Supplementary material

Riboswitching with ciprofloxacin – Development and characterization of a novel RNA regulator

Florian Groher ¹, Cristina Bofill-Bosch ¹, Christopher Schneider ¹, Johannes Braun ¹, Sven Jager ², Katharina Geißler ¹, Kay Hamacher ^{2,3}, Beatrix Suess ^{1,}*

1 Synthetic Genetic Circuits, Dept. of Biology, TU Darmstadt, Darmstadt, Germany 2 Computational Biology and Simulation, Dept. of Biology, TU Darmstadt, Darmstadt, Germany 3 Dept. of Physics, Dept. of Computer Science, TU Darmstadt, Darmstadt, Germany

* To whom correspondence should be addressed. Tel: +49 6151 1622000; Fax: +49 6151 1622003; Email: bsuess@bio.tudarmstadt.de

Supplementary Figure S1. Influence of CFX on yeast growth and GFP expression. A OD600 of yeast cultures grown overnight in media supplemented with the respective CFX concentration. **B** Relative GFP fluorescence of yeast cultures supplemented with the respective CFX concentration compared to untreated cells. Measurements were repeated three times with technical replicates.

Supplementary Figure S2. Analysis of single clone binding from round 10. A Ratios of bound vs. unbound RNA for different clones from selection round 10 are displayed. As references, the naive pool and the pool from round 10 are depicted. According to the SELEX procedure, RNA was transcribed and 500 kcpm were loaded onto the CFXderivatized column. After 10 wash steps with 1 CV binding buffer each, the RNA was eluted by 4 wash steps with 1 mM CFX in solution. Afterwards each fraction was measured on a scintillation counter. Measured radioactivity in the fractions flow through and wash steps were summed up (unbound) and also for elution fractions (bound). The ratio of bound to unbound gives a direct qualitative feedback of the binding capacity of the tested clones. **B** Determination of binding affinity of the selected aptamer candidates by fluorescence titration spectroscopy. Measurements were repeated at least twice. Standard deviations and individual data points were omitted for clarity. K_D values are written in brackets.

Supplementary Figure S3. Next generation sequencing analysis Displayed are the cumulative distribution function (CDF) and Kolmogorv Smirnoff's ks test (D) for Top100, Top1000 and all sequences. **A** Results based on calculated minimal free energy (MFE) secondary structure. **B** Results based on sequence. The CDF for each round based on calculated Levenshtein distances on MFE structures is plotted for each round (left in A and B), resulting in an increased P(x) over the selection experiment. Based on CDF, D was derived and its logarithm is plotted against the selection rounds for Top100, Top1000 and all sequences (right panel in A and B**)**. Here, D is computed between the first round and all remaining.

One mayor drawback is the computational time that it takes to compute a Lv_{Dist} (X,Y) distribution where we compare every sequence with every other (often 10^12 single computations). Due to this, advanced computational resources as well as efficient software and memory management is required. However, the data suggests that calculating all levenshtein distances for each sequence and each round is not necessary and it is sufficient to look at the Top1000 enriched sequences to draw conclusions (at least in this SELEX experiment). This fact reduced the calculation efforts required by several orders of magnitude. We can conclude that comparing Top1000 vs all sequences by its levenshtein distance can improve the process of SELEX round selection for future work. Additionally, using only the Top1000 made the computation feasible on a desktop computer by reducing the computational time by several orders of magnitude.

Corresponding oligonucleotides for cloning are listed in Supplementary Table S2.

Supplementary Table S2. Oligonucleotides used for cloning

Name Sequence (5'->3')

