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Supplementary Methods 

Instrumentation and Sample Analysis Preparations 
1
H and 

13
C NMR were recorded on a 

spectrometer (300 MHz, 75 MHz, Bruker Avance
TM

 300) in the NMR facility located in Center 

for Molecular Analysis, Carnegie Mellon University, Pittsburgh, PA, with deuterium oxide 

(D2O), DMSO-d6 and CDCl3. Routine FT-IR spectra were obtained with a Nicolet Magna-IR 

560 spectrometer (Thermo), in the Department of Chemical Engineering at Carnegie Mellon 

University. UV−VIS spectra were obtained and used for enzyme activity determination using a 

UV−VIS spectrometer (Lambda 2, PerkinElmer) with a temperature-controlled cell holder. 

Melting points (mp) were measured with a Laboratory Devices Mel-Temp. Number and weight 

average molecular weights (Mn and Mw) and the polydispersity index (Mw/Mn) were estimated 

by gel permeation chromatography (GPC) on a Water 2695 Series with a data processor, 

equipped with three columns (Waters Ultrahydrogel Linier, 500 and 250), using Dulbecco’s 

Phosphate Buffered Saline with 0.02 wt% sodium azide as an eluent at flow rate 1.0 mL/min, 

with detection by a refractive index (RI) detector. Pullulan standards (PSS-Polymer Standards 

Service – USA Inc, Amherst, MA) were used for calibration.Matrix-Assisted Laser Desorption 

Ionization Time-of-Flight Spectrometry (MALDI-ToF MS) was performed with a Perseptive 

Biosystems Voyager Elite MALDI-TOF spectrometer in the Center for Molecular Analysis, 

Carnegie Mellon University. Dynamic Light Scattering (DLS) data were collected on a Malvern 

Zetasizer nano-ZS, which was located in the Department of Chemistry, Carnegie Mellon 

University. The concentration of the sample solution was kept at 0.2 - 1.0 mg/mL. The 

hydrodynamic diameter of samples was measured three times (15 run to each measurement, 

reported as number distribution) in various buffers.  



Preparation of Cu-HMTETA as deoxygenated catalyst solution 100 mM CuCl2 in deionized 

water (1.2 mL, 120 µmol) was bubbled with N2 for 25 min and then 100 mM sodium ascorbate 

in deionized water (120 µL, 12 µmol) was added. HMTETA (39 µL, 144 µmol) was added to the 

copper suspension bubbled with N2 for 3 min. The deoxygenated Cu-HMTETA solution was 

added to the synthesis vessel immediately.   

2-Nitro-5-thiocyanobenzoic (NTCB) digestion of protein-initiator conjugates All buffers and 

reagents were prepared fresh for the NTCB reactions. Native protein or initiator-modified protein 

complex (10-20 µg) was dissolved in 1 M glycine, 6 M guanidine–HCl pH 10.0 (15 µL) and 

treated with 1.5 µL of 100 mM of DTT for 5 min at 95 °C. After this time, 22 mM NTCB (20-

fold excess of total cysteine content in protein) was added and the digestion was carried out at 

37 °C for 18 hours.
50

 The reaction was stopped by the addition of 3 µL of TFA and digested 

samples were purified using ZipTipC18 microtips and eluted with 2 µL of matrix solution (20 

mg/mL sinapinic acid in 50 % acetonitrile with 0.1 % TFA) directly onto a MALDI-ToF plate for 

subsequent analysis. The molecular weight of the expected peptide fragments before and after 

digestion was predicted using PeptideCutter (ExPASy Bioinformatics Portal, Swiss Institute of 

Bioinformatics). Peptide fragment containing the N-terminal group was examined for 

modification. 

