Srivastava et al. – Supplemental material

Table S1	List of oligonucleotides used in quantitative DNA/RNA analysis
Figure S1	Reduced growth of TbR9PTPee culture
Figure S2	2 nd RPB9-PTP purification
Figure S3	Multiple sequence alignment of trypanosomatid TFL1 and TFL2 orthologs
Figure S4	Surface electrostatic properties of the WH domains in TFL1, RAP30 and RAP74.
Figure S5	Rat anti-TFL2 immune serum
Figure S6	RNA pol II and TFL2 co-precipitate in a salt-sensitive manner
Figure S7	Localization of TLF1-PTP and TLF2-PTP in procyclic trypanosomes
Figure S8	Sequence conservation and homology model of the N-terminal domain of TSP2

Supplemental References

Application	Target	Sequence
RT-[q]PCR	<i>TFL1</i> mRNA	5'-GATCATTCTGCCTCAGTGC-3'
		5 ['] -GATATTGCCATCCTCTGACG-3'
RT-[q]PCR	TFL2 mRNA	5'-GATGGAAGGTCTGCTGTACC-3'
		5 [′] -CTCAACAGCCTCTTGTCTGG-3 [′]
RT-[q]PCR /	α tubulin coding region	5 [′] -GTGCATTGAACGTGGATCTG-3 [′]
ChiP		5'-GCCTACCACGAGCAACTCTC-3'
RT-[q]PCR /	SLRNA promoter	5 ['] -CTACCGACACATTTCTGGC-3 [']
ChIP qPCR		5 ['] -ggtatgagaagctcccagtagcagc-3 [']
RT-[q]PCR /	SLRNA intergenic region	5 ['] -ATGGCTTATACGTGCTCGTTTCTCC-3 [']
ChIP qPCR		5 [′] -CACATATAGGCGCTTTAAAGTCTGCT-3 [′]
RT-[q]PCR /	GPEET procyclin	5 [′] -TGATAGGTATCTCTTATTAGTATAG-3 [′]
ChIP qPCR	promoter region	5 [′] -ggggttatcgggtgagtac-3 [′]
RT-[q]PCR	U2 snRNA	5'-ATATCTTCTCGGCTATTTAGC-3'
ChIP qPCR		5'-ACAGGCAACAGTTTTGATCC-3'
RT-[q]PCR	$eta{-}lpha$ tubulin intergenic region	5'-GCTGATTTCTGACAGATCTTCAAAC-3'
ChIP qPCR		5'-GTGGATGCAGATAGCCTCACGCATG-3'
Primer extension of	SL RNA	SLtag 5'-GCCTGGCGCCATACCATGG-3'
IN VITRO TRANSCRIBED	GPEET-trm RNA	Tag_PE 5'-GAGTGAATGATGATAGATTTG-3'
Primer extension of	SL RNA	SL PE 5'-CGACCCCACCTTCCAGATTC-3'
total endogenous RNA	U2 snRNA	- U2f 5 ['] -ACAGGCAACAGTTTTGATCC-3 [']

Table S1. List of oligonucleotides used in quantitative DNA/RNA analysis

For each PCR primer pair, the forward primer is listed on top and the reverse primer on the bottom.

Figure S1. Reduced growth of TbR9PTPee culture. Cell densities of wild-type 427 procyclic trypanosomes (WT) and their derivative TbR9PTPee cells were determined and cultures diluted with medium to a density of 2x10⁶ cells daily. The doubling time of wild-type cells of 8.59 h was increased in TbR9PTPee cells to 10.78 h, suggesting that either the tag has a mild effect on RPB9 function or deleting one *RPB9* allele (see Figure 1A) resulted in haplo-insufficiency.

Figure S2. 2nd RPB9-PTP purification. RPB9-PTP was tandem affinity-purified from extract of TbR9PTPee cells. (A) Immunoblot analysis of PRP9-PTP and PRP9-P with anti-ProtC antibody in crude extract (Inp), flow-through of the IgG column (FT-IgG), TEV protease eluate (TEV), flow-through of the anti-ProtC immunoaffnity column (FT-ProtC), and the final eluate (Elu). x-Values indicate relative amounts loaded. (B) The final eluate (Elu) was separated on a SDS/10-20% polyacrylamide gradient gel and stained with Sypro Ruby. The gel lane was cut into several slices and analyzed by LC/MS/MS. Band annotation is according to the pattern analyzed in Figure 1C.

