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S1. MINIMAL THREE-PHASE MODEL OF
POPULATION GROWTH

Let each strain i have lag time λi, growth rate gi, and
initial population size Ni(0), so that its growth dynamics
obey (figure 1a)

Ni(t) =


Ni(0) 0 ≤ t < λi,
Ni(0)egi(t−λi) λi ≤ t < tsat,
Ni(0)egi(tsat−λi) t ≥ tsat.

(S1.1)

The time tsat at which growth saturates is determined
by a model of resource consumption. Let R be the initial
amount of resources. We assume that each strain con-
sumes resources in proportion to its population size, for
example, if the limiting resource is space. Let the yield Yi
be the number of cells of strain i per unit of the resource.
Therefore the resources are exhausted at time t = tsat

such that

∑
i

Ni(tsat)

Yi
= R. (S1.2)

We can alternatively assume that each strain consumes
resources in proportion to its total number of cell divi-
sions, rather than its total number of cells. The number
of cell divisions for strain i that have occurred by time t
is Ni(t) − Ni(0). Redefining the yield Yi as the number
of cell divisions per unit resource, saturation now occurs
at the time t = tsat satisfying

∑
i

Ni(tsat)−Ni(0)

Yi
= R. (S1.3)

For simplicity we use the first model (equation (S1.2))
throughout this work, but it is straightforward to trans-
late all results to the second model using the transforma-
tion R → R +

∑
iNi(0)/Yi. This correction will gener-

ally be small, though, since
∑
iNi(0)/Yi is the amount

of resources that the initial population of cells consume
for their first divisions, and this amount will usually be
much less than the total resources R. It is also straight-
forward to further generalize this model to include other
modes of resource consumption, such as consuming the
resource per unit time during lag phase.

S2. DEFINITION OF SELECTION
COEFFICIENT

The selection coefficient per unit time is

σ(t) =
d

dt
log

(
N2(t)

N1(t)

)
. (S2.1)

In the minimal three-phase growth model (equa-
tion (S1.1)), we can write the growth curve as Ni(t) =
Ni(0)egi(t−λi)Θ(t−λi), where Θ(t) is the Heaviside step
function. Then the instantaneous selection coefficient is:

σ(t) =
d

dt

[
g2(t− λ2)Θ(t− λ2)− g1(t− λ1)Θ(t− λ1)

]
= g2Θ(t− λ2)− g1Θ(t− λ1),

(S2.2)

for t < tsat, and σ(t) = 0 for t > tsat.
Since we are mainly concerned with how the mutant

frequency changes over whole cycles of growth, it is more
convenient to integrate this instantaneous selection coef-
ficient to obtain the total selection coefficient per cycle:

s =

∫ tsat

0

dt σ(t)

= g2(tsat − λ2)Θ(tsat − λ2)

− g1(tsat − λ1)Θ(tsat − λ1),

(S2.3)

which, using equation (S2.1), is equivalent to the defini-
tion in equation (2.2) from the main text. If we exclude
the trivial case where the time to saturation is less than
one of the lag times (so that one strain does not grow at
all), the selection coefficient simplifies to

s = g2(tsat − λ2)− g1(tsat − λ1). (S2.4)

S3. DERIVATION OF SELECTION
COEFFICIENT EXPRESSION

To determine how s explicitly depends on the under-
lying parameters, we must solve the saturation condition
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FIG. S1. Test of selection coefficient approximation.
Comparison of the approximate selection coefficient formula
(equation (3.1)) with the exact result obtained using the def-
inition in equation (2.2) and a numerical solution to the sat-
uration equation (equation (S3.1)). Each orange point corre-
sponds to a different set of randomly-generated growth traits
(γ, ω, ν1, ν2; see equation (2.1)) and initial mutant frequen-
cies x. The black dashed line is the line of identity.

in equation (S1.2) for tsat:

R =
N0x1

Y1
eg1(tsat−λ1) +

N0x2

Y2
eg2(tsat−λ2), (S3.1)

where N0 is the total initial population size and x1, x2 are
the initial frequencies of the wild-type and mutant. We
ignore the trivial case where one strain saturates before
the other starts to grow. While we cannot analytically
solve this equation in general, we can obtain a good ap-
proximation in the limit of weak selection (|s| � 1). We
first rewrite the equation in terms of the selection coeffi-
cient using equation (S2.4):