Irreversible inactivation of native AChE in low pH (3 – 6)  Native AChE (0.4 µM) was 

dissolved in 20 mM citrate buffer (pH 3 – 6) or 100 mM sodium phosphate buffer (pH 5 and 6) 

and incubated at room temperature.  At given time points, aliquots (10 µL) were removed and 

activity was measured in 930 µL of 100 mM sodium phosphate buffer (pH 7.4), 50 µL of 

acetylthiocholine iodide (10 mM in cold 100 mM sodium phosphate buffer (pH 7.4), Sigma 

Aldrich, St Louis, MO) and 10 µL of 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB, 50 mM in 



DMSO, Sigma Aldrich) at 37 °C.  The residual activity was calculated as a ratio of initial rates of 

the reaction at given incubation time over initial activity of native AChE (0.4 µM) in 100 mM 

sodium phosphate buffer (pH 7) at time zero. Rates were monitored by recording the increasing 

in absorption at 412 nm using a UV-VIS spectrometer.  

Determination of Michaelis-Menten kinetics of AChE-pCBMA conjugates Acetylthiocholine 

iodide (0 – 100 μL of 10 mM in 100 mM sodium phosphate buffer (pH 7.4)) and 10 µL of 

DTNB solution (50 mM in DMSO) was mixed with 100 mM sodium phosphate buffer (980 - 

880 μL, pH 7.4). Conjugate solution (10 μL, 5.5 µM of AChE) was added to the substrate 

solution. The initial substrate hydrolysis rate was monitored by recording the increase in 

absorbance at 412 nm using an UV-VIS absorbance spectrometer with a temperature-controlled 

cell holder at 37 °C. Michaelis-Menten parameters were determined by nonlinear curve fitting of 

initial rate versus substrate concentration plots using Enzfitter software.  

Activity assays of Lyz-pCBMA conjugates Activity of Lyz-pCBMA conjugates was 

determined by two different substrates. Lyophilized Micrococcus lysodeikticus (Sigma Aldrich) 

was used to monitor enzymatic catalysis of cell wall lysis.
1
 Absorption at 450 nm of suspended 

M. lysodeikticus (990 µL, 0.2 mg/mL) in 50 mM phosphate buffer (pH 6.0) was measured by 

UV-VIS spectrometer. 10 µL of Lyz-pCBMA solution (2.8 µM in 50 mM phosphate buffer (pH 

6.0)) was added and the change of absorbance at 450 nm at room temperature was monitored.   

 p-nitrophenyl -glycoside of N-acetylchitooliosaccharide 
2
 was also used to determine the 

activity of the conjugates. To the solution of 4-Nitrophenyl β-D-N,N′,N′′-triacetylchitotriose (10 

µL of 50 mM in DMSO, Sigma Aldrich) in 50 mM phosphate buffer (980 µL, pH 6.0), conjugate 

solution (10 µL of 714 µM in 50 mM phosphate buffer, pH 6.0) was added and the absorption 

was measured at 405 nm using an UV-VIS absorbance spectrometer with a temperature-



controlled cell holder at 37 °C. The p-nitrophenol releasing rate was reported as hydrolysis 

activity of the conjugates.  

Binding affinity of HABA to Avi-pCBMA conjugates  4'-hydroxyazobenzene-2-carboxylic 

acid (HABA, Sigma Aldrich) is a reagent that binds to Avidin and shows spectral changes, thus 

it is utilized to for determination of Avidin binding affinity.
3
 Absorption at 500 nm of 300 µM 

HABA solution in phosphate buffered saline without calcium or magnesium (986 µL, Lonza) 

was measured using UV-VIS spectrometer. 16 µL of the conjugates solution (1.25 µM of Avidin 

in deionized water) was added to the HABA solution and incubated at room temperature for 1 

min, and then absorption at 500 nm was measured. Change in absorbance at 500 nm was used to 

determine bound HABA to the conjugate.   