Cfas MSSI Emon Lenr Lmaj	PAAALSSSHTOVPLOL MOVPLLL MOVPLLL MSFSSSCTOVPLLL	PTELRESALGCAAE PEELRDEVISCAAE PEELRDEVINCAVE PEELRDEVISCAAE	IVVESGARHRCE IVVEHGGRDRCE IIVERGARSRCE IIVERG-SRNRCE	LHI <u>H</u> SE LHIYSED LHVYSEE LHVYSEE
Lbra Tviv MALLADTA Tbru MSVAPPVSAS Tcru	MPFNSSCTOVPILL APNPSLVSPSPIANLV SSTQSSSLSESVALLV MSALQPIALLV	PEELRDEVICGAAE PKDVRPIMTSGGSE PKQIRRVISRGGAE PKQIQSIVVDGGAE	LIVERGSRNROF VVVETRLTGOKRIF VVVEKRTAGKKRMF IVVERRSDEKRCL <mark>F</mark>	LEVYSEE VHIFDEK VNIPDEY LRFFDEA
Cfas EREAALESSI Emon ERLTKIEDM Lenr ERLAKIKDI Lmaj ERLAKVEDI Lbra ERLAKIEDI Tviv EREEAKR Tbru DREEGCR	PPLSDAVRAAHE WIA KDPQDTVROAHEAHIT ADTDDVVROAHEAHIG ADPDDVVROAHEAHIS ADRDDVVROAHEAHIS PRTVCSSFHESIE PRTVCSSFHESIE	ELRWARAVLWDEPF DLRWARGVLWTDAF ELRWARGVLWADSF ELRWARDVLWADSF ELRWARDVLWADSF ELRWARATLWGDAC DLRWARATLWGDAC	XIRCEVRH <u>HH</u> HLVWP XOREVRHADHLIWP XOREIRHADHLIWP REOREVRYADHIIWP XVRREVRYADEIIWP XVRREVRYADEIIWP XOREYIRTEDWITWP XOPYIYTSDHITWP	AHKHIST SYESLSK AYESLSK AYESLSK AFDSLSK SLSELEK PLTQLAS
TCru EREEAVR Cfas VAAVVRQLV Emon IIDVVRQLS Lenr VVDVVRQLI Lmaj VVNVHQLI Lbra VVNVHQLI Tviv MVDIVRSLKI Tbru MVNLAWSARI Tcru WVELVRSAKI	GRSTCAOI	ARAAQVLEREATQ FATANRILROEATI VAAANSILRREASI VAVANGILRREATI VATASDILRREATI KKAFNVRREALY KKALDI YMEATY	PCLHLITESALPCO PCLHLIKTTLECH PCLHPLKKTTLECH PCLHPLKDTALECO PCLHPLKDTRLECR TCHPLRETTLKCK TCHPLREALSCP TCHPLREALSCP PCLHALKDENLACO	CLPELSS AALYOVO ATLYOVO ATLYOVO ATLYOVO ATLYOVO LVMFBAT LAFTSE LAFGTT
Cfas TRRSERDAJ Emon TRRRSR PU Lenr TRRRSR A Lmaj VRRRSR A Lbra RRRRSR A Tviv TGDGC Tbru DGNISA Tcru RRDNRI	LSFAMPSVLTRID NAATMPSILSRVD NAATMPSVLSRVD NAATMPSVLRVD IGDSLRVVNTGCTAPA SGSTLHAVGGS VGDTMHALLCRGD	EEVEGSALMAEAG SESVOSVAYIAEMI SEAVOSVAWIAEVE SEAVOSVAWIAEVE SEAVOSVAWIAEVE SEAVOSVAWIAEVE SEAVOSVAWIAEVE SARFGDTVWSLELE SORIGSSLWVLOLE	OVSYSVSSIITMOF OVSYSVSSIITMOF OVSYVSDVLOLOI OASYSVSDILOI TPRTVDEVLOI TPSTNDDVLITI TPSTNDDVLISI TPSTPDAILSI	AATELRR ASTEMER SATELTR ATTELKR ATTELTR TRRVQEA TARMQKA TTRVREK