R = N0e
g1(tsat−λ1)

(
x1

Y1
+
x2

Y2
es
)
. (S3.2)

We then solve for tsat and expand to first order in s:

tsat ≈ λ1 −
1

g1
log

[
N0

R

(
x1

Y1
+
x2

Y2

)]
− x2/Y2

g1(x1/Y1 + x2/Y2)
s. (S3.3)

Self-consistency requires this expression for tsat to be in-
variant under exchange of the mutant and wild-type in-
dices and switching the sign of s; equating these two
equivalent expressions for tsat allows us to solve for s,
which gives the main result in equation (3.1).

In figure S1 we compare the selection coefficient cal-
culated from this approximate expression with the exact

result obtained by numerically solving equation (S3.1) for
tsat and then directly calculating s using the definition
of equation (2.2). This empirically shows that although
the derivation relies on the approximation of weak se-
lection (|s| � 1), equation (3.1) is extremely accurate
over a wide range of parameter values, even up to rather
strong selection strengths |s| ∼ 1. Furthermore, the ex-
pression is exact in two special cases: when the mutant
and the wild-type are selectively neutral (s = 0), and
when the mutant and wild-type have equal growth rates
(g1 = g2 = g), since s = −(λ2 − λ1)g = −ω according to
equation (S2.4).

S4. SATURATION TIME AND TOTAL
POPULATION SIZE

Here we derive expressions for the saturation time tsat

and the total population size at saturation

Nsat = N1(tsat) +N2(tsat)

= N0x1e
g1(tsat−λ1) +N0x2e

g2(tsat−λ2).
(S4.1)

We again assume the nontrivial case of tsat > λ1, λ2.
First, if the growth rates are equal (g1 = g2 = g), we
can obtain exact solutions since the two-strain satura-
tion condition (equation (S3.1)) is analytically solvable
for tsat:

tsat =
1

g
log

[
R

2N0
H

(
Y1e

gλ1

x1
,
Y2e

gλ2

x2

)]
,

Nsat =
1

2
(x1e

−gλ1 + x2e
−gλ2)H

(
RY1e

gλ1

x1
,
RY2e

gλ2

x2

)
.

(S4.2)

If the growth rates are unequal (g1 6= g2), then we must
rely on the small s approximation. We can rearrange
equation (S2.4) to obtain tsat as a function of s:

tsat =
s+ g2λ2 − g1λ1

g2 − g1
. (S4.3)

We can then substitute the approximate expression for s
(equation (3.1)) into equation (S4.3):

tsat ≈
(

x1/Y1 + x2/Y2

g1x1/Y1 + g2x2/Y2

)(
log

[
R

2N0
H

(
Y1

x1
,
Y2

x2

)]
−g1g2(λ2 − λ1)

g2 − g1

)
+
g2λ2 − g1λ1

g2 − g1
. (S4.4)

To obtain an expression for Nsat in this approximation,
we rewrite its definition (equation (S4.1)) in terms of s
using equation (S4.3):
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Nsat = N0e
g1g2(λ2−λ1)/(g2−g1)

×
(
x1e

g1s/(g2−g1) + x2e
g2s/(g2−g1)

)
. (S4.5)

For small s, we can show from equation (3.1) that

eg1g2(λ2−λ1)/(g2−g1) ≈ 1

2N0
H

(
RY1

x1
,
RY2

x2

)
exp

[
−
(

s

g2 − g1

)(
g1x1/Y1 + g2x2/Y2

x1/Y1 + x2/Y2

)]
≈ 1

2N0
H

(
RY1

x1
,
RY2

x2

)[
1−

(
s

g2 − g1

)(
g1x1/Y1 + g2x2/Y2

x1/Y1 + x2/Y2

)]
.