Activity assay of Uox-pCBMA  Enzymatic activity of the Uox-pCBMA conjugates was 

determined by oxidation of uric acid to allantoin.
4
 Absorption at 290 nm of 50 µM uric acid in 20 

mM sodium borate buffer (pH 8.5, 990 µL) was measured using an UV-VIS absorbance 

spectrometer with a temperature-controlled cell holder at 37 °C. Conjugate solution (10 μL, 57 

µM of Uox in 20 mM borate buffer (pH 8.5)) was added to the substrate solution. The initial 

reaction velocity was monitored by recording the decrease in absorbance at 290 nm using the 

UV-VIS absorbance spectrometer at 37 °C. Activity of the conjugates (U/g) was determined 

from the initial velocity and concentration of Uox.   

Impact of Agarase incubation for CT-pCBMA releasing from DMA beads To a suspension 

of obtained CT-pCBMA beads (100 µL) in 100 mM sodium phosphate (pH 6, 99 µL), agarose 

solution (1 µL, 1 U/µL) was added and rotated at room temperature for a given time (0 – 24 h).  

20 mM sodium citrate (400 µL, pH 3) was added and rotated at room temperature for 1 h.  The 

supernatant containing CT-pCBMA conjugate was separated from the beads by centrifugation. 



Released active CT concentration in the supernatant was determined by an enzymatic activity 

assay on the hydrolysis of suc-AAPF-pNA using a standard curve with native CT.    

  A releasing study of CT-pCBMA was carried out by pre-incubation with Agarase to 

digest agarose
5
 for quantitative recovery of the conjugate from the DMA beads. CT-pCBMA that 

was previously prepared on the DMA beads, was pre-incubated with Agarase (1 U/ 100 µL 

beads) in 100 mM sodium phosphate (pH 6) at room temperature for a designated time followed 

by incubation with 20 mM sodium citrate (pH 3). Released conjugates were quantified by an 

activity assay of hydrolysis of suc-AAPF-pNA. Agarase pre-incubation increased recovering the 

conjugate with incubation time (Supplementary Figure 23). We adopted the Agarase pre-

incubation (1 U/100 µL of beads) in 100 mM sodium phosphate (pH 6) at room temperature 

overnight before adding 20 mM sodium citrate (pH 3) for releasing the conjugate from DMA 

beads.  

Supplementary Discussion 

Model Dye Binding and Release Studies  

At pH 7 and 8, both the N-terminal and lysine mimic dyes quickly bound to the DMA beads, 

with maximum binding occurring within approximately 20 minutes. At pH 5 and 6, however, the 

binding rate of the N-terminal mimic, GGCy3, was an order of magnitude higher than that for the 

lysine mimic. Both GGCy3 and Cy5.5 amine showed increased initial binding rates with 

increased pH. At each pH 5 to 8 investigated, the initial binding rate of GGCy3 was higher than 

Cy5.5 amine indicating that the N-terminus α-amino had a higher binding affinity to the DMA 

beads, becoming even more pronounced at pH 5-6.  Binding studies were performed by 

incubating the dye with the DMA beads at pH 5-8 over 60 minutes, washing with pH 8 



phosphate buffer, releasing the dye at pH 3, and measuring fluorescence in the supernatant at 

various time points  

Release studies were also performed using the GGCy3 and Cy5.5 amine fluorescent 

model dyes as a function of pH and time. Model dyes that were previously immobilized on the 

DMA beads at pH 8 were incubated in pH 3 to 6 releasing citrate buffers for 60 minutes. 

Supernatant fluorescence intensities were measured at various time points. Cy5.5 amine was 

rapidly released from the DMA beads with the maximum dye released within approximately 5 

minutes at pH 3, 4, and 6 and within approximately 20 minutes at pH 5.  GGCy3 also showed 

fast release at pH 3 and 4 within approximately 20 minutes, but slower release at pH 5 and 6. 

