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Supplementary material
Change in average firing rate due to modulated external stimulation
We simulated a random recurrent network with static connections to estimate the expected change in average firing rate across
the excitatory population due to modulated external stimulation, as described in the main text for the simulations of a generic
visual cortex model. A network of NE excitatory and NI inhibitory LIF neurons was simulated. All connections were randomly
chosen and static such that all neurons received CE inputs from the excitatory population and CI inputs from the inhibitory
population. All neurons received Poissonian external input with rate νext for the first 20s of simulation, and external input with
a rate modulated according to the input preferred orientation (PO) and the stimulus orientation (SO) for the last 20s of the
simulation. The input PO of all neurons was randomly chosen at the beginning of the simulation. A new SO was randomly
chosen every 1s (see visual stimulation protocol in the main text for details).
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Figure 1. Change in average firing rate due to modulated external stimulation. Shown are mean and standard deviation of the
firing rates (estimated from spike counts) of excitatory and inhibitory neurons for blocks of 1s. The increase in standard
deviation during stimulation is expected, since during stimulation neurons receive external input which is modulated according
to the difference between their input PO and the SO.
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Non-random features of networks grown with SP
Although we have been describing networks created with SP and unstructured external input as random, counting connectivity
motifs between pairs of neurons shows a small bias towards bidirectional connections. Since multiple synapses between the
same pair of neurons are allowed in the simulation, we consider a pair to be connected if there is at least one synapse between
them. In a network where each individual contact between two neurons is a random variable from a Poisson distribution with
parameter µc, the probability of a pair of neurons to have at least one synapse is pc = 1− e−µc . From this, we calculate the
expected frequencies of motifs for the random network to be proportional to (1− pc)

2 for unconnected pairs, 2pc(1− pc) for
uni-directionally connected pairs, and p2

c for bidirectionally connected pairs.
The networks formed by SP without structured stimulation have slightly more bidirectional connections and fewer uni-

directional connections than expected in a random network (Fig. 2A). These discrepancies are enhanced after feature-specific
stimulation. Although these effects are rather weak, they go into the same direction as what has been observed in cortical
networks1, 2. Network models with spike-timing dependent plasticity (STDP), in contrast, have the opposite tendency. When
bidirectional connections exist in a network, any asymmetric STDP rule will tend to strengthen the connection in one direction,
while weakening the opposing one. Other plasticity rules based on STDP, like the triplet rule3 and voltage-based STDP4,
however, have been shown to strengthen the connections in both directions of a bidirectional connection between neurons firing
at high rates. An over-representation of bidirectional connections has also been shown by another computational model of
multiple plasticity mechanisms, including a distance dependent kernel for the formation of new synapses5. Finally, Hoffmann
& Triesch6 recently showed that such an over-representation of bidirectional connections will necessarily emerge in networks
in which connection probabilities are symmetric (as it is the case for an Erdős-Rényi random graph and related models) but
non-homogeneous such that some pairs of neurons are more likely to be connected than others.