(S4.6)

Substituting this into equation (S4.5) and expanding to
first order in s shows that the saturation population size
is approximately

Nsat ≈
1

2
H

(
RY1

x1
,
RY2

x2

)
×
[
1− x1x2(Y −1

2 − Y −1
1 )

x1/Y1 + x2/Y2
s

]
. (S4.7)

Therefore the saturation size in the neutral case (s = 0)
is

Nsat =
1

2
H

(
RY1

x1
,
RY2

x2

)
= H

(
Nsat,1

2x1
,
Nsat,2

2x2

)
,

(S4.8)

since RYi = Nsat,i, where Nsat,i is the saturation popula-
tion size of strain i if no other strains are present. So for
a neutral pair of strains, the total population grows to
the harmonic mean of the saturation population sizes of
the individual strains; this shows that we can interpret
the harmonic mean of both strains’ yields as the effective
yield for the combined population. When selection is
nonzero, the effective yield is perturbed above this value
if the strain with higher yield is also positively selected
(e.g., Y2 > Y1 and s > 0), while otherwise it is perturbed
below the neutral value.

S5. EFFECT OF CORRELATED PLEIOTROPY
ON SELECTION

Mutational effects on growth traits may not only be
pleiotropic, but they may also be correlated. The sim-
plest case is a linear correlation between growth traits
across many mutations or strains:

λ ≈ a

g
+ constant, ν ≈ bg + constant, (S5.1)

where a and b are proportionality constants. We take lag
time to be linearly correlated with growth time (recip-
rocal growth rate), rather than growth rate, since then
both traits have units of time and the constant a is di-
mensionless. Various models predict linear correlations
of this form [1–6], which have been tested on measured
distributions of traits [5, 7–12] (see section 4 in the main
text).

We can combine this model with the selection coeffi-
cient in equation (3.1) to quantify how much selection is
amplified or diminished by correlated pleiotropy. That
is, if a mutation changes growth rate by a small amount
∆g = g2−g1 from the wild-type, then according to equa-
tion (S5.1) it will also change lag time by ∆λ ≈ −a∆g/g2

and yield by ∆ν = b∆g, and hence the expected selection
coefficient will be (using γ = ∆g/g)

s ≈ γ(log ν + a). (S5.2)

This shows that correlations between growth and yield
have no effect on selection to leading order, since selec-
tion only depends logarithmically on yield. Correlations
between growth and lag, however, can have a significant
amplifying or diminishing effect. Since log ν > 0 al-
ways, synergistic pleiotropy (a > 0) will tend to increase
the magnitude of selection, while antagonistic pleiotropy
(a < 0) will tend to reduce it. The significance of this ef-
fect depends on the relative value of a compared to log ν;
in general, the logarithm and the dimensionless nature of
a suggest both should be order 1 and therefore compara-
ble.
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S6. FREQUENCY DEPENDENCE OF
SELECTION

The selection coefficient in equation (3.1) depends on
the initial mutant frequency x. Here we show that s(x) is
a monotonic function of the frequency x; this is important
because it means that conditional neutrality (s(x̃) = 0)
occurs at a unique frequency x̃ (equation (3.5)). We use
an exact argument starting from the original model be-
cause the approximate s(x) function in equation (3.1) has
spurious non-monotonic behavior in some regimes. For
simplicity we again use the dimensionless growth param-
eters defined in equation (2.1).

If the mutant and wild-type have equal growth rates
(γ = 0), then we have previously showed that s(x) = −ω,
so it is constant (and hence monotonic) in x. Now we
consider γ 6= 0. In this case we can write the saturation
condition in terms of s(x) by substituting equation (S4.3)
for tsat in equation (S3.1):

eω(1+γ)/γ

[
(1− x)

ν1
es(x)/γ +

x

ν2
e(1+1/γ)s(x)

]
= 1. (S6.1)

We can differentiate with respect to x and solve for ds/dx
to obtain the differential equation

ds

dx
=

γ
(
1− es(x)ν1/ν2

)
(1− x) + x(1 + γ)es(x)ν1/ν2

. (S6.2)

The only way s(x) can be non-monotonic is if ds/dx = 0
for some x without s(x) being constant. Since the denom-
inator of equation (S6.2) is always positive, ds/dx = 0
only if s(x) = log(ν2/ν1) for some x. However, if
s(x) = log(ν2/ν1) for any x, then it must be constant
at log(ν2/ν1) for all x. We show this by substituting
s(x) = log(ν2/ν1) into the saturation equation (equa-
tion (S6.1)). The x-dependence drops out and we are
left with

ν
1/γ
2

ν
1+1/γ
1

eω(1+1/γ) = 1. (S6.3)

Therefore if the parameters satisfy this condition, then
s(x) = log(ν2/ν1) for all x. Therefore ds/dx only equals
zero when s(x) is constant, and so s(x) can never be a
non-monotonic function of x.