Cfas IVELIEPQT Emon IVELIVPPQI Lenr IVELILRSP Lmaj IVELISQPE Lbra IVELISQPQI Tviv CVIVRPM Tbru CMAIPIG Tcru CLRVMQPE	ARTPAPLPVQTA RSPAATATSVPAVPVV RAPAATA-STPAASAV SSPAAAH-TASAASTA NSLACGA-SVPSVSAV LAASV LAASV LGVADC	RLRWKALVDOHRAA ROOWRGFIDKHRKW RHEWRGILDKHROW ROOWRGILEKHROW RROWRGILDKHROW REOWRGILDKHROW GELWADVVAAHRNO GNTWSAVDAAHROA GGSWSAVDAAHROA	AEY SLFADVAE AEY SLFADVEE AEY SLFADVEE AEY SLFADVEE AE-Y SLFADVEE AE-Y SLFADVEE VSSHGRGLFYSPHE AEBRSYPGLFHSVPH IDELGPRLFCGLSE	SCRGWGA YCRFWGI ACRSWGA ACRGWGA ACRGWGA CITD GA CITL DA GLLQ AM
Cfas SEAWVAOAV Emon SEACVARDV Lenr SEACVALHV Lmaj SEACVARDV Lbra SEACVARDV Tviv IVSHVAKLV Tbru EAAHVARMV Tcru APVYLAKAV	GAAVEAERSVILLRIGVI AAIARGDSVOLLRIGVI AAISGDSSVOLLRIGVI VAITSGSSVOLLRIGVI TAIKSGSSVOLLRIGVI EAVC	MTV VORPRALL HASVLORAELFIL HASVLORMELHIL HASVLORUELHIL HASVLORVKLYIL YLTMVORNELYVLS YLTVLORTEVFVMI	SPRTRRLEGVTAAD SPRARKIDSVVAAD SPRSRKLDSFTAAD STRPRKLDSFTAAD STRPRKLDSVAAAD GSSALGDATDDESP RGSCOSVATDDKLD	OQAVVAA KTAFASL OAAFAAL OAAFSAH OAAFAAL GSLN LRTSFER VKAAFVE
Cfas LAS SWADC Emon FPTRSWS C Lenr CPLRSWG C Lmaj CPARSWG C Lbra CPASWADC Tviv ATGLSLDVC Tbru ATGRS KVC	SEGSVRFVQLPTEHA VDEGNVRMVTRPPTGL VEAGIVRVVTLPFAGL VEEGIVRVVALPPTGL VEEGIVRIVTLPPTGR EKSGMILRIS	TAASIEASIRHLFI TPAAIEAFAROLFI TPATIETLAROLFI TPAKIDTLVROLFI TPARIDALVROLFI DKEPIEEALRLRFI SKEEIEDALRLRFI	SPAISAISIQOCCT SPAISOQORECCT SPAICOVPACCT TPAICOVPACCT SPAICOVPACCT SPAICOVPACCT SPLSSSYECR CPLASKHELL	VSDPVRV VSEVRGV VSEAQHI VGEARSI MSEACRI