Interestingly, Cy5.5 amine showed an order of magnitude higher initial release rate than GGCy3 

at all pH from 3 to 6. Also, the release rate for both model dyes decreased as pH increased  

Trypsin Digestion  

As observed with CT, tryptic digestion studies of the acetylcholinesterase-initiator complex 

showed that the peptide fragment containing the N-terminus (904.97 m/z, [M+H]
+
) was absent 

when AChE was immobilized at pH 8.0 Analogous results were also obtained for the uricase-

initiator complex. The peptide fragment containing the N-terminus was present in both native 

uricase and the uricase-initiator complex from the pH 6.0 experiment (676.97 m/z, [M+H]
+
), but 

absent when the uricase-initiator was prepared after immobilization at pH 8.0. Avidin and 

lysozyme have N-terminii that are inaccessible, so we expected that they would not have site-

specific reactions. Indeed, native avidin and avidin-initiator complex that had been reacted with 

DMA-agarose at both pH 6.0 or pH 8.0 retained the peptide fragment containing the N-terminus 

(555.99 m/z, [2M+ACN+Na]
+
). This indicated that the N-terminus was not modified with the 

NHS-Br initiator under any of the reaction conditions. For lysozyme, since the N-terminus was a 



lysine residue, we conducted 2-nitro-5-thiocyanatobenzoic (NTCB) acid digestion studies where 

NTCB reacted specifically with cysteine thiols by cyanylation. Similarly to avidin, the N-

terminus peptide fragment (585.20 m/z, [M+ACN+Na]
+
)
 
in lysozyme was still free after 

immobilization at pH 6.0 and 8.0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 1. Synthesis scheme of dialkyl maleic anhydride modified agarose beads. 

 

 

 

 

 



 

Supplementary Figure 2. FT-IR spectra of dried beads at each step of the PARIS synthesis a, DMA bead 

(1807 and 1764 cm
-1

 (C=O : anhydride) and 1647 cm
-1

 (C=N : imine and C=O : ester). b, CT immobilized DMA bead 

(1645 cm
-1

 (C=O : amide I), 1546 cm
-1

 (N-H: amide II)). c, CT-ATRP initiator on DMA bead. (1645 cm
-1

 (C=O : 

amide I), 1546 cm
-1

 (N-H: amide II)).  d, CT-pCBMA conjugate on DMA bead 1727 cm
-1

 (C=O : ester), 1643 cm
-1

 

(C=O : amide I), 1590 (as :-COO
-
), 1550 cm

-1
 (N-H: amide II)).  e, DMA bead after CT-pCBMA cleavage (1764 cm

-

1
(C=O : anhydride), 1727 cm

-1
 (C=O : ester), 1643 cm

-1
 (C=O : amide I), 1590 (as :-COO

-
), 1550 cm

-1
 (N-H: amide 

II)).   

 

 

 



 

Supplementary Figure 3. pH dependence of binding and releasing affinities of GGCy3 and Cy5.5 amine to 

DMA-agarose beads a, Structure of Glycyl-glycyl-Cy3 as model for N-terminus. b, Structure of Cy5.5 amine as 

model for Lys side chain.  c, Scheme for binding and releasing reaction between amino dyes and DMA beads. d, pH 

dependence of the binding rate of GGCy3 to DMA beads (pH 5, open square; pH 6, open circle; pH 7, open 

diamond; pH 8, open triangle).  e, pH dependence of the binding rate of Cy5.5 amine to DMA beads (pH 5, open 

square; pH 6, open circle; pH 7, open diamond; pH 8, open triangle). f, pH dependence of the releasing rate of 

GGCy3 from DMA beads (pH 3, open triangle; pH 4, open diamond; pH 5, open square; pH 6, open circle). g, pH 

dependence of the releasing rate of Cy5.5 amine from DMA beads (pH 3, open triangle; pH 4, open diamond; pH 5, 

open square; pH 6, open circle). Error bars represent standard deviation from triplicate measurements. 

 

 

 

 



 

Supplementary Figure 4. Synthesis of N-terminus model dye glycyl-glycyl-Cy3. 

Cy3 amine, HRMS (m/z): [M-H]
+
 calcd. for C36H52N4O5

2+
, 556.41; found, 556.84. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 5. 
1
H NMR (300 MHz, CDCl3) spectrum of Boc-Gly-Gly-NHS. 