Figure S2a shows the sign of ds/dx over growth-lag
trait space for strains with equal yields (ν1 = ν2); fig-
ure S2b shows the case of unequal yields (ν1 6= ν2). The
boundaries between signs of ds/dx are where s(x) is a
constant, and thus they are given by γ = 0 and equa-
tion (S6.3). Note that for equal yields, s(x) is constant
at zero along the neutral boundary (figure S2a), whereas
for unequal yields there is a separate boundary, away
from the conditionally-neutral region, where s(x) has a

constant but nonzero value (figure S2b).

Another way to measure the frequency dependence of
selection is to consider its total variation across the whole
range of frequencies. We define the relative variation of
selection as |(smax − smin)/s(1/2)|, where smax and smin

are the maximum and minimum values of s(x) across all
frequencies, and s(1/2) is selection at the intermediate
frequency x = 1/2. Since s(x) is always a monotonic
function of x, the maximum and minimum values are
attained at the endpoints x = 0 and x = 1. The selection
coefficient is not technically defined for these values (since
either the mutant or the wild-type is extinct), but we can
determine its value in the limits x → 0 and x → 1. In
the limit of x→ 0, the saturation time must be the time
for the wild-type alone to consume all the resources, and
vice-versa for x→ 1:

lim
x→0

tsat(x) = λ1 +
1

g1
log

(
RY1

N0

)
,

lim
x→1

tsat(x) = λ2 +
1

g2
log

(
RY2

N0

)
.

(S6.4)

Using the relationship between s and tsat in equa-
tion (S2.4) and converting to dimensionless parameters
(equation (2.1)), we have

lim
x→0

s(x) = γ log ν1 − ω(1 + γ),

lim
x→1

s(x) =

(
γ

1 + γ

)
log ν2 − ω.

(S6.5)

Hence the total variation of selection coefficients is

|smax − smin| =
∣∣∣ lim
x→1

s(x)− lim
x→0

s(x)
∣∣∣

=

∣∣∣∣γ ( log ν2

1 + γ
− log ν1 + ω

)∣∣∣∣ . (S6.6)

This result is exact (no weak selection approxima-
tion), but the approximate s(x) expression in equa-
tion (3.1) gives an identical result.

Normalizing this total range of selection by its magni-
tude at some intermediate frequency, such as x = 1/2,
measures the relative variation in s(x) over frequencies.
For equal yields (ν1 = ν2), the relative variation simpli-
fies to

∣∣∣∣smax − smin

s(1/2)

∣∣∣∣ =

∣∣∣∣γ(2 + γ)

2(1 + γ)

∣∣∣∣ . (S6.7)

It is small over a large range of the trait space (fig-
ure S2c), indicating that the frequency dependence of
selection is relatively weak for equal yields. In contrast,
when the yields are unequal (ν1 6= ν2), the variation be-
comes very large near the conditionally-neutral region
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FIG. S2. frequency dependence of the selection coefficient over growth-lag trait space. (a) For a mutant and
wild-type with equal yields (ν1 = ν2 = 103), the gray and white regions indicate where the selection coefficient s(x) increases
as a function of mutant frequency (ds/dx > 0) or decreases (ds/dx < 0). The neutral boundary is in blue. (b) Same as (a)
but for a mutant and wild-type with unequal yields (ν1 = 103, ν2 = 104). The conditionally-neutral region is shown in green.
(c) Relative variation of the selection coefficient over mutant frequencies when the mutant and wild-type have equal yields.
Yield values and the neutral boundary are the same as (a). (d) Same as (c) but for a mutant and wild-type with unequal yields;
yield values and the conditionally-neutral region are the same as (b). The relative variation diverges in the conditionally-neutral
region since s(1/2) = 0 for some points.

(figure S2d). This is because s(1/2) goes to zero for some
points in the conditionally-neutral region, while the total
range |smax − smin| remains finite. Thus, the frequency
dependence of selection is most significant for mutants
in the conditionally-neutral region; this is expected since
these are the mutants that can coexist or be bistable with
the wild-type.

