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Supplementary Methods 

Analytical Model 

For the description of strains and twist angle in dependence of inner pressure, we assume a 

thin-walled cylinder resulting in a plane stress state in the wall. Similar to the mechanics of fiber 

composites, we simplify the material architecture of the soft base geometry and the restricting stripes 

as one homogeneous, orthotropic material. This homogenization leads to a compliance matrix with a 

preferential stiffness 𝐸𝐸∥ in the stripe direction and a smaller 𝐸𝐸⊥ perpendicular to the stripes, which can 

be written in the material’s principal orientation as 
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The principal direction is typically aligned to the cylinder axis at an angle 𝛼𝛼, for example 𝛼𝛼 = 45° 

in the case of the twisting motion mode. In contrast, the stresses in a pressurized cylinder have their 

principal directions parallel and transverse to the cylinder. They consist of  

 the axial component  𝜎𝜎𝑥𝑥 =
𝑝𝑝𝑖𝑖𝐷𝐷𝑎𝑎
4𝑡𝑡𝑎𝑎

  and the tangential component   𝜎𝜎𝑦𝑦 =
𝑝𝑝𝑖𝑖𝐷𝐷𝑎𝑎
2𝑡𝑡𝑎𝑎

  , 

with the inner pressure 𝑝𝑝𝑖𝑖 and the average diameter 𝐷𝐷𝑎𝑎 and thickness 𝑡𝑡𝑎𝑎 of the homogenized cylinder. 

To account for the different directions of these loading components and the material anisotropy, we 

rotate the latter by polar transformation as commonly known from classical lamination theory: 
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where each 𝑆𝑆̅ can be derived by polar transformation from the matrix 𝑆𝑆. Since only normal stresses 

occur and 𝜎𝜎𝑦𝑦 is known to be twice as large as 𝜎𝜎𝑥𝑥, the strains can be written as 

𝜖𝜖𝑥𝑥 = 𝑆𝑆11����𝜎𝜎𝑥𝑥 + 𝑆𝑆12����𝜎𝜎𝑦𝑦   =  𝜎𝜎𝑥𝑥(𝑆𝑆11���� + 2𝑆𝑆12����)    =   
𝑝𝑝𝑖𝑖𝐷𝐷𝑎𝑎
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(𝑆𝑆11���� + 2𝑆𝑆12����)  , 

𝜖𝜖𝑦𝑦 = 𝑆𝑆12����𝜎𝜎𝑥𝑥 + 𝑆𝑆22����𝜎𝜎𝑦𝑦   =  𝜎𝜎𝑥𝑥(𝑆𝑆12���� + 2𝑆𝑆22����)    =   
𝑝𝑝𝑖𝑖𝐷𝐷𝑎𝑎
4𝑡𝑡𝑎𝑎
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The dependence of these rotated compliance matrix components on the fiber angle 𝛼𝛼 can be 

found readily in literature (1) for orthotropic laminate in the direct form: 
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Up to this point, no assumptions or simplifications were made in addition to plane stress 

lamination theory. All strain values can be retrieved from either the engineering constants 𝐸𝐸∥,𝐸𝐸⊥,𝐺𝐺⊥∥, 𝜈𝜈⊥∥ 

for orthotropic materials or the compliance matrix 𝑆𝑆 in the case of more complex materials, such as 

multilayer arrangements.  

To compute displacements instead of strains for our exemplary case, the translation of shear 

𝛾𝛾𝑥𝑥𝑥𝑥 to twist angle 𝜃𝜃 is given by: 
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with 𝐿𝐿 being the cylinder length. The relationship between applied pressure 𝑝𝑝𝑖𝑖 and resulting twist angle 

𝜃𝜃 for a cylinder length 𝐿𝐿 with the stripe angle 𝛼𝛼 can then be expressed as 
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In this relationship, the material parameters to be used as the homogenized properties of the 

stiff and the soft layers need to be defined. For maximum simplicity, we assume that all parallel stiffness 

is contributed by the stiff stripes, whereas the soft transverse behavior is given only by the high 

compliance of the soft layer. By making these assumptions, we can substitute 𝐸𝐸∥ by 𝐸𝐸Stiff∗  and 𝐸𝐸⊥ by 

𝐸𝐸Soft∗ , after normalizing with regards to their volume fraction in the homogenized state:  