Boc-Gly-Gly-NHS, mp: 139-142 °C, 
 1

H NMR (300 MHz, DMSO-d6)δ 1.47 (s, 9 H, Boc-), 2.87 

(s, 4 H, Succinimide), 3.88 (d, 2 H,  J = 6.0 Hz, Gly
α
), 4.45 (d, 2 H, ,  J = 6.0 Hz, Gly

α’
),  5.21 

(broad s, 1 H, NH) and 6.83 (broad s, 1 H , NH) ppm; 
13

C NMR (75 MHz, DMSO-d6) δ 24.8, 

25.0, 27.0, 27.6, 27.8, 28.4, 37.7, 42.5, 77.7, 155.3, 165.8, 169.5, 169.8, 172.3 ppm; IR (KBr 

pellet) 2980, 2938, 1821, 1789, 1741, 1702, 1665, 1575 and 1514 cm
-1

.   



 

Supplementary Figure 6. 
1
H NMR (300 MHz, CDCl3) spectrum of Boc-GG-Cy3. 

Boc-Gly-Gly-Cy3, oily compound, 
 1

H NMR (300 MHz, CDCl3) δ 1.41 (m, 9 H, Boc- and 4 H, 

2 × CH2), 1.58 (m, 6 H, 3 × CH2), 1.73 (s, 12 H, Cy3-CH3), 1.83 (m, 2 H, CH2), 2.42 (t, J = 7.2 

Hz, C=OCH2), 3.27 (m, 4 H, 2 × NHCH2), 3.74 (s, 3 H, Cy3 N-CH3), 3.92 (d, 2 H,  J = 5.7 Hz, 

Gly
α
), 3.99 (d, 2 H, ,  J = 5.7 Hz, Gly

α’
),  6.25 (broad s, 1 H, Boc-NH),  6.82 (d, 1 H, J = 13.2 Hz, 

C=CH), 6.92 (d, 1 H, J = 13.2 Hz, C=CH), 7.16 – 7.45 (m, 8 H, Cy3-Ar H), 7.90 (m, 2 H, amide), 

8.15 (broad t, 1 H, J = 4.2 Hz, amide), 8.41 (t, 1 H, J = 13.2 Hz, CH=CH-CH) ppm; 
13

C NMR 

(75 MHz, DMSO-d6) δ 25.0, 25.5, 26.0, 26.7, 26.8, 27.7, 27.8, 28.2, 28.5, 28.8, 35.6, 35.7, 38.5, 

42.9, 44.3, 48.8, 48.9, 79.3, 103.2, 111.1, 121.5, 122,5 125.2, 125.6, 128.0, 128.9, 140.0, 141.5, 

142.2, 150.2, 156.0, 169.2, 170.4, 173.4, 173.8 ppm; IR (NaCl plate) 2950, 2925, 2856, 1655, 

1559, 1493, 1458, 1415 and 1371 cm
-1

; HRMS (m/z): [M-H]
+
 calcd. for C45H65N6O5, 769.501; 

found, 770.051. 



Supplementary Figure 7. 
1
H NMR (300 Mhz, CDCl3) spectrum of GGCy3. 

Gly-Gly-Cy3, oily compound, 
 1

H NMR (300 MHz, CDCl3) δ 1.4 – 1.9 (broad, 14 H, 7 × CH2 

and 12 H, Cy3-CH3), 2.5 (broad, 2 H, CH2), 3.2 (broad, 4 H, 2 × CH2), 3.8 (broad, 3 H, Cy3 N-

CH3), 4.0 – 4.3 (broad, 2 H, CH2 and 4 H, 2 × Gly
α
), 6.8 (broad, 2 H, CH=CH), 7.3 and 7.4 