S7. ROBUSTNESS OF COEXISTENCE TO
GENETIC DRIFT

If the bottleneck population size N0 at the beginning
of each round is small, then stochastic effects of sam-
pling from round to round (genetic drift) may be signifi-
cant. We can gauge the robustness of coexistence to these
fluctuations by comparing the magnitude of those fluc-
tuations, which is of order 1/N0, with ds/dx measured
at the coexistence frequency x̃ (equation (S6.2)), which
estimates the strength of selection for a small change in
frequency around coexistence. Coexistence will be robust
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against fluctuations if

∣∣∣∣ γ(1− ν1/ν2)

(1− x̃) + x̃(1 + γ)ν1/ν2

∣∣∣∣ > 1

N0
. (S7.1)

This tells us the critical value of the bottleneck size N0,
which we can control experimentally, needed to achieve
robust coexistence. For example, if the mutant has 10%
slower growth rate (γ = −0.1) but 10% higher yield
(ν2/ν1 = 1.1), and coexistence occurs at x̃ = 1/2, then
N0 must be greater than 100 for stabilizing selection at
the coexistence frequency to be stronger than genetic
drift.

S8. FIXATION UNDER
FREQUENCY-DEPENDENT SELECTION

If the population at the end of a competition round
is randomly sampled to populate the next round, this
is equivalent to a Wright-Fisher process with frequency-
dependent selection coefficient s(x) and effective popu-
lation size N0 [13]. In the limit of a large population
(N0 � 1) and weak selection (|s(x)| � 1), the fixation
probability of a mutant starting from frequency x is

φ(x) =

∫ x
0
dx′ e2N0V (x′)∫ 1

0
dx′ e2N0V (x′)

, (S8.1a)

where V (x) is the effective selection “potential”:

V (x) = −
∫ x

0

dx′ s(x′). (S8.1b)

This is defined in analogy with physical systems, where
selection plays the role of a force and V (x) is the cor-
responding potential energy function. The mean time
(number of competition rounds) to fixation, given that
fixation eventually occurs, is

θ(x) =

∫ 1

x

dx′ ψ(x′)φ(x′)(1− φ(x′)) (S8.2a)

+

(
1− φ(x)

φ(x)

)∫ x

0

dx′ ψ(x′) (φ(x′))
2
,

where

ψ(x) =
2N0e

−2N0V (x)

x(1− x)

∫ 1

0

dx′ e2N0V (x′). (S8.2b)

These results assume that mutations are rare enough to
neglect interference from multiple mutations simultane-
ously present in the population.

For simplicity we focus on the case of a single mu-
tant cell (frequency 1/N0) at the beginning of a compe-
tition round. To test the effect of frequency dependence
on fixation, we compare the true fixation probabilities
and times, calculated from equations (S8.1) and (S8.2)
using s(x) (equation (3.1)), with the fixation probabili-
ties and times predicted if selection has a constant value
at s(1/2), as is often measured in competition experi-
ments [14]. When selection is a constant across frequen-
cies, equation (S8.1) simplifies to Kimura’s formula [13]:

φ(1/N0) =
1− e−2s

1− e−2N0s
. (S8.3)

Deviations from this relationship between φ and s(1/2)
are therefore indicative of significant frequency depen-
dence.

For several sets of mutants, figure S3a shows their se-
lection coefficients s(1/2) versus their fixation probabil-
ities φ(1/N0). In orange are mutants obtained by uni-
formly scanning a rectangular region of growth-lag trait
space (e.g., the trait space shown in figure 2a). The black
line shows the prediction from Kimura’s formula (equa-
tion (S8.3)) assuming s = s(1/2) is a constant selection
coefficient for all frequencies; this frequency-independent
approximation appears to describe these mutants well.
The mean fixation times θ(1/N0) (figure S3b) for these
mutants are also well-described by assuming constant se-
lection coefficient s(1/2). This is because the frequency
dependence for these mutants is weak, as shown in fig-
ure S2c,d. Therefore a single measurement of the selec-
tion coefficient for these mutants at any initial frequency
provides an accurate prediction of the long-term popula-
tion dynamics.

