

Supplementary Figure 1: Class switching in Mre11/p53 mutant B cells. Primary splenic B cells of the indicated genotypes were cultured then stimulated with α -CD40/IL-4 to induce class switching. CSR to IgG1 was analyzed by flow cytometry with α -B220 and α -IgG1 antibodies. Representative plots are shown.

Supplementary Figure 2. Southern blot analysis of IgH locus, *c-Myc* and *N-myc* in Artemis^{-/-} **p53**^{-/-} **lymphomas.** Genomic DNA (gDNA) was isolated from primary lymph node tumors, digested with *Eco*RI and analyzed by Southern blotting. The membranes were hybridized with probes located within the IgH locus (diagrammed, top panel), *c-Myc* and *N-myc*, as described. Amplification of the IgH locus involving the J_H cluster, Cµ, and/or enhancer HS3a and c-Myc or N-myc was observed in the pro-B lymphomas analyzed. Data are representative of 7 Artemis^{-/-}p53^{-/-} pro-B tumors analyzed in this study.

Supplementary Figure 3. *Mre11* conditional allele is retained in thymic tumors from Art^{-/-} p53^{-/-} mice with B-cell specific *Mre11* mutations. (A) Representative PCR genotyping of the *Mre11* alleles of primary thymic tumors arising in Art^{-/-}p53^{-/-}Cre+Mre11^{cond/-} and Art^{-/-}p53^{-/-}Cre+ Mre11^{cond/H129N} mice; Cond, band corresponding to undeleted conditional allele, Deleted, "-" allele. The Cond and H129N allele are separated by 50bp and appear as a doublet. (B) Protein lysates of primary tumors were isolated and analyzed by western blotting with an α -MRE11antibody. Lower panel: Quantitation of MRE11protein levels; Arbitrary units (A.U.) measured by LI-COR software.