LASH <mark>SW</mark> AD <mark>C</mark> ISE <mark>G</mark> SVRFVQLPTEHATAASIEASIRHL <mark>FLSPAT</mark> SAISIQDCCTVSDPVRV	403
FPT <mark>RSWS_CV</mark> DE <mark>C VRMV_R</mark> PTGLTPAALEAFAROLFLSPALSDVOFRECCTVSEVRGV	395
CPLRSWG CVEAC VRVV LEFAGLTPAT E LAR LELSPALCD VP A CCTVSEA OH	394
CPARSWG CVKEG VRVVAL PTGLTPAKIDILVROLFLIPALCDVPIACCTVGEARSI	401
CPASWARCVEECIVELEPTGREPAREDALVROLELSPALCDVPFACCCTMSEACRI	401
ATGL <mark>SLDVC</mark> EKS <mark>G</mark> MILRISDKEPIBEAIRLRELSELSSSYECRPAVKL	343
ATG <mark>RSYKVC</mark> OSS <mark>C</mark> LLLR RGKEE EDATRLR <mark>FLG</mark> ELASKHE LETATL	382
RTG <mark>RSYEACV</mark> AA <mark>C</mark> IFLYLEGET DVATRIREIGELAGKFD MDIMPL	370
HABU OLVTI FAAFNPYVVVHGSRVEGGFEGDAAYVQSUOR [49] AATSGASSPAGAYLFK	508
SADLDA HISSTE <mark>NPEVVVHGTRV</mark> CNGETGDISYFAVLOR [44] RTPLR TCDAAVAAEN	495
ADLOVVIILSSTE <mark>NPEVVVIGSRV</mark> AN <mark>GE</mark> AGDVPYFRALOR [44] RTPLRITCDAAVADEN	494
ADLOVVHVTSTENPEVVVHGSRVSSGEAGDVPYFSSLOH[41]RAPLR_TCDAAIAAEN	498
ADLOV HVSSTENPEVVVHGSRVSNGEAGDASCFRSLEH [45]R-PSR TCDAAVAAEN	502
ISSTHMTHVVEHNESVVVHGYRVVGAEPENIEARDAVSE[17]TASAVVTCBDLRRGVD	426
SRISSTHVVVKHNPFVVIHGPRVAEGEPENAAARSEILG[17]AISVTITGODLROGVD	465
ATTOITPVLVRHNPFALVHCPRVVGTFPENCEVRKALSD[13]Y SATUCCOLREGVD	452
RELVSEPNTAPISKSETOOHPSMOERGANNNFDAMLNAREKEVAEVKGKKYOLRO 564	
RALISALAVAPISRTEIIONHPS <mark>M</mark> REYRGAA-NYDTVIIKMA <mark>UKE</mark> NTDEKGRRYHIRD 550)
RALISA <mark>H</mark> AVTPLSRAEIQQHET <mark>M</mark> RQYRDAA- <mark>NYETVHKVAHREHTEFKCRKYQHR</mark> E 549	
RALISALAVSPLSRVGIQHHPAMIEYRDAV-NYEAVIKVALKEHAEFKGRKYQIRD 553	}
RALISALAVAPLSRAEIOHSPL <mark>M</mark> REYKDAA- <mark>NYEAVLKVALKEHAEFKCRKYOL</mark> RD 557	,
AIVRILIEGAMTKGTLCTHENMAPERSLP-NFDSLLKDSLRRNAEFRGKKYYLKE 481	
AVIKTISSGPMPRSELAVHSNMARFRDAP-NFEVMLKDSIKRIAEYHGRKYRLKE 520)
DATERTISOGPMIRAATSAHDNMARERGIA-NEEATIKDSIKRNAVHOGKKYYIRE 507	,
	LAS: SWADCT SECSVERVQLETEHATAAS: FASTR IFT SPATSALST OF CCTVS PVRV FPTRSWS CUDEC VRWV REPTGLTPAALEAFAR IFT SPATSD OF RECOVER V CPLRSWG CVEAGIVRVV LEPTGLTPAALEAFAR IFT SPATSD OF RECOVER V CPLRSWG CVEAGIVRVV LEPTGLTPAAL DIVR IFT SPATCD VFA CCTVSE OHT CPARSWG CVEAGIVRVV LEPTGLTPAKIDT VR IFT SPATCD VFA CCTVSE OHT CPARSWG CVEAGIVRVV LEPTGRTPAR DALVR IFT SPATCD VFA CCTVSE ACT ATGLSLDVEKS MILTS