(broad, 8 H Cy3-Ar H), 8.2 (broad, 1 H, amide), 8.4 (broad, 1 H, CH=CH-CH), 8.6 (broad, 2 H, 

amide) ppm; 
13

C NMR (75 MHz, DMSO-d6) δ 25.2, 25.7, 26.1, 26.8, 28.0, 28.2, 28.7, 28.9, 29.0, 

29.1, 29.7, 34.0, 35.0, 36.1, 38.7, 39.7, 42.9, 49.0, 49.2, 103.9, 105.6, 116.0, 125.7, 127.5, 128.5, 

131.2, 140.5, 141.9, 169.3, 170.1, 173.8 ppm; IR (NaCl plate) 2956, 2924, 2853, 1712, 1651, 

1557, 1493, 1456, 1416 and 1376 cm
-1

; HRMS (m/z): [M-2H]
+
 calcd. for C40H57N6O3

2+
, 670.46; 

found, 670.94. 

 



 

Supplementary Figure 8. Native chymotrypsin (CT) stability in 20 mM citrate buffer (pH 3) at 25 °C.  

Chymotrypsin’s residual activity was measured at pH 8 (100 mM sodium phosphate buffer) using suc-AAPF-pNA 

as a substrate at specified time points after incubation in pH 3 releasing buffer.  Chymotrypsin maintained full 

activity even after 3 hours indicating that the lower pH of releasing buffer did not cause enzymatic activity loss. 

Error bars represent standard deviation from triplicate measurements. 

 

 

 



 

Supplementary Figure 9. MALDI-ToF mass spectroscopy of native CT and initiator modified CT (CT-Br) 

initially immobilized at pH 6.0 and pH 8.0 to determine number of modifications. A, Spectrum of native CT. 

CTBr was modified with b,  13 initiators at pH 6.0 and c, 11 initiators at pH 8.0. 



 

Supplementary Figure 10. Determination of N-terminus selectivity. The presence of N-terminus peptide 

fragment at 1554.63 m/z in the spectra for a, native CT and b, CT-initiator immobilized at pH 6.0 combined with the 

disappearance of the same peptide fragment in the spectrum for c, CT-initiator immobilized at pH 8.0 indicated N-

terminal selective binding to the DMA beads. 

 

 

 

 

 



 

Supplementary Figure 11. 
1
H NMR spectrum of released CT-pCBMA by PARIS in D2O to verify polymer 

chemical structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 12. FT-IR spectrum of released CT-pCBMA by PARIS. Spectrum was measured by the 

method using KBr pellet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 13. Particle size distribution of CT-pCBMA conjugates by number. a, fixed monomer 

concentration of 25 mM by solution method (polymerization time for 5 min, red dot; 10 min, red dash dot; 20 min, 

red dash; 40 min, red long dash; 60 min, red solid; native CT, black solid). b, fixed monomer concentration of 25 

mM by PARIS (5 min, blue dot; 10 min, blue dash dot; 20 min, blue dash; 40 min, blue long dash; 60 min, blue 

solid; native CT, black solid). c, increasing monomer concentration for a 60 min reaction time by solution method 

(12.5 mM, red dash; 25 mM, red solid; 50 mM, red dot; 100 mM, red dash). d,  increasing monomer concentration 

for a 60 min reaction time by PARIS (12.5 mM, blue dash; 25 mM, blue solid; 50 mM, blue dot; 100 mM, blue 

dash). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 14. GPC traces of cleaved pCBMA from CT-pCBMA conjugates. a, fixed monomer 

concentration of 25 mM by solution method. b, fixed monomer concentration of 25 mM by PARIS. ( for a and b 

reaction time: green, 5 min; red, 10 min; black, 20 min; purple, 40 min; blue, 60 min) c, increasing monomer 

concentration for a 60 min reaction time by solution method. d, increasing monomer concentration for a 60 min 

reaction time by PARIS (for c and d monomer concentration: red, 12 mM; green, 25 mM; purple, 50 mM; blue, 100 

mM). 