10A_fwd CGCGACCGGTGGGAGACGCAACTGAATGAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC 10A_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG ∆AUG_fwd CGCGACCGGTGGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC ∆AUG_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG GOF_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACG GOF_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACGCCTAATTTGGGGAG G1U_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC G1U_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG A11C_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGC A11C_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAG A25C_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATACGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGC A25C_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAG U47C_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCCAAACTAGGAGTCATATAGCGGC U47C_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTGGGGAGATAG C51U_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAATTAGGAGTCATATAGCGGC C51U_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAATTTAGGGAGATAG A56C_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGCGTCATATAGCGGC A56C_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACGCCTAGTTTAGGGAGATAG U61G_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCAGATAGCGGC U61G_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACTCCTAGTTTAGGGAGATAG A35G_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGGCTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC A35G_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG U41G_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTAGCTCCCTAAACTAGGAGTCATATAGCGGCAC U41G_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGCTAGAG A50G_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAGCTAGGAGTCATATAGCGGCAC A50G_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGCTTAGGGAGATAGAG U92G_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC U92G_rev GGCCGCTAGCCATTTTGTGACGCGACTCGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG A102G_fwd CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC A102G_rev GGCCGCTAGCCATTTTGCGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG M1_fwd CGCGACCGGTGGGAGACGCAACTGAATCAACATAAGTGAAGCCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGC M1_frev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGG M1R_fwd - identical to M1_fwd -M1R_rev GGCCGCTAGCCATTTTGTGAGCCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAGTCG U37A_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACACTATCTCCCCAAATTAGGCGTCAGATAGCGGC U37A_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAGTG G72C_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACCG G72C_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCGGTGCCGCTATCTGACGCCTAATTTGGGGAGATAGAGTC M2_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGC M2_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTTTGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAG M2R_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACGG M2R_rev GGCCGCTAGCCATTTTGTGACGCGACTACAAACGGATCGTGTTTGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAG M3_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGC M3_rev GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTCTAAGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAG M3R_fwd CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACG M3R_rev GGCCGCTAGCCATTTTGTGACGCGACTACTTAGGGATCGTCTAAGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAG COMP_fwd CGCGACCGGTACCTCTGCGTGGACTTAGTTGTATGCACTTGCGCTGAGATAGAGGGGTTTAATCCGCAGTCTATCGCCGTG COMP_rev GGCCGCTAGCCATTTTCACTGCGCTGATCAATGCCTAGCACATTGAGGCACGGCGATAGACTGCGGATTAAACCCCTCTATCTC

Supplementary Table S3. Oligonucleotides used for cloning of doped pools for *in vivo* screening

Name Sequence (5'->3')

AgeI_doped_f Ager_uopeu_I GCATACAATCAACTCCAAGCTAGATCTACCGGT
wd

NheI_[3.0/4.5/9 CGAGCTAGCCATTTT**[**GTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCT .0/30.0]_doped AGTTTAGGGAGATAGAGTCGCGTTCACTTATGTTGATTCAGTTGCGTCTCCC**]**ACCGGTAGATCTAG _rev CTTGGAGTTGATTGTATGC

For all cloning steps AgeI_doped_fwd was used for PCR. For generating different degrees of randomization, the part in brackets of NheI_ATG_Kozac_doped_rev was synthesized with mixed phosphoramidites for 3.0%, 4.5%, 9.0% and 30.0% incorporation of the other three bases.

The amount of immobilized CFX was estimated by fluorescence measurement of the derivatized solid support.

CV = column volume

* 23.3% and 4.7% of pre-eluted RNA were discarded in round 7 and 8, respectively

Sequences found in SELEX round 10. Both, 5'- and 3'-regions are removed for clarity.

The reported stem loop (5'-CTGCTTCGGCAG-3') is underlined allowing for one mismatch/mutation.

* including constant regions.

Comparison of the sequenced clones from GOF- and LOF-group. Depiceted are only the differences compared to 10A with deleted AUG (∆AUG). For each row and for each column, the number of mutations and deletions are listed.

For every fluoroquinolone, the dissociation constant (K_D) was determined by fluorescence titration and activity *in viv*o was measured by standard GFP fluorescence assay using the CFX-riboswitch. The standard deviation (± SD) is reported in brackets for the titration experiments and regulatory activity, respectively.

* EFX reduced the growth rate of yeast approx. 10-fold [data not shown].

Supplementary references

1. Suess,B., Hanson,S., Berens,C., Fink,B., Schroeder,R. and Hillen,W. (2003) Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res., 31, 1853–1858.

2. Schneider,C. and Suess,B. (2016) Identification of RNA aptamers with riboswitching properties. Methods, 97, 44–50.