𝐸𝐸Stiff∗ = 𝜙𝜙Stiff𝐸𝐸Stiff 

𝐸𝐸Soft∗ = (1 − 𝜙𝜙Stiff)𝐸𝐸Soft 

It should be noted that for the transverse modulus 𝐸𝐸Soft∗ , a typical “serial” rule of mixture, as it 

would be expected for composites, is not suitable here due to the alternating thickness topology. Instead, 

the normalization of the transverse modulus accounts for the reduced cross-section bearing transverse 

and shear loads. Additionally, we assume a Poisson’s ratio 𝜈𝜈 = 0.5 for all elastomeric materials. This 

strong approximation sacrifices some accuracy especially for the anisotropic Poisson ratio, but greatly 

simplifies the final relationship that describes the twisting angle:  

𝜃𝜃 = 𝑝𝑝𝑖𝑖𝐿𝐿
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The geometrical values used for the prediction of the 45° robotic actuator were measured on the printed 

prototype and are displayed in Supplementary Table 1. 
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Supplementary Table 1: Geometry and material parameters used for analytical prediction of pressure-twist 
coupling. Identical values - where applicable - were employed in the finite element simulations. 

𝛼𝛼 stripe reinforcement angle 45 ° 

𝐷𝐷𝑎𝑎 average diameter 22.6 mm 

𝑡𝑡𝑎𝑎  average thickness 1.55 mm 

𝐿𝐿  length 100 mm 

𝜙𝜙Stiff volume fraction stiff phase 43.6 % 

𝐸𝐸Stiff∗  parallel stiffness 1483.6 N/mm² 

𝐸𝐸Soft∗  transverse stiffness 73.3 N/mm²  

𝜃𝜃/𝑝𝑝𝑖𝑖 twist per pressure 47.96 °/kPa  

 

 

 

Supplementary Note 1 

In addition to the actuator shown in Figure 3B, a twisting actuator with a lead angle of 30° was 

also fabricated and tested (Supplementary Figure 1). 

 

Supplementary Figure 1: Twisting soft actuator with 30° lead angle. The twisting actuator displays a fiber lead 
angle of 30° with respect to the long axis. The twisting angle increases with the applied internal pressure. 
 

 

  



The conformability of the grabber actuator is demonstrated in Supplementary Figure 2, using 

objects with different cross-section geometries. 

 

Supplementary Figure 2: Grabbing soft actuator. A grabbing pneumatic actuator holds and seals objects with 
different shapes, making it a useful tool to handle fragile objects or to control mass flow through the central channel. 
Round, hexagonal, rectangular and triangular geometries are grabbed and tightly sealed. Scale bar is 2 cm. 

 
 

A bending actuator was fabricated using stiff stripes printed on top of a soft cylinder 

(Supplementary Figure 3). While twisting and contraction are programmed by maintaining a fixed lead 

angle throughout the entire cylinder surface, bending was achieved by combining φ values of 0 and 90° 

in one half of the underlying cylinder. 

 
Supplementary Figure 3: Combined stripe pattern for bending mode. This actuator was created by combining 
longitudinal (α = 0°) and transverse (α = 90°) stiff stripes on one half of the soft silicone cylinder, resulting in 
complimentary strain and thus bending motion. 

 

Experimental data on the dynamic actuation behavior of the pneumatic contractor (Figure 3A) 

in shown in Supplementary Figure 4. Using a computer controlled valve, we pressurized the contractor 

with 0.4 bar at a frequency of 1 Hz. We recorded the contractile displacement at the free end using a 

laser distance measuring system (Keyence, LK-G5000). The slight deviations in the waveform of 



individual cycles are attributed to the dynamics of the pressure control system. The observed actuation 

speeds were 7.5 mm/s during inflation and 18 mm/s during deflation. In both cases, the air supply and 

hose diameter were the limiting factors. This places the Silink soft robots among the fastest soft robotic 

systems (2), as there are no intrinsic limits for the actuation speed such as creep, capillary dynamics, 

or mass and heat transfer.  

 

 
a) 

 
b) 

Supplementary Figure 4: Dynamic behavior of contracting motion mode. a) Cyclic behavior at actuation using 0.4 
bar and 1 Hz. b) Inflation phase at 7.5 mm/s and deflation phase at 18 mm/s. 
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