Α

Β

Lsey Emon Lenr Lmaj Lbra Tviv Tbru Tcru	MIPRYDGLVPAIRGPASSAAHV [6]VATTVKRYVIC[12]NNSKEAGG MIPRIDGLVPSIREPISSNAVA[14]TAVTVTRYVIH[8]NAHTSAVV MIPRYDGLVPVIRRPASSSTT[8]AASSVTRYVIS[8]KAHTNATA MIPRYDGLVPAIRGPASACAVA[14]AATTVARYVIC[8]NAHVNATA MIPRYDGLVPAIRESAPSCAVA[14]EATTVTRYVIC[8]NAHVNATA MIPRYDGLVPAIRESAPSCAVA[14]EATTVTRYVIC[8]NAHADATA MIRCDLDIVPVVPKHRLEEDN[19]QPLHIARYTLL[7]DECDATGS MIRKTLDVVPVVLPRHRIEEDA[15]EQHHVVRYIDD[9]EEESKKK MLLQLGVWAKRMIRCSLDVVPTVOPKYRLEEDA[17]TGTRVERYCIF[27]NEESKEKV	59 63 57 63 63 67 65 96
Lsey Emon Lenr Lmaj Lbra Tviv Tbru Tcru	EHERRLYVESPSADVSAPE-RELRVASYTEGDTDPQPSAGASLLAAE [73]DRV EGORRLETFLPSADYATPP-RELHVCSHYFEDSTDASLVLSDDDSGE [56]AKS ERERRLEIFLPSVDCATPP-CELOVFPHYFEDSVDALEAGSDLDSGE [53]AKS ERERRLEAFLPSVDCAAPP-RELRVSSHYFEDSVDALEAGSDLDSGE [56]TKR ERERRLEAFLPSVDCATPP-YELHVSSHYFEDSVDAPVAGSDIGSGE [56]TKR GAEIRLESISSHTELSGRTIETLKVLDAPKKTWKRHLRTTYQAVLSSLQPSVE [20]EGL DSGLRLESVTSLPGSDVHSLKTLHTLEAPRSAWGRATRSVYRGALRLPHLSCD [5]EEE VAGARLYSWLPSPELGTRVPOTLOVLEAPKKNSKRIRRTIYRATLRSSRAPGE [17]ETA	181 168 159 168 168 143 126 169
Lsey Emon Lenr Lmaj Lbra Tviv Tbru Tcru	VRVASTPASAYSHLTCVLVDLPSSWQDVHD[20]LVRPTALIRPILOWGERKEA[30]T GREVSTPASCHSHLTCVLLOMPTSWRCKKG[20]LITATVLRGPILQLWGERSTV[30]G VRLVSTPASCHSHLTCVLLQLPTSWREEDG[20]LITCTPLRRPILQLWGERSAA[31]G VRLVSTPASCYSHLTCVLLQLPTAWREQDM[20]LITSMPLRRPILQLWGERNTA[31]G VRLVSTPASCYSHLSCVLLQLPTAWREQDM[20]LITSMPLRRPILQLWGERNTA[31]G VRLVSTPASCYSHLSCVLLQLPTLWLQQDV[20]FITPTPLRRPILQLWGERMAA[31]G LRESSLPIVEYENMOCLLVTLPPIAAEEAA[0]VGSVKVLNAPIHALRHERVEV[0]S LRESSLPLPGYEKKSCHLTLPAIVDGVG[0]VADLKPLNTPIHALRCERAGT[0]V PRESSLPVPEYEDMSSILLTTVAEE-GA[0]VARARVLDAPVHTLRHERTGA[0]A	263 250 242 251 251 195 178 220
Lsey Emon Lenr Lmaj Lbra Tviv Tbru Tcru	HAAIGISNSWYSEQSTRINNKDWKTMDAMDAEAHKPTNWSDDDG[142]DASDASMTIPA RSASGISTAWGSDAPIRISKKDWKTMDAAEADIHRPTKWSDDDG[147]ASAKDSIPLDA GNAVGISAAWGSDTPIRIRKKDWKTMDAAEADIHRPTKWSGDDE[128]ASADESTSLDS SSAASISAAWGSDTRIQISKKDWKTMDAAEEDIHKPTNWSDDDG[124]APPDGSASIDS NSAASISAAWGSDTSIRIRTKDWKTMDAAEEDIHKPTNWSDDDG[129]VAVSDCALLDS NSGQGISSSWHSGIDVRSVRFKRSYIDDDDT-DPTEDKWRDDFD[85]LSGVDREDISA KDGEGISSSWYSGVDTRKVQFKRSYIDDDDYQ-DEGEDGGGYSSN[97]LSGVNREDIKS KTGQGISTSWYSGLDVRSVGFKRSYIDGDED-ADEGDAWSTFSD[86]FSEINVEDLES	460 452 435 440 445 336 329 360
Lsey Emon Lenr Lmaj Lbra Tviv Tbru Tcru	LAAAVLQEMRQADARTTAPFTELQRRILKRLPDESVVNOKVKSPETKKEAVEWEQTRORE LAFTVISDIHSRESRTTATLTELQKRILKOLPEEGPMSOKIKSTATKQEAVAWEQTSORA LACAVVAGMQRGEARTTATLMELQKRILKOLPEEAAMSEKMRSAATKQEAITWEQTSORA LACIVVTGMISSEARRAATIMELQKRILKOLPEEAAMSOKMKSTATKQEAVAWEQTSOOA LACIVVTGMISSEARRAATIMELQKRILKOLPEEAAMSOKMKSTATKQEAVAWEQTSOOA LACIVVTGMQSSEARIMTTIMELQKRILKOLPEEAAMSOKMKSVATKQEAVTWEQTWOOT LTANLLQQW-VVAGKETVLFSDVVKTVLKVHERVAEMRTKHOSTQCROEAVEWERVSOSA LTDTFIKOW-TNDGRSAVPFSEVARSVLKLHSIVTEMKAKHLSPQTROEAVEWERVSOSA LTGSLLQQW-ASAGKAAMPFSEVTKVVLKSHEKYTEMKAKHOSPQGROEAVEWERVSOSA	520 512 495 500 505 393 388 419
Lsey Emon Lenr Lmaj Lbra Tviv Tbru Tcru	LRVWLQGQGHMISSDGTVTEVG 542 LRWWLVEHGHMINSDGTVTEGTV 535 LRAWLVERGHLIHSDGMVTEGTV 518 LRAWLVEHGHTIDSDGTVTEGDA 523 LRVWLVEHGHAINSDGTVTEGAV 528 VRTCVLHLGYTIDSANNVYLHHRKVA 419 VRDNVVSLGYTMDNAGNVYLSRRSNA 414 VRSYVLHLGYTIDSTNNVYLSRPSDTQRN 448	