	١
r	1

IgH sequence		Junction		Myc sequence	
	Mre11 ^{Δ/*}				
1222 bp-ends in exon 3- of J,4 CCTCAGTCACCGTTCTCCTCAGGATAAGGAATGGCCTC TTTTAACCTTTGTTATGGAGTTTCTTGCATGCAGAC GCTCCTGAGGGANCCGGCTGAGACAAGTTGGCATA ATCTCAGAGCCTTTAGGACAGATTATCTCCACATCTTG CTGGTGATGGTGTIGGTGGAGTCCTGGATGATGGA AGCCTCATTTGAGGGAGATTTCCATCATCCTTGGC GGGCTGATTGAGGGAGATTTCACTTTAGAAAGAGTGAGACGACTTTGAGAGGACAACCTCTGGACGACTTTTACAAG NGGACAAGAGTGGAGCCTCGTGGCACGTTTTACACA GGACTCAGGGGACAAGCTTTGTGAAGGAGAG GCTCATTTGAGGGGCCTCGTTCTTAAACAG ATACTTCAGGAGCACCTCTGGGCGCCTTCGTTAAACAG GGACGAGGGGACAAGCCTCGGTCGAAGGAGCAC GGCGCTCGTGTGGGGGGCCTTCGTTAAACAG GTCTAGAGGGGGATAGGCCTCGGTCCAAA GTCTAGAGGAGGAGCAGCTGGGCCCTCGTCCAA GTCTAGAGGAGGATAGGGAGCAGCTGGCCTCGGCCGGGCCGGCTCGACAG GCTCTCTGGCACATTTTTAAAGGTTTGGAGTTTAACAATG CGAGGAAAAATAGTTAGGAAATTAGTGGCACTTTAACAATG AGTCCACTATTCTTAAGGCATTGTGACTTTAACAATG AGTCTCATTTTTTAAAGGTATTGGAACTTACAAAGTTACCAGGGGGAACACGGCCCCGGCGAGGAGCGG GCTATTGGGGAAACTGACTTGCTAAGGAACGGGCCCCCCCC	TICCAGGTCTTTAT TAATCTTGGATATT AAACTGTCTAGGG AAAAACTAAGAAT ATAGGAACTTTGG TIGGAGGGATAGTT TITAGGTGCGGA TATICCCATGCGAT TATTACGTGCGGA TATCCCATGCATA AGGGTAGTTGCT TITCAAAGGAACA ATTTGAGGTGCT TTCAAAGTGGCGACG TAAATAAGTTTCA ATTGGAGTGCGATC TGTAGCTGTGGCAAG TGTAACTGAGCGTC TAAAANANTTCNA	Not detectable- translocation too large	TGTGGAGGTGTA CGGTAGAGCC ACAGGGAAACA CGAGGTGGG CAGCAATTGGG TAACTGTACGACC GAGCAATTGGG CGGTGTTTATCC GAGCGCATGTC CTCATTCGTTCGT GAGACGCCTGGC CGTATTGTGTGGA AAGGGAAAGGA TTAATTCATGCTG CCTCCCGGGCTG CCTCCCGGGCTG CCTCCCGGCCCAC GGACCCCNT	996 bp. ends in exon 1 TGGGGTGTAGACC6GCAGAGACTCCTCCCCGGAGGAGC ACCCGCCGCACTTACTGGACTGCGCAGGGAGACCT GCCGCCCCACTTACTGGACTGCGCAGGGAGACCCA GGGGGGGTCGTTCTGGAAAGAATGTGCCCAGTCAACA AAAGGCAAATACACAATGCCTTCCCCGCGAGATGAG CTAACTGCCTCCCAGCACTACGTGCCCATCA CTAACTGCCCACACCGGTTCTGGCAGTGAGTGCT AAATGCAGCAGCATTCCGTTTTCCCGCGCAGCAGTGAGT CCTTCCCCCTTTCTAAGTCTGCTTTCCCCCGCGACAGTGAG CCCCCGGGACGCGTCCTGAGCGGGCCCCAGGCACAGTGG GCGAGGCAGCTGCTGAAGCCGGGCCCCGAGCATAA CCTTCCCCCTTTCTAAATTCTGTTTCCCCCAGCGTCACTGG GCGAGGCAGCTGCTGAGCGGGGCCCGAACAACCGTACA CCTCGCCCCGAGCGGGCCCCGAACAACCGTACA CCTCGCCCGGAGCGCGTCCCCGGGCCCGCAG CAGTCGCCGGGCGCGCCCCCGCGACCAGGCGCGCCCCCCCC	