In our case, symmetric connection probabilities are clear from Fig. 5B in the main text and the non-uniformity follows
from Fig. 2B and C. There is a strong positive correlation between in- and outdegree (Fig. 2B) that increases after modulated
stimulation (Fig. 2C). Having a high correlation between the in- and outdegree of individual neurons in a network allows
neurons to be classified into neurons with high connectivity (high in- and outdegree) and neurons with low connectivity (low in-
and outdegree). Non-identical growth rules for pre- and postsynaptic elements, however, might lead to a different outcome.
More studies with the SP model need to be performed to establish whether or not it is possible to produce networks with
realistic numbers of bidirectional connections. Such studies could include combinations with other types of synaptic plasticity,
the use of different homeostatic controllers for the synaptic elements, and the use of different target rate distributions.
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Figure 2. Non-random features of the networks grown with SP. (A) Relative frequency of pairwise connectivity motifs
relative to what is expected for a random network with the same number of synapses. There is an over-representation of
bidirectional connections and an under-representation of uni-directional connections that both become more prominent after
oriented stimulation. Dots refer to the mean and bars to ± standard deviation across 10 independent simulation runs. Inset:
Scatter plot of individual relative counts for the three different pairwise motifs before vs. after oriented stimulation, for 10
independent simulations. (B,C) Scatter plot of indegree and outdegree of individual excitatory neurons before and after
stimulation. There is a correlation between indegree and outdegree that is also increased after stimulation.
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Visual cortex simulation with target rates drawn from a distribution
We performed simulations in which target rates were drawn from a Gamma distribution with shape parameter k = 64 and scale
parameter θ = 0.125, yielding a distribution with mean 8Hz and standard deviation 1Hz, and found no significant difference in
our main results. The equilibrium distribution of firing rates, and of the in- and outdegrees, had a larger variance when the target
rates were drawn from a broader distribution. These results are in accordance with Pernice et al.7, who demonstrated a positive
correlation between the standard deviation of indegrees and the standard deviation of firing rates in simulated networks of LIF
neurons of different topologies. A more detailed study using different target rate distributions for generating networks with the
SP model would, therefore, lead to a better understanding of relationships between network structure and dynamics. A thorough
study of the influence of the target rate distribution on the created networks were, however, beyond the scope of this paper.
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Figure 3. Same as Fig. 1 in the main text, but with target rates ρ drawn from a Gamma distribution.
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Figure 4. Same as Fig. 5 in the main text, but with target rates ρ drawn from a Gamma distribution.
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Visual cortex simulation with decay of free elements
The SP model as it is implemented in NEST includes a decay of free synaptic elements. At each SP rewiring interval ∆t , a
percentage p of the synaptic elements which are not bound to a synapse are deleted. All the simulations in the main text do
not consider a decay of free elements, and elements which are not bound to a synapse remain available as free elements to
form new synapses. We also ran the same visual cortex simulation as described in the main text considering this decay of free
elements with p = 0.1 and found no significant difference to our main results.
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Figure 5. Same as Fig. 1 in the main text, but with decay of free elements. At each SP rewiring interval ∆t , a percentage
p = 0.1 of the synaptic elements not bound to a synapse are deleted.

6/10



5740 5742 5744 5746 5748 5750

Time (s)

0

50

100

5749.0 5749.5 5750.0

Time (s)

0

250

500

-90 -45 0 45 90

∆ PO

0

10

20

30

Fi
ri

n
g
 R

a
te

 (
H

z)

0 10 20 30 40 50

Pre (class)

0

10

20

30

40

50

P
o
st

 (
cl

a
ss

)

Before stimulation

0 10 20 30 40 50

After stimulation

0 10 20 30 40 50

After relaxation

-90 -45 0 45 90

∆ PO (deg)

0.06

0.08

0.10

0.12

C
o
n
n
e
ct

iv
it

y

-90 -45 0 45 90-90 -45 0 45 90

-90 -45 0 45 90

∆ PO (deg)

1.03

1.05

1.07

M
e
a
n
 n

u
m

b
e
r 

 o
f 

sy
n
a
p
se

s

-90 -45 0 45 90-90 -45 0 45 90

0 5000 10000 15000

0.0

0.002

0.004

0.006

0.008

1
st

 C
o
m

p
o
n
e
n
t

τ1 = 988s τ2 = 5295s

0.06

0.08

0.10

0.12

1.0

1.02

1.04

1.06

D
C

 C
o
m

p
o
n
e
n
t

A

B

C

D

E

F

G

N
e
u
ro

n
N

e
u
ro

n

Time (s)

C
o
n
n
e
ct

iv
it

y
Figure 6. Same as Fig. 5 in the main text, but with decay of free elements. At each SP rewiring interval ∆t , a percentage
p = 0.1 of the synaptic elements not bound to a synapse are deleted.
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Visual cortex simulation with target rates drawn from a distribution and decay of free elements
Finally, we ran simulations of visual cortex considering both the decay of free elements with a percentage p = 0.1 of free
synaptic elements which are deleted after every SP rewiring interval ∆t , and target rates ρ of excitatory neurons drawn from a
Gamma distribution with shape parameter k = 64 and scale parameter θ = 0.125, yielding a distribution with mean 8Hz and
standard deviation 1Hz. We found no significant deviation to the main results described in the paper.
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Figure 7. Same as Fig. 1 in the main text, but with decay of free elements and target rates ρ drawn from a Gamma distribution.
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Figure 8. Same as Fig. 5 in the main text, but with decay of free elements and target rates ρ drawn from a Gamma distribution.
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Modulation of mean number of synapses
Fig. 5G in the main text shows the time series of the connectivity modulation shown in Fig. 5E before, during and after
modulated external stimulation. Based on the same data, we show here the modulation of the mean number of synapses
(Fig. 5F).
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Figure 9. Same as Fig. 5G, but for the modulation of the mean number of synapses.
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