Figure S3. Multiple sequence alignment of trypanosomatid TFL1 (A) and TFL2 (B) orthologs. Amino acid sequences were aligned using the Clustal Omega server of the European Bioinformatics Institute (http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalo) at default parameters (1). Positions with more than 50% identity or similarity are highlighted in black or gray, respectively, and completely identical positions are highlighted in red. Dashes indicate missing residues. Numbers in parentheses specify number of residues without obvious sequence similarity. TFL1-ortholgous sequences are from Crithdia fasciculata (Cfas, accession number CFAC1 230048500), Endotrypanum monterogeii strain LV88 (Emon, EMOLV88 270008900), Leishmania enriettii (Lenr, LENLEM3045 270009800), Leishmania major (Lmaj, LmjF27.0440), Leishmania braziliensis (Lbra, LbrM.27.0530), Trypanosoma vivax (Tviv, TvY486 1100930), and Trypanosoma cruzi (Tcru, TcCLB.506925.500) whereas TFL2-orthologous sequences Leptomonas seymouri (Lsey; Lsey 0142 0040), are from Ε. monterogeii (EMOLV88 320027800), L. enriettii (LENLEM3045 320031900), L. major (LmjF32.2390), L. braziliensis (LbrM.32.2620), T. vivax (tviv1020g12.q1k 6), and T. cruzi (TcCLB.504159.60).

С **RAP30**

D **RAP74**

Figure S4. Surface electrostatic properties of the WH domains in TFL1, RAP30 and RAP74. (**A**) α -carbon superposition of TFL1 (cyan) with RAP30 (pink) and RAP74 (magenta). (**B-D**) Molecular surface representation of the WH domains, colored according to the local electrostatic potential (positive, blue; negative, red), in an orientation similar to the one above. The left and right images are related by 180° rotations about the vertical.

Figure S5. Rat anti-TFL2 immune serum. (**A**) The coding sequence of *Trypanosoma brucei brucei strain* 427 TLF2 was cloned into pGEX-6P-1 (GE Healthcare Life Sciences) downstream of the gluthathione Stranferase (GST) coding sequence and transformed into the BL21 strain of *E. coli* (MilliporeSigma). The recombinant GST-TLF2 protein was purified by gluthathione affinity chromatography using Glutathione Sepharose 4 Fast Flow beads (GE Healthcare Life Sciences) according to the manufacturer's specifications and by concentration of the eluate in an Amicon Ultracel-30 centrifugal filter (MilliporeSigma). (**B**) The purified protein was injected into the rat bloodstream, and immune serum was raised and obtained according to a published protocol (2). The immune serum was used to detect TLF2 in whole cell lysates of wild-type trypanosomes (WT 427) and in TbT2PTPee cells that exclusively express tagged TFL2-PTP and no untagged protein. As a loading control, α tubulin was detected on the same blot.