1202 Dp-ends in exon 3' of J,A CCTCAGGTAAGAATGGCCCTCTCCAGGTCTTTATTATA GTTTTCTGAGCATTGCAGACTAATCTTGGATATTTGTCC CGTGACAGAAGTTGGCAAATAAACTGTTCTGGGGCT CCTCAACATCCTCCACGTCTTTGAAAACTGTCTAGGGACTT GCGTAAACAATCCTATGGCCGGAGGGATAGTTGGGGC TTCCAGTTTTTGCAGACGTGCCGGAGGATGTTCGGGC GGGCCACTTCTTTAGAATAAAAGTGTTAGCTGCGGGATAGTTG GGGCCACTTCTTTAGAATTAGACTGTTCCATGCAACGGAAC TCTGTGACAGCATTTATCCAGTGTCCATGCAACGGAAC CTCTGTGACAGCATTTATCCAGACGACGTCTCAGGAC GGGCCCTGCAAAAGTCCTCAAAGGGATGTTCCACACC CTTCCATTTGTTGGAGGAGAGCCGTCTTCAGGGACGTGCTTA GGAGCCTGCAAAAGTCCAGCTTTCAAAGGAACCACAGA AATATTAGAAGATGTTGCAGGCGATGTTCCAGGAC TTCCAAAAGTTTATCCAGGAGAGGGCTCTCTAGGGACGCTCT AGAACTGACTTTAGAATGTGAGGAGGCTCTT AGAACTGACTTTAGCAGGGATGAGGCCGATCAGAA CACCAGCTGGCAGGAAGCGCGCCAGACGCCAAGACCCCCGCGCGCAGAACCCCCC	CCTTTGTTATGGA CTGAGGGAGCCG AGAGCCTTTAGGA CTGATGGTGTTGGT CATTGTGGTGGT CATTGAGGGAGA CTTCAGGACCACC CAAAGAGTGGAGT CTAGAGCGTGGT AGAGAGGTCGTGGT AGGAGGGTCTGGT AGGAGGGTCTGGT AGGAAGAATAGCT CCAGGAAGACTGGTA CCAGGAACACCTG TTTGGGGAAGGG AGGAAGTGGTTTG CGAACCACACCTG CTGAACCAACACCTG CTGAACCAACACCTG CGCCNAAACTGGA AACTTGAAAAANTT	Not detectable- translocation too large	TGTGGAGGTGTA CGGGTAGAGCGC ACAGGGGAAAGA CGGAGGTGCTGG CAGCAATTGGGC TAACTGTAGGACC TGGCTGTTTATCC GGTGGTTTTATCC CCATTCGTTCGT GAGACGCCTGGC CGTATTGTGTGGA AAGGGAAAGGA TTAATTCATGCTG ACGCCGACCCA CCCGCCCACCCG CCTGCGCGCTGAC CCCGCCCCCCCC CCTGGGCTGACC NTCCCCCTNCC GGCCGG	1088 bp, ends in exon 1 IEGGGTGTAGACCGCAGAGACTCCTCCCGGAGGAGACC ACCCGCCGCACTTIACTGGACTGCGCAGGGAGACCT GCCGCCTCCACACCACCCGCCGGGTGGAAGTCCGAAC ACTGTGTGTGGGGGGGGGGAATCTGCCTTTTGG GGGGGGGTCGTTCGGAAAGAATGTGCCCAGTCAGA AAAGCCAAAATACGCAATGCCCTCCCCGCGGAGTGGAG ICTAACGCCAAATACGCAGCGCTTCGCATAGACCTCACTG SCTAACGCCACCGCCGCCCTGCAGTAACCACCGGCCCCCAGATAA CCTTCCCCCTTTCTAAATTCTGTTTTCCCCAGGCTCACAG GCCGCGGGACGCGGTCCAGGGTACATAGG