The plots of selection variation in figure S2c,d indi-
cate that the most significant frequency dependence oc-
curs for mutants in the conditionally-neutral region with
unequal yields, i.e., mutants with coexistence or bista-
bility. We thus calculate the fixation probabilities and
times for mutants with neutrality at particular frequen-
cies, and compare these statistics to their selection co-
efficients at x = 1/2 as would be measured experimen-
tally (figure S3a,b). As expected, the fixation statistics
show significant deviations from the predictions for con-
stant selection. In particular, mutants with neutrality
at x̃ = 1/2 (equation (3.5)) have s(1/2) = 0 by defini-
tion, but they nevertheless show a wide range of fixation
probabilities and times, some above the neutral values
(φ = 1/N0, θ = 2N0) and some below.

Figure S3c,d shows the fixation probabilities and times
of conditionally-neutral mutants as functions of their rel-
ative growth rates γ, which separates mutants with co-
existence from those with bistability: the mutant has
higher yield than that of the wild-type in this example
(ν2 > ν1), so the mutants with worse growth rate (γ < 0)
have coexistence while the mutants with better growth
rate (γ > 0) are bistable. Bistable mutants with a neu-
tral frequency of x̃ = 1/2 fix with lower probability than
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FIG. S3. Fixation probabilities and times of a mutant. (a) Fixation probability φ(1/N0) as a function of the selection
coefficient at frequency x = 1/2. Orange points correspond to mutants uniformly sampled across a rectangular region of
growth-lag trait space: (γ, ω) ∈ [−10−3, 10−3] × [−5 × 10−3, 5 × 10−3]. Other points correspond to mutants with neutrality
at specific frequencies (blue for x̃ = 1/4, red for x̃ = 1/2, green for x̃ = 3/4). We calculate fixation probabilities using the
frequency-dependent selection coefficient s(x) (equation (3.1)) and equation (S8.1); for comparison, the solid black line indicates
the prediction from Kimura’s formula (equation (S8.3)), assuming a frequency-independent selection coefficient s = s(1/2). The
horizontal dashed line marks the neutral fixation probability φ = 1/N0. (b) Same as (a), but with the mean fixation time
θ(1/N0) (conditioned on eventual fixation) on the vertical axis. The solid black line marks the prediction for a frequency-
independent selection coefficient (equation (S8.2)), and the horizontal dashed line marks the neutral fixation time θ = 2N0.
(c) Fixation probability φ(1/N0) as a function of the relative growth rate γ for conditionally-neutral mutants. Colors indicate
the same neutral frequencies as in (a) and (b). Mutants with γ < 0 have coexistence, while mutants with γ > 0 are bistable
(since ν2 > ν1 in this example). Dashed lines are the same as in (a). (d) Same as (c), but with the mean fixation time θ(1/N0)
on the vertical axis. Dashed lines are the same as (b). In all panels, the relative yields are ν1 = 103 and ν2 = 104, and the
initial population size is N0 = 103.

would a purely neutral mutant (figure S3c), but if they
do fix, they do so in less time (figure S3d). We can
understand this bistable case in analogy with diffusion
across an energy barrier, using the effective selection po-
tential defined in equation (S8.1b). The mutant starts at
frequency 1/N0, and to reach fixation it must not only
survive fluctuations from genetic drift while at low fre-

quency, but it also must cross the effective selection po-
tential barrier at the neutral frequency x̃. Indeed, the
mutant is actually deleterious at low frequencies (below
the neutral frequency), and thus we expect the fixation
probability to be lower than that of a purely neutral mu-
tant. If such a mutant does fix, though, it will do so
rapidly, since it requires rapid fluctuations from genetic
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drift to cross the selection barrier. This effect is most
pronounced for neutrality at relatively high frequencies;
for low neutral frequencies, such as x̃ = 1/4, the barrier
is sufficiently close to the initial frequency 1/N0 that it is
easier to cross, and thus the fixation probability is closer
to the neutral value (figure S3c).