Figure S6. RNA pol II and TFL2 co-precipitate in a salt-sensitive manner. (**A**) From extract of TbR9PTPee cells and from extract of TbT2PTPee cells, RPB9-PTP and TFL2-PTP were precipitated with IgG beads, respectively. RNA pol II and TFL2 [co-]precipitation was analyzed by immunoblotting with rat-derived specific immune sera [(3,4); this study], detecting the largest RNA pol II subunit RPB1, tagged or untagged TFL2, and, as a negative control, the RNA pol I transcription factor subunit CITFA6 in extract (Ext), supernatant (Sn) and precipitate (P). Five times more precipitate was loaded relative to extract and supernatant. (**B**) The RPB9-PTP precipitation was repeated with undiluted extract (high salt, ~300 mM KCl), with extract that was diluted 1:1 with transcription buffer (150 mM sucrose, 20 mM HEPES-KOH, pH 7.7, 20 mM potassium L-glutamate, 3 mM MgCl₂, 1 mM DTT, 10 µg/ml aprotinin, 10 µg/ml leupeptin) just prior to precipitation, and with extract that was generated by adding only 1/20 instead of 1/10 the volume of extraction buffer (150 sucrose, 20 mM HEPES-KOH, pH 7.7, 1500 mM KCl, 3 mM MgCl₂) to broken cell suspension (low salt). In addition to CITFA6, the stronger expressed α tubulin (α Tub) was detected as a negative control. Tenfold more precipitate relative to extract and supernatant was loaded.

The nearly undetectable and strong co-precipitation of TFL2 with RPB9-PTP in high and low-salt extracts, respectively, suggests that the RPB9-PTP/TLF complex was disrupted by high salt extraction and partially reformed upon diluting the extract with transcription buffer whereas it remained largely intact when only half the salt was used for extraction.

Figure S7. Localization of TLF1-PTP (**A**) and TLF2-PTP (**B**) in procyclic trypanosomes (red) which are in different cell cycle stages, having one nucleus and one kinetoplast (1K1N; G1 phase), 2K1N (late S phase) and 2K2N (postmitotic cells). DNA was stained with DAPI (blue) showing nuclei and smaller kinetoplasts. The nucleolus can be recognized within a nucleus as a spherical structure of low DNA density. White bars in top panels represent 5 μ m.

Figure S8. Sequence conservation and homology model of the N-terminal domain of TSP2. (**A**) Sequence conservation and predicted secondary-structure elements for the N-terminal domain of TSP2. Sequence conservation is shown as a bar graph, with red bars indicting identity among six trypanosomatid orthologs from *Trypanosoma brucei* (Tb927.11.14110), *Trypanosoma congolense* (TclL3000.11.14400), *Trypanosoma cruzi* (TcCLB.511727.150), *Leishmania major* (LmjF32.0860), *Leishmania infantum* (LinJ.32.0910), and *Leishmania brazilinsis* (LbrM.32.0950). Secondary-structure assignments predicted by PHYRE 2 are shown as cylinders (α helices) and arrows (β strands). Secondary-structure assignments from the high-resolution cryo-EM structure of the N-terminal domain of Tfa1 (TFIIE α) in a yeast initiation complex (PDB ID: 5FYW) are indicated by letters ("H": α helix; "S": β strand). (**B**) Ribbon diagram of top scoring PHYRE homology model of the N-terminal domain of TSP2, with the extended winged helix domain colored in cyan and the zinc ribbon domain in red.

Supplemental References

- Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J. *et al.* (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.*, 7, 539.
- Schimanski, B., Brandenburg, J., Nguyen, T.N., Caimano, M.J. and Günzl, A. (2006) A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in *Trypanosoma brucei*. *Nucleic Acids Res.*, **34**, 1676-1684.
- Badjatia, N., Ambrósio, D.L., Lee, J.H. and Günzl, A. (2013) Trypanosome cdc2-related kinase 9 controls spliced leader RNA cap4 methylation and phosphorylation of RNA polymerase II subunit RPB1. *Mol. Cell. Biol.*, **33**, 1965-1975.
- Nguyen, T.N., Nguyen, B.N., Lee, J.H., Panigrahi, A.K. and Günzl, A. (2012) Characterization of a novel class I transcription factor A (CITFA) subunit that is indispensable for transcription by the multifunctional RNA polymerase I of *Trypanosoma brucei*. *Eukaryot. Cell*, **11**, 1573-1581.