GCCCCGGAGCAGTGCTGACGCGGCCCCGAGATAA CCTTCCCCCTTTCTAAATTCTGTTTCCCCAGGCTCACTGG GCGAGGCAGCTGCTGACGCGGCCCCAGGGTACATGG GCCCGGGAGCAGCGGCTCCCGAGCAGGGTACATGG GCCCGGGAGCAGCGCGTCCCGACAACCGGCCCCCCACAGG CAGTTCCACCCAGCGCGCCCCCACACACCGGCCCCCCACAGG CCCCTTTATTCCCGGGGGGGCAGCCGAGCAGGAGAAAAA STGGGGNAAGGGANAAAAAAGGGGAACCCTTGGCCCCCCAATCAA STGGGGNAAGGGANAAGAAAGGCGCTCCCCCCAATCAA STGGGGNAAGGGANAAGAAAGGGCATCCCTGGCCAATCA GCAAAAAAAAAGGGAANGGGNAGGGATTCCT	
1105 bp-ends in exon 3' of J,4 CCTCAGTCACCGTCTCCTCAGGTAAGAATGGCCTCTCC TAACCTTIGTTATGGGGTTTTCTCAGCATTGCAGACTAA CCCTGAGGGAGCCGGCTGAGAGAAGATGGGAAATAAA TCGAGGGTTIGGTGGGGGCCCCGGAGAGAGGAGAGCGGGAGATGGGGATGTGGGAGTTCCTCACAGCCTCTGAGAGATAAGGATC CTCATTTGAGGGAGATGCGCAGACAGCATTTATACGTGG CCTGTAGTGGGAGTGGGGCCCCTGGAAAGAGATTTA ACTACAGACCACCTCTGTGACAGCACATTTATACGTGG CTGAGTGGGAGTGGGGCCCCTGAGAGGAGAG	CAGGTCTTATTTT CTTGGATATTTGT CTGTCAAGGATC AACTAAGAATCTG GGACTTTGGAGG GGACTTTGGAGG GGACTTGCTGC GGACTGTCCACA TGCTAGCGACACA GGACTGTCCCACA TGCAGTCCCACC GGAGTCTCACTGC GGAGGTCTTGACT GGAGGTCTTGAACT GGAGGTCTTGAACT GGAGGTCTTGAACT GGAGGCCACAGCACA CTGCGCAAGGCCTA NCTGCGTCGGCCAAGAA AGTCCAGCTGAN	Not detectable- translocation too large	TGTGGAGGTGTA CGGGTAGAGCGC ACAGGGGAAAGA CGAAGTIGTGTG ACTGTACGACCAA GCTGTTATTCCCT GCAATTITATCACT GCAATTITATCCCT GCACCCTC CATCGTCGTCCGCC GGCAAGAACACAC GGGAAGGACTA ATTCATGCTGCGC CGGGGCTGANGC CCCGAGTTCCCA AAATTANAANAGA	920 bp. ends in exon 1 TGGGGTGTAGACCGGCAGAGACTCCTCCCCGGAGGAGACCT GCCGCCCACCTTACTGGACTGCGCAGGGAGACCT GCCGCCCCACTTACTGGACTGCGCAGGGAAGTCCGAAC AGTGTGTGTGGGGGGGGGGGGGGGACTCGCCAGTCAACATA AGGGAAAATACACAATGCCTCCCCGCGAGATGAGTCCTCA AGTGCTCTCCAAGAATGCCTCCCCGCGAGATGAGTCCTCA AGTGCCTCCCAGACATGCTCCCCGCGAGATGAGTCCCAG TTCCCCCTTCTAAATTCCTGTTTTCCCCCAGCATGAGTACCCCAGTCAACA CCCGGGACCTGCGTGACGCGGGGGCTCCAGGATACT TTCCCCCTTTCTAAATTCCTGTTTTCCCCCAGCATGAGTACCCCAGTCAACA GCGCGGGACGTGCGTGACGCGGGCGCCCAGTTA TTCCCCCTTTCTAAATTCCTGCTTCCGCGGACCTCAGGATACT TTCCCCCTTTCTAAATTCCGGTGACTGCAGTGACTGCCCAGGTACAGCA GCGCGCGAGCAGCGGCGCCCCAGCTGACGCCCCCCCCCC	

