the
last 4 out of 6 min as well as the latency to the first immobility
episode were manually observed. A mouse was judged to be
immobile when it ceased struggling and remained floating mo-

tionless in water, making only movements necessary to keep its
head above water.

RNA Purification and Microarray. Gene-expression analysis was
performed on cortex and hippocampus from 45 mice. RNA was
purified with the NucleoSpin RNA isolation kit (no. 740955.250;
Macherey-Nagel) following the manufacturer’s protocol. Initial
quantitation was conducted using a NanoDrop ND-1000 spec-
trophotometer. The quality of the RNA was inspected using the
Agilent Bioanalyzer RNA 6000 Chip (Agilent Technologies).
Samples with RNA integrity less than 7.5 were discarded. Finally,
we used n = 4 for each group for analysis. The microarray was
performed by the Gene Expression and Genomics core facility
(NIA) and analyzed using DIANE 6.0 software as described before
(2). A complete set of 880 canonic pathways and 2,392 chemical
perturbation gene sets were obtained from the Molecular Sig-
natures Database (MSigDB) (Broad Institute, MIT, Cambridge,
MA). The complete set was tested for gene set enrichment using
PAGE. For each pairwise comparison a pathway aggregation z-score
was obtained from the gene-expression change z-ratio, and a t test
P value to the whole array genes and FDR was computed using
PAGE analysis software to test for the significance of the z-score
obtained. Pathways per gene set were considered significant if
they had more than three genes found in the array and a t test P value
less than 0.05 with an FDR of not more than 0.3. The gene expression
data has been deposited with GEO (GSE109055).

Splenocyte Cell Population by Flow Cytometry. The mice were killed,
and the spleens were dissected to prepare splenocyte suspensions.
For flow cytometry analysis, cells were washed by FACS buffer twice,
blocked with TruStain FcX (no. 101320; BioLegend) for 10 min
at RT, stained with the following fluorescence-labeled monoclonal
antibodies: PerCP.Cy5.5 mouse anti-CD4 (no. 100434; BioLegend),
APC anti- mouse CD8 (no. 100712; BioLegend), FITC anti-human/
mouse CD11b (no. 101206; BioLegend), Brilliant Violet 510 anti-
mouse CD11c (no. 117353; BioLegend), and PE anti-mouse
CD19 (no. 115508; BioLegend) for 15 min at 4 °C, and then
washed twice. Cells were analyzed by a FACSCanto II flow
cytometer (BD Biosciences), and data analysis was performed
with FlowJo software.

ELISA for Aβ. Mouse hippocampal extracts were prepared as
previously reported (4). The accumulation of human Aβ40 and
Aβ42 in these extracts was quantified using ELISA kits (no.
KHB3442 and no. KHB3482, respectively; Thermo Fisher Sci-
entific). Aβ40 and Aβ42 in APPsw-SH-SY5Y cell-culture medium
were also measured with ELISA. pCAX APP swe/Ind (no. 30145;
Addgene plasmid) was a gift from Dennis Selkoe and Tracy Young-
Pearse (both at Brigham andWomen’s Hospital and HarvardMedical
School, Boston). Cell viability was measured using CellTiter-Glo assay
(no. G7572; Promega) according to the manufacturer’s protocols.

Human Fibroblasts. Primary AD fibroblasts (AG07374) and age-
matched control fibroblasts (AG09857) were purchased from
Corriell Institute for Medical Research. They were grown in
AmnioMAX II Complete Medium (no. 11269016; Gibco) and
were protected from light. Cells were in passages 3–7 for
experiments.

MitoSOX in Human Fibroblasts. The MitoSOX probe selectively
reacts with the superoxide in the mitochondria and is used to
measure mitochondrial-specific ROS. Two hundred thousand
cells per milliliter in 12-well plates were treated with 1 mM NR
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(provided by ChromaDex) for 24 h, or were not treated, and then
were trypsinized, resuspended in medium, and stained with 5 μM
MitoSOX (no. M36008; Invitrogen) for 30 min protected from
light, to allow the dye to reach equilibrium. The cells were kept
on a 37 °C heat block at all times. Then the fluorescence was
measured with an Accuri C6 Flow Cytometer (Becton Dickinson).
Analysis was performed with FlowJo software. Experiments were
repeated three times.