 

 



 

Supplementary Figure 15. The presence of N-terminus peptide fragment at 585.20 m/z in the spectra for a, 
native Lysozyme and b, Lysozyme-initiator immobilized at pH 6.0 and c, Lysozyme-initiator immobilized at pH 8.0 

suggested that the N-terminus did not react with either the DMA beads or the bromine-initiator. Exposed surface 

accessibility calculations showed that the α-amino group was buried and was most likely unable to react. 



 

Supplementary Figure 16. The presence of N-terminus peptide fragment at 555.99 m/z in the spectra for a, 
native Avidin and b, Avidin-initiator immobilized at pH 6.0 and c, Avidin-initiator immobilized at pH 8.0 suggested 

that the N-terminus did not react with either the DMA beads or the bromine-initiator. Exposed surface accessibility 

calculations showed that the α-amino group was buried and was most likely unable to react. 

 



 

Supplementary Figure 17. The presence of N-terminus peptide fragment at 904.97 m/z in the spectra for a, 
native AChE and b, AChE-initiator immobilized at pH 6.0 combined with the disappearance of the same peptide 

fragment in the spectrum for c, AChE-initiator immobilized at pH 8.0 indicated N-terminal selective binding to the 

DMA beads. 



 

Supplementary Figure 18. The presence of N-terminus peptide fragment at 676.97 m/z in the spectra for a, 
native Uox and b, Uox-initiator immobilized at pH 6.0 combined with the disappearance of the same peptide 

fragment in the spectrum for c, Uox-initiator immobilized at pH 8.0 indicated N-terminal selective binding. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Supplementary Figure 19. MALDI-ToF mass spectroscopy of native lysozyme and initiator modified 

lysozyme (Lyz-Br) initially immobilized at pH 6.0 and pH 8.0 to determine number of modifications. a, native 

lysozyme b, lysozyme-initiator immobilized at pH 6.0 (6 initiators) and c, lysozyme-initiator immobilized at pH 8.0 

(6 initiators). 



 

Supplementary Figure 20. MALDI-ToF mass spectroscopy of native avidin and initiator modified avidin (Av-

Br) initially immobilized at pH 6.0 and pH 8.0 to determine number of modifications. a, native avidin b, 

avidin-initiator immobilized at pH 6.0 (8 initiators) and c, avidin-initiator immobilized at pH 8.0 (8 initiators). 



 

Supplementary Figure 21. MALDI-ToF mass spectroscopy of native acetylcholinesterase and initiator 

modified acetylcholinesterase (AChE-Br) initially immobilized at pH 6.0 and pH 8.0 to determine number of 

modifications. a, native AChE [M+3H]
3+

 b, AChE-initiator immobilized at pH 6.0 (11 initiators) and c, AChE-

initiator immobilized at pH 8.0 (9 initiators). 

 

 

 



 

Supplementary Figure 22. Irreversible inactivation of AChE in low pH  a, incubation in 20 mM citrate buffer 

(pH 3 – 6) at room temperature. b, incubation in 100 mM sodium phosphate buffer (pH 5 and 6) at room 

temperature. Error bars represent standard deviation from triplicate measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 23. Impact of Agarase pre-incubation on CT-PCBA releasing from the DMA beads. Pre-

incubation with Agarase , red open circle; without Agarase pre-incubation, black open triangle. Error bars represent 

standard deviation from triplicate measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 1. pH dependence of initial binding and release rate of GGCy3 and Cy5.5 amine to 

DMA beads. 

Initial Binding Rate  
(µmol min

-1
·mL

-1
 beads)  Initial Release Rate  

(µmol min
-1

·mL
-1

 beads) 
pH GGCy3 Cy5.5 amine 

 
pH GGCy3 Cy5.5 amine 

5 6.5 ± 0.1 0.4 ± 0.1 
 

3 44.4 ± 1.2 170.7 ± 10.1 

6 25.3 ± 0.4 1.7 ± 0.2 
 

4 18.8 ± 2.3 127.8 ± 5.3 

7 51.3 ± 1.4 37.9 ± 1.9 
 

5 2.9 ± 0.2 48.5 ± 3.7 

8 71.1 ± 0.2 54.8 ± 4.2 
 

6 1.2 ± 0.1 32.1 ± 5.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2. Peak analysis of peptide fragments after trypsin digestion or NTCB digestion.  