Supplementary Figure 4: Sequences of cloned PCR products from IgH:Myc PCR amplification. PCR was performed on genomic DNA from activated splenic B lymphocytes. PCR products cloned and sequenced from all genotypes contained sequences from both IgH and Myc. B lymphocyte genotypes were as follows: (A) p53^{-/-}Mre11^{-/+} (B) p53^{-/-}Mre11^{-/-}(C) p53^{-/-}Mre11^{-/-}.

(B) and (C) are shown on the following pages.

Supplementary Figure 4 (continued)

В

IgH sequence		Junction		Myc sequence	
Mre11 ^{Δ/H129N}					
983 bp- ends in exon 3' of J _H 4 CCTCAGGTAAGAATGGCCTCTCCAGGTCTTT/ CTTTGTTATGGAGTTTTCTGAGCATTGCAGAC GATATTTGTCCCTGAGGGAGCCGGCTGAGAC GAAATACAACTGTCTAGGGATCTCAGAGCCT' GATTATCTCCACATCTTGGAAAAACTAAGAATC TGGTGTTGGTGGAGGCAGTCTCAGAGGGAT TGGAGGCTCATTTGAGGAGAGTGCAGAGGGGCTGTAAAACA GCTGGAGGGGATAGTTGGAGGGCGTGAAGATGA TTTTTAGAATAAAAGTATTAGCTGCGGAATATA CCACCTCTGTGACAGCATTTATACAGTATCCG GGACAAAGAGTGGAGTG	ATTTTTAAC TAATCTTG GAAGTTGG TTAGGACA CTGTGTGA AGGGACAT ATCCTATG GATTTCAG CTTCAGGA AATGCATAG GGATTTGTG GGAGAAAG CTGTCTAG CTGTCTAG CTGTCTAG CTGTCTAG CTGTCTAG CTGTCAAA AGATGTTG TAACCCAAG CAGAACTG TTTAAATGA CCGATCAG GCAGGTCA AATAA	Not detectable- translocation too large	TGTGGAGG CCGGAGG, CTGGACTG CTCCACAC TGCTGGAG TTTGGCAG ATGTGCC TACACAATC CCTAAGTG GAGCAATT AGACCTCA ACTGAGCG CCCCCTTT GCCTGGCC TACATGGC TGCGGTGA CCGAGCG GGACTAGC AGTTAATT CCGGAGCG GGACTAGC AGTTAATT CCGGAGCA AATAGAGA AATAGAGA TCTGGGCT TATTTCCCC	1015 bp, ends in exon 1 GTGTATGGGGTGTAGACCGGCAGAGACTCCTC AGCCGGGTAGAGCGCACCGGCGCACTTTA GCGCAGGGAGACCTACAGGGGAAAGAGCCGC CACCCGCCGGGTGGAAGTCCGAACCGGAGG GTGTGTGTGTGGGGGGGGGGGGGGGGGGAATCTGCCT GCAAATTGGGGGGGGGGGGGGGGGGGGGGGGAATCTGCCT GCAAATAACTGTACGACCAAAGGCAAAG AGCTTCCCAGGAGATGGAGTGGCTGTTTATC GGGGCTCCAAGTATACTGTACGACGAGTGGCTGTTTATC GGGGCTCCAAGTATACGTGCCTCTATCACTCCACAC GGGGCTCCTAGATAACTGACCCTTATCACTCCACAC GGGGCTCCTAGATAACTGCTACACTCGTCTT CTAAATTCTGTTTTCCCCAGCCTTAGAGAGAC CCCCCGGGACGTGCGTGACGCGGTCCAGGG GTATTGTGTGGAGCAGGCAAGAACACGGTCCAGG GTATTGTGTGGGGCGAGGCAGCAGCTGTTCCACC CCGGCGGGACAGCAGCAACACGTTCAG CTGCGCCCGAACAACCGTACGAAAAGGGAAA GCGCCGGAGCAAGAGAAAATGGTCGGGCCCCC CATGCTGCGCCCAACAGCGAGGAGGAGCAACACAGTTCCC GGGCCGGGGCAAGGAGAAAATGGTCCGGGCCCCC CGGGGGGCAAAGGGANAAANAAAAAATTCC TAAATCCCCCCCCCCCCCCCCCCCCCTTTTTA GAACCCCCGCCCCANCCGGCCCCCTTTTTA GGGGGGGGAAAGGGANAAANAAAAAAAAAAAAAAAGGGGGG	