ELISA for 8-oxo-dG. Primary AD fibroblasts (AG07374) and age-
matched controls (AG09857) were cultured with or without
1 mMNR for 24 h. Cells were harvested, and DNA was extracted
using the QIAamp DNAMini Kit (no. 51304; QIAGEN). ELISA
for 8-oxo-dGwas performed using the HT 8-oxo-dGELISAKit II
(no. 4380-192-K; TREVIGEN) following the kit instructions.
Experiments were repeated three times.
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Fig. S1. NR improves memory and motor function in AD mice. (A) Latency to locating the platform during the training phase in the Morris water maze in WT
and Polβ mice with or without NR treatment. (B and C) Velocity (B) and latency (C) to platform location in the probe trial in the Morris water maze in WT, Polβ,
AD, and AD/Polβ mice with or without NR treatment. (D) Representative swimming paths in the probe trial of the Morris water maze of vehicle- or NR-treated
WT, Polβ, AD, and AD/Polβmice. The platform was located in the upright quadrant. (E) Effects of NR in the object-recognition test in WT, Polβ, AD, and AD/Polβ
mice with two identical objects. (F and G) Effects of NR supplementation on the rotarod performance (F) and grip strength (G) tests. For A–G, n = 17 (WT +
Veh), 16 (Polβ + Veh), 16 (AD + Veh), 16 (AD/Polβ + Veh), 13 (WT + NR), 12 (Polβ + NR), 14 (AD + NR), and 15 (AD/Polβ + NR) mice. (H) Representative MotoRater
software analysis figures. Three directions can be shown together, and each paw of the mouse can be tracked throughout the analysis. (I–K) Gait performance:
forepaw step length (I), gait speed (J), and step length variance (K) in the MotoRater test. n = 8 (WT + Veh), 8 (Polβ + Veh), 9 (AD + Veh), 8 (AD/Polβ + Veh),
9 (WT + NR), 8 (Polβ + NR), 10 (AD + NR), and 8 (AD/Polβ + NR) mice. Data are shown as mean ± SEM *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. S2. NR decreases anxiety but not depression in AD and AD/Polβ mice. (A) Representative figures of the open-field test in WT, Polβ, AD, and AD/Polβ with
or without NR treatment. (B) Distance traveled and center entries in the open-field test in WT, Polβ, AD, and AD/Polβ mice with or without NR treatment.
(C and D) Representative elevated plus maze figures (C) and time (D, Upper) and entries (Lower) in the open arms of WT, Polβ, AD, and AD/Polβ mice with
vehicle or NR treatment. (E and F) Effects of NR treatment in depression behavior measured by the forced swim test in WT, Polβ, AD, and AD/Polβ mice with
vehicle or NR treatment. In all panels, n = 17 (WT + Veh), 16 (Polβ + Veh), 16 (AD + Veh), 16 (AD/Polβ + Veh), 13 (WT + NR), 12 (Polβ + NR), 14 (AD + NR), and
15 (AD/Polβ + NR) mice. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. S3. Microarray analysis in mouse cortex and electrophysiology analysis. (A and B) Pathways in the cortex of NR- and vehicle-treated mice of each genotype
were compared. Pathways that showed ≥1.5-fold change in at least one genotype are shown. We have fixed the order of the samples but allowed the
clustering of the pathways based on row means. In cortex, immune-related pathways were the most abundant. We divided the pathways into immune-related
pathways (A) and all other pathways (B). (C–F) Electrophysiology analysis. (C and D) Input–output curves in which the postsynaptic responses (fEPSP) are plotted
as a function of increasing intensity of presynaptic stimulation (fiber volley amplitude). (E and F) Results of paired-pulse facilitation analysis, a measure of
excitatory neurotransmitter (glutamate) release from presynaptic terminals. For C–F, values are the mean and SEM of determinations made on eight hippocampal
slices from at least five different mice.
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staining of hippocampal regions from WT, Polβ, AD, and AD/Polβ mice treated with vehicle or NR. (Scale bars, 100 μm; Inset, 20 μm.) (C) Quantification of
average plaque number (Left) and plaque core area (Right) from sections as in B. n = 5 mice per group. (D) ELISA for Aβ40 (Left) and Aβ42 (Right) levels in APPsw-
transfected SH-SY5Y cells with or without 0.15–15mMNR treatment for 24 h. (E) Cell viability by CellTiter-Glo assay in APPsw-transfected SH-SY5Y cells with or without
1 mM NR treatment for 24 h. For D and E, experiments were repeated three times. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. S7. Effects of NR augmentation on designated antigen levels of AD and AD/Polβ mice. Quantification of immunoblots from Fig. 5A of the indicated proteins
from the hippocampus of WT, Polβ, AD, and AD/Polβ mice after 6 mo of treatment with vehicle or NR. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01.

Table S1. Comparison of NR effects in 3xTgAD and
3xTgAD/Polβ

NR’s effect AD mice AD/Polβ mice

Cognition
Learning ↑ ↑↑
Memory

Spatial memory in water maze ↑ ↑↑
Recognition memory ↑ ↑
Y-maze spatial memory ↑ ↑
Fear memory ↑ ↑↑

LTP ↑ ↑↑↑
Anxiety ↓ ↓↓
Motor function

Rotarod ↑ ↑
Grip strength ↑ ↑
Gait ─ ↑

Tau
Phosphorylated tau ↓ ↓

Inflammation
Neuroinflammation by staining ↓ ↓↓
IL-6 ↓ ↓
TNFα ─ ↓
RANTES ─ ↓
MCP-1 ─ ↓
IL-1β ─ ↓
MIP-1α ─ ↓
IL-10 ─ ↑

DNA repair
DNA damage ↓ ↓↓
Apoptosis ─ ↓

Sirtuins
SIRT3 ─ ↑
SIRT6 ─ ↑
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