Protein Peptide Fragment Expected mass  

(m/z) 

Observed mass (m/z) 

Chymotrypsin 
1
CGVPAIQPVLSGLSR 

1554.78 

[M+H]
+
 

1554.63 

Acetylcholinesterase 
1
SELLVNTK 

904.05  

[M+H]
+
 

904.97 

Uricase 
1
MAHYR 

677.79 

[M+H]
+
 

676.97 

Avidin 
1
AR 

554.58 

[2M+ACN+Na]
+
 

555.99 

Lysozyme 
1
KVFGR 

586.60 

[M+ACN+Na]
+
 

585.20 

  



Supplementary Table 3. Michaelis-Menten kinetic values for AChE-catalyzed hydrolysis of acetylthiocholine 

iodide.  

AChE-pCBMA kcat 

(s
-1

) 

KM 

(mM) 

kcat/KM 

(mM
-1

 s
-1

) 

Ratio of enzymatic 

efficiency 

(PARIS:solution) 

PARIS 0.89 ± 0.02 0.179 ± 0.010 4.97 ± 0.30 1.09 ± 0.08 

Solution 1.30 ± 0.02 0.285 ± 0.011 4.56 ± 0.19  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 4. Enzymatic activity of Lyz-pCBMA. 

  M. lysodeikticus   N-acetyl -chitotriose 

 A450 min
-1

 

(× 10
-5

) 

Ratio of lysis 

(PARIS:solution) 
 

A405 min
-1

 

(× 10
-5

) 

Ratio of hydrolysis 

(PARIS:solution) 

PARIS 91.9 ± 0.2 1.94 ± 0.13  3.60 ± 0.65 1.95 ± 0.53 

solution 47.3 ± 1.9   1.85 ± 0.56  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 5. Binding affinity of HABA to Avi-pCBMA conjugates. 

Avi-pCBMA A500 
Bound HABA 

(µM) 

Ratio of binding affinity of 

HABA 

(PARIS:solution) 

PARIS 0.0316 ± 0.003 0.93 ± 0.13 1.01 ± 0.14 

solution 0.0313 ± 0.001 0.92 ± 0.04  

[Avi]0 = 2 µM,  500 = 34000 M
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 6. Enzymatic activity of Uox-pCBMA conjugates.  

Uox-pCBMA 
A290 min

-1
 

(× 10
-5

) 
U g

-1
 

Ratio of activity 

(PARIS:solution) 

PARIS 17.2
 
± 1.10 0.70 ± 0.05 2.33 ± 0.15 

solution 7.45
 
± 2.75 0.30 ± 0.11  

290 = 12300 M
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary References 

1. Smolelis, A. N. & Hartsell, S. E., The determination of lysozyme. J. Bacteriol. 58, 731-

736 (1949).  

2.  Nanjo, F., Sakai, K. & Usui, T., p-Nitrophenyl penta-N-acetyl--chitopentaoside as 

novel synthetic substrate for the colorimetric assay of lysozyme. J. Biochem. 104, 255-

258 (1998).  

3.  Green, N. M., A spectrophotometric assay for avidin and biotin based on binding of dyes 

by avidin. Biochem. J., 94 23-24, (1965).   

4. Mahler, H. R. et al.  Studies on uricase I. Preparation, purification, and properties of a 

cuproprotein. J. Biol. Chem., 216, 625-641 (1955).  

5. Yaphe, W., The use of agarase from Pseudomonas atlantica in the identification of agar 

in marine algae (Rhodophyceae). Can. J. Microbiol. 3, 987-993 (1957).   

 

 

 

 

 

 