1135 bp- ends in exon 3' of J _H 4 CCTCAGTCACCGTCTCCTCAGGTAAGAATGG GGTCTTTATTTTACCGTCCTCAGGTAAGAATGG GGTCTTTATTTTTACCTTTGTTATGGAGTTTT TGCAGAGAGAGTTGGGAAATAAACTGTCTAGG AGCCTTTAGGACAGATGGGGAGTCCCCGGGATAGTGGGGACACTGCGGGGCTTTGGAGGCTCATTTGAGGGC GGGATAGGGACTTTGGAGGCTCATTTGAGGG AAACAATCCTATGGCCGGAGGGATAGTTGGG TGGAGATTTCAGGTCTTTGAGAGGCTCATTTGAGGGA TATATACTTCAGGACCACCTCTGTGACAGCG TCTTAGATTTGTGAGGACAAGAGTGGGGTCTTAG TCCAGTGCATAGGGACAACAGGCGGCTCTCA AACTTCATTGTGGAGGCATCTGGGGAGCC TCCAGGCTGCTCAAGGGACAAGAGGGGGCTCTCA AACTTCATTGTGGAGGAGCATCTGGTGGAGCC TCCAGGCTGCTCAAAGGAGCACTGGCTGCTTAG TCAAGGGAGAAAGCCTCTGGTGGAGCC TCCAGCTTCCAAAGGACCACCAGAAGTAGTGGT TTAGAAGATGTTGCTTTTACTTTAAGTTGGT AGAATAGCTAATACTGTGACTTGGACAGCAT CAATTGCCAAGGACTGTTTTTTTAAATGTGG TTCAAGTACTCATTTTTTAAATGTCCAAAATT CATTTGAGGCTCTGTTTGTGAGAACTGACA GTTTCAAGGACTGACTTTTACCACTAAGTTGGG TTCAAGTACCCAAGGAATGTGGAGCCTCTC ATTCAGGACTGACTTTTACACTAAAATAAATTAAC ATTTTTAAACGAACGAACAGAAGGCCTCTCT ATTCAGAACTGACTTTTAACAATAAAATAA	CCTCTCCA CTGAGCAT GAGCCGG GATCTCAG AAAAACTA TGGATGAT GCTGTAGT AGCTGCGG GTTTATACAG GGGCACTT AGCTGCGG AAAAGGGT TGCAAAAG TGCAAAAG TCCTAGGA AGAGGGTT TTACTAAA TCCTAGGA AGAGGGTT TTACTAAA CCTAGGA AGAGGGAA TTGAAAAA GCTGGCAG GAAGGGAA TTGAANAA CCGAAAGT CATACCAG GAAGGGAA	Not detectable- translocation too large	TGTGGAGG CCGGAGG CTGGACTG CTCCACAC TGCTGGAG TTTGGCAG AATGTGCC TACGCAAT CCCTAAGT TGAGCAAT TGAGCCAT ACGCCTGC GGTACATG CCTGCGGT AGCCGAGC AAGGACTA AGCCGGAC CTCTTTCC CCAAAGCA NATANANA CTGGCTAA GGTCTNNC	974 bp, ends in exon 1 ITGTATGGGGTGTAGACCGGCAGAGACTCCTC AGCCGGGTAGAGCGCACCGGCGCACTTTA IGCGAGGGAGACCTACAGGGGAAAGAGCCGC CACCCGCCGGGTGGAAGTCCGAACCGGAGG ITGTGTGTGTGGGGGGGGGGGGGGGGGAATCTGCCT ICAAATTGGGGGGGGGGGGGGGGGCAATCTGCCT ICAAATACTGTACGACCAAAGGCAAAA GCCTTCCCCGCGAGATGGAGTGGCTGTTTAT IGGCTCTCCAAGTATACGTGGCAGTGAGTTGC TTTAATAAAATTCCAGACATCGTTTTCCTGCA ATCTGCGGTTGATCACCCCTATCACTCCACA CGGGGGCTCCTAGATAACTCATTCGTTCGTCC TTCTAAATTCTGTTTTCCCCAGCCTTAGAGAG GCCGCCGGGACGTGCGTGACGCGGTCCAG GCGATTGTGTGGAGCGAGCGAGCAGCAGTGC ITCAAATTCTGTTTCCCCAGCCTTAGAGAG GCCGCCCGGGACGTGCGAGCGCGCCCAG GCGTATTGGTGGCAGCGAGCAGCAGCTGTTCCA ICACTGATATACGCAGGGCAAGAACACAGTTC CCGGCCCCGAGCAACAACCGTACAGAAAGGAA GCCGCCCGGGGCAAGAAACGGTACCCCGG ITCATGCTGCGCCCGAACAACCGTACAGAAAGGAA GCGGCCCCGAGCAAGAGAAAATGGTCGCGGCGC ITCATGCTGCGCCCGAACAACCGTCCACCCGG ITCATGCTGCGCCCGAACAACCGTCCCCCGG ITCATGCTGCGCCCGAACAACCGTCCCCCGG ITCATGGCTGCCGGGGCTGANGCTCCTCATC CCGGCCCCCCCCCCCTTTAAACCCCGG ITCATGGCGCGGGAANNCNANAGGAGGAAAAAAA GANGTNGGGNAANGGAAAAAAAAAAAAAAAAACTNCT ICCCCGCCCCAACGACCCCTTTTATTCCNGGG ICCGGCCCAAAGAACCCCTTGGGCCTTGCNCT GCTT	