Mutants with coexistence, on the other hand, are de-
scribed by a potential well at the neutral frequency. The
fixation of these mutants is determined by a tradeoff be-
tween the initial boost of positive selection toward the
neutral frequency, which helps to avoid immediate extinc-
tion, and the stabilizing selection they experience once at
coexistence. In particular, once at the neutral frequency,
the mutant must eventually cross a selection barrier to
reach either extinction or fixation. However, the barrier
to fixation is always higher than the barrier to extinc-
tion, and thus the mutant has a greater chance of going
extinct rather than fixing. As we see for mutants with
coexistence at x̃ = 1/2, decreasing γ from zero initially
improves the probability of fixation over neutrality, but
eventually it begins to decrease. Thus, the frequency de-
pendence of mutants with coexistence or bistability plays
a crucial role in shaping their fixation statistics, and their
ultimate fates depend crucially on their individual trait
values (i.e., γ).

S9. ADDITIVITY OF THE SELECTION
COEFFICIENT

The additivity condition (equation (3.6)) is approxi-
mately satisfied if strains i, j, and k have only small dif-
ferences in growth rates, lag times, and yields. Conceptu-
ally, this is because the saturation times tsat for each bi-
nary competition between pairs of strains are all approx-
imately equal, but we can also show this directly using
the selection coefficient formula. Let γij = (gi − gj)/gj ,
ωij = (λi − λj)gj , and µij = (νi − νj)/νj be the relative
differences in growth rate, lag time, and yield for strains
i and j. If these relative differences are all small, then
they each approximately obey the additivity condition
across strains:

γik = (1 + γij)(1 + γjk)− 1 ≈ γij + γjk,

ωik =
ωij

1 + γjk
+ ωjk ≈ ωij + ωjk, (S9.1)

µik = (1 + µij)(1 + µjk)− 1 ≈ µij + µjk.

In this same limit, the total selection coefficient for
strains i and j is approximately

sij ≈ γij log νj − ωij . (S9.2)

Note that, to leading order, the change in yield µij does
not appear. Using equation (S9.1) and νj = (1 + µjk)νk,
we have

sij + sjk ≈ γij log νj − ωij + γjk log νk − ωjk
≈ γik log νk − ωik
≈ sik.

(S9.3)

Therefore the selection coefficient is approximately addi-
tive when differences between traits are small.

S10. TRANSITIVITY OF THE SELECTION
COEFFICIENT

Since we are only concerned with the sign of selec-
tion in determining transitivity, we focus on the signed
component of the selection coefficient in equation (3.1).
It is also more convenient to use growth times τi =
1/gi rather than growth rates, and the quantity hij =

log
[

1
2H(

νj
1−x ,

νi
x )
]

for the logarithm of the harmonic

mean yield. We define the signed component of the se-
lection coefficient for strain i over strain j to be

(τj − τi)hij + λj − λi. (S10.1)

That is, sij is proportional to this quantity up to an
overall factor that is always nonnegative.

We first consider whether neutrality is a transitive
property of strains. Three strains are all pairwise neutral
if their traits satisfy

(τ1 − τ2)h21 + λ1 − λ2 = 0,

(τ2 − τ3)h32 + λ2 − λ3 = 0,

(τ3 − τ1)h13 + λ3 − λ1 = 0.

(S10.2)

If all three strains have equal yields ν1 = ν2 = ν3

(h21 = h32 = h13 for all frequencies), then any two of
these equations imply the third (e.g., by adding them to-
gether), which means that neutrality is transitive when
all strains have equal yields. If two of the yields are equal
while the third is distinct, then transitivity only holds if
two of the strains are identical (equal growth and lag
times). For example, if ν1 = ν2 6= ν3, then we can add
together the last two equations in equation (S10.2) to
obtain

(τ2 − τ1)h13 + λ2 − λ1 = 0, (S10.3)

(using h32 = h13), but this is only consistent with the
first equation in equation (S10.2) if τ1 = τ2 and λ1 = λ2,
i.e., strains 1 and 2 are identical in all traits.