Supplementary Figure 4 (continued)

С

IgH sequence	Junction			Myc sequence	
Mre11 ^{Δ/-}					
1151 bp- ends in exon 3' of J ₄ 4 CTTTGAAAAACTAAGAATCTGTGTGAATGGTGT TCCCTGGATGATGGGATGAGGAACTTTGGAGG AGGGAGATGCTAAGGAACAATCCTATGGCTGGAG GGGGCCGTAGTTGGAGGATTTTCAGGTTTTTAG, ATTAGCTGCGGAATATACTTCAGGACCACCTC CATTTATACAGTATCCGATGCATAGGGACAAA TGGGCACTTTCTTTAGATTTGTGGAGGAACAA TGGGGCACTTTCTTTAGATTTGTGGAAGGAGC TAGTGATTGAGTCAAGGGAGAAAGGCATCTA CTCAAAAGGGTAGTGCTGCTGTCTAGAGAGGAC CCTGCAAAAGGCACGACGTTCCAAGGAACAAG TGTATGGAATATTAGAAGATGTTGCTTTTACT GTTCCTAGGAAAATTGGAGCACTCA CTCCTAGGAAAAGTCCAGCTTTCAAAGGAACAAC TGTATGGAATATTAGAAGATGTTGCTTTTACT GTTCCTAGGAAAATTGGAGCTCTGTTTGTGTA ATTACTTAAAGTTTAACCGAGGAATCGGNAGT CTCATACCCTATTTCAAGGCCATCTTTTTTAACT TTTGGAATACCATTTGAGGTCTTGTTTGTACAA AGGTTTTAAAGTTTAACCGAGGAAACAAGTCTTAACAA AGGTTTTAAAGTTTAACCGAGGAAACAAGGTCAATGGCAA TTNGGANTCAANATGGCCCAATCANAACCAA GCANCACCTGGCAAGAAACAAGGTCAATGT CTTTTTTGTACCATTTGGGGAAAACAAGACTCAAACCAA GCANCACCTGGCAAGAAACAAGGTCAATGT CTTTTTTGTACCATTTTGAAAAAAACCNA ACTTNGTAACCTTTTGGAAAAAAAACCNA AAACTTTTAAAACTTTGAAAAAAACCCNC AAANCTNTGTNCCANCCCCCCCCCCAAACCCCA AAAGTTTTAAAAATTGAAGAACCCNCCTGGGGTT TTTCNNAAAAAAAATTGAAGAATTCAAAAACCNC AAANGCTTNAANCAAAACCCNCCTGGGGTT AAANCTTNAACTTAACCAATTGAAGAATTCANANTG AAANGTTTAAACATTTTAACCAATTGAACCCNCCCAACCCCCCAAACCCCAA AANGNCCCCNCTTTTACAAAATTCAANTTCACNCCCAACCAAACCAA AANGNCCCCNCTTTTAACAAAATTCAANTTCCANCCAACCAAAGGNTTTTTAAAATTTTTCCANCTTTTAAAAAAAAAA	TGGTGGAG GCTCATTTG GGGATAGTA AATAAAAGT CTGTGACAG GAGTGGAG TTCCACACT JAGCTGTCT GCCTCGGT TTGGTGGAG AGAAGTAG TTAAATGT GTCCAAAAT GTCCAAAAT AGAACTGAC GAGGCTCT ATAATAAATT AATGTTGAN AAACACCT GGCNAAGG CTAGGTAAA GTTTTTNAA SAAANGTTC AATTTGCAN AAACTGGA ANCNTTTT	GGGGGGG GA/ CTTTGAAAA A	TGTGGAGGT CGGAGGAGC GACTGCGCAG CACCACCCG AGT	185 bp, ends 5' of exon 1 GTATGGGGTGTAGACCGGCAGAGACTCCTCC CGGGTANAGCGCACCCGCGCGCACATTTACTG SGGAGACCTACAGGGAAAGAGCCGCCTCCA CCGGGTGGAAGTCCGAACCGGAGGTGCTGG GTGTGTGGGGGGGGGG	
1222 bp- ends in exon 3' of J _H 4 CCTCAGTCACCGTTCTCCTCAGGATAAGGAA CCAGGTCTTTATTTTTAACCTTTGTTATGGAG CATTGCAGACTAATCTTGGATATTTGTCCCTG GGCTGAGAGAAGTTGGGAAATTAAACTGTCTA AGAGCCTTTAGGACAGATTGGGAGTGGAGT	ITGGCCTCT ITTTCTGTG AGGGANCC GGGATCTC TGAAAAAC CCTGGATG GGAGATGC GGAGATGC GGACTTCA AGCTGCGG TTATACAGT GGCACTTT ITGTTAAA TGATTGAGT AAAAGGGA CCAAAAGTCCAAT TCAATCAAT TCAATCAAT TCAATGACT AAAATGTCCAG GGAAAATAA AAAAGTGGT AAAAGTCCAG ATTNCTAAA	Not detectable- translocation too large	TGTGGAGGT CGGAGGAGCC GACTGCGCAC CACCACCCG AGTGTGTGTG GTCAACATAG TCCCCGCGAC CCAAGTATAC ATTCCAGACA GATCACCCTC GTGACGCGG GGCAGCTGTT GAACACAGTT AGAAAGGAA CGGGCCGCC CCCCGGAGCC TCCTCCTCTT TTCCCCAAGC AAAATTANAC CTGGGCTAAT GGGGTCTGCC	996 bp, ends in exon 1 GTATGGGGTGTAGACCGGCAGAGACTCCTCC CGGGTAGAGCGCACCCGCCCCCACTTTACTG GGGAGACTACAGGGAAGGCGCCCCCA CCGGGTGGAAGTCCGAACCGGAGGGCGCTCCA CTGGGGGGGGGGGGGGGAATCTGCCTTTTGGCAG GGGGGGGGGGGGGTCGTTTGCCGAACAACAATGCCT GTGGCAGTGAGTTGCTGAGCAATTTTAATAAA TCGTTTCCTGCATAGACCTCATCTGCGGTT TATCACTCCACACACTGAGCGGGGGCCCCAGGGGGCGCCC TCCAGGGTACATGCCCTTTTAATACAATTCCTTTT TAGAGAGACGCCCGGCCCCGGGACGTGC TCCAGGGTACATGCCGCAATATACCAATGGCCA CACCTGCGGTGCTGTATTACTGCTGCG CCAGGGTACATGCCGGCCCCGGGACGTGC TCCAGGGTACATGCCGCGCCCGGGACGTAC AGGACTACGCGCGCGCCCGACAACCCCAC CAGCCGAGCGCTGCGCCCCAACAACCGTAC AGGACTACGGCGCGCGCCCCAACAACCGTAC AGGACTACGGCGCGCCCCAACAACCGTAC AGGACTACGGCGCGCCCCAACAACCGAA CCACCCCCCCCCCCCC	

Supplementary Figure 5: **DR-GFP:MMP24 translocation junctions**. (A) Number of junctions with microhomologies (A-NHEJ) and blunt (C-NHEJ)recovered from MEFs of the indicated genotypes. (B) Representative sequences of A-NHEJ and C-NHEJ joins for each genotype. DR-GFP flanking sequences, left; MMP-24 flanking sequence, right (Bold); microhomologies, box.

Supplementary Figure 6: **Inducible MYC overexpression.** U2OS and U2OS-MYC-ER cells were treated with DMSO or 200nM 4-OHT for 72 hours to induce MYC localization to the nucleus. (A) Immunofluorescent images of nuclear MYC. (B) Fluorescence intensity of nuclear MYC was quantitated using Applied Spectral Imaging software. (C) Western blot analysis of MYC-ER. Cell lysates from untreated and 4-OHT treated cells were analyzed by western blotting using an α -MYC antibody. The MYC-ER fusion protein (97kDa) is overexpressed compared to the endogenous MYC protein (57kDa). GAPDH, loading control. (D) Flow cytometry analysis. DNA content was analyzed by fixing cells and staining with propidium iodide. Percent indicates cells in S-phase of the cell cycle.

Supplementary Figure 7: DNA repair foci induced by MYC overexpression. U2OS cells harboring pBABE (empty vector) or pBABE-MYC-ER were treated with DMSO or 200nM 4-OHT to induce MYC localization to the nucleus. DNA repair proteins (indicated at left) were detected by immunofluorescence microscopy (green); DAPI, blue. Representative images of nuclear foci from Figure 4C-H are shown.

Supplementary Figure 8: Quantitation of DNA repair foci in mirin treated cells

overexpressing MYC. U2OS-cMycER cells were treated with DMSO or 75μ M mirin for 8 hours after 72 hours 200nM 4-OHT treatment, and localization of DNA repair foci was examined by immunofluorescence microscopy. Percentages of nuclei with indicated DNA repair foci are plotted. Mean <u>+</u> SEM of 3 independent experiments. *, p<0.05; **,p<0.01; paired t-test.