If all the yields have distinct values, then transitiv-
ity will generally not hold for arbitrary values of the
growth traits. However, it is still possible for three strains
with distinct yields to all be pairwise neutral, but only
with very specific values of the traits. Note that with
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unequal yields, neutrality at all frequencies is not pos-
sible, so pairs of strains are only conditionally neutral,
where strain i is neutral at frequency x̃ij with strain j
(equation (3.5)). These frequencies are encoded in the

quantities hij = log
[

1
2H(

νj
1−x̃ij

, νix̃ij
)
]
. We thus fix the

yields and the desired neutral frequencies to arbitrary
values, and without loss of generality, we can assume
h21 < h13 < h32 (e.g., by putting the strains in order of
increasing yields). We can also choose any values of τ1
and λ1 since this amounts to a rescaling and shift of time
units. Therefore we are left with three linear equations
(equation (S10.2)) for four unknowns: τ2, τ3, λ2, λ3. If we
choose any value of the strain 2 growth time that obeys

τ2 >

(
h13 − h21

h32 − h21

)
τ1 (S10.4)

(note the factor in parentheses is always positive by as-
sumption), then equation (S10.2) has a unique solution
for the remaining quantities:

τ3 =
τ2(h32 − h21)− τ1(h13 − h21)

h32 − h13
,

λ2 = (τ1 − τ2)h21 + λ1,

λ3 = (τ1 − τ2)

(
h32 − h21

h32 − h13

)
h13 + λ1.

(S10.5)

The linear system actually has a unique solution regard-
less of equation (S10.4), but without that condition τ3
may be negative. Therefore a set of three strains with
unequal yields can all be pairwise conditionally neutral
only if the growth traits for strains 2 and 3 satisfy equa-
tions (S10.4) and (S10.5). For example, in this manner
one can construct three strains that all coexist in pairs.

We now turn to constructing sets of three strains such
that there is a nontransitive cycle of selective advantage
in binary competitions, i.e., strain 2 beats strain 1 in a
binary competition, strain 3 beats strain 2, but strain 1
beats strain 3. Therefore the growth traits of the three
strains must satisfy

(τ1 − τ2)h21 + λ1 − λ2 > 0,

(τ2 − τ3)h32 + λ2 − λ3 > 0,

(τ3 − τ1)h13 + λ3 − λ1 > 0.

(S10.6)

All three yields cannot be equal; if they are, adding to-
gether any two of the inequalities in equation (S10.6)
gives an inequality that is inconsistent with the third

one. Otherwise, the three yields can take arbitrary
values, including two of them being equal. Since we
can cyclically permute the strain labels, without loss
of generality we assume strain 1 has the smallest yield
(ν1 < ν2, ν3). Therefore the harmonic mean logarithms
obey h32 > h21, h13. We can also choose any values of τ1
and λ1 as before.

We must now choose the growth traits of strains 2
and 3 (τ2, τ3, λ2, λ3) to satisfy the inequalities of equa-
tion (S10.6). We use a geometrical approach to under-
stand the available region of trait space for these strains.
The lag time for strain 3 is bounded from above and
below according to (combining the second and third in-
equalities in equation (S10.6)

(τ1 − τ3)h13 + λ1 < λ3 < (τ2 − τ3)h32 + λ2. (S10.7)

The upper and lower bounds are both functions of τ3.
The upper bound will be above the lower bound as long
as τ3 satisfies

τ3 <
τ2h32 − τ1h13 + λ2 − λ1

h32 − h13
. (S10.8)

Since τ3 must be positive, this upper bound of τ3 must
also be positive. The denominator of the right-hand side
of equation (S10.8) is positive by assumptions about the
yields, so therefore the numerator must be positive as
well. This leads to a lower bound on the lag time λ2 of
strain 2; we can combine this with an upper bound on
λ2 from the first equation of equation (S10.6) (strain 2
beats strain 1) to obtain

τ1h13 − τ2h32 + λ1 < λ2 < (τ1 − τ2)h21 + λ1. (S10.9)

Finally, the upper bound for λ2 will be above the lower
bound as long as τ2 satisfies

τ2 > max

((
h13 − h21

h32 − h21

)
τ1, 0

)
. (S10.10)

Altogether, we can construct a set of nontransitive strains
by choosing any yields ν1, ν2, ν3 satisfying ν1 < ν2, ν3,
and any values for the growth traits τ1, λ1 of strain 1;
we then choose τ2 according to equation (S10.10) and
λ2 according to equation (S10.9); finally, we choose τ3
according to equation (S10.8) and λ3 according to equa-
tion (S10.7). These inequalities determine the shaded
areas of trait space in figure 4b.
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