Supplementary Online Content

Tedesco D, Gori D, Desai KR, et al. Drug-free interventions to reduce pain or opioid consumption after total knee arthroplasty: a systematic review and meta-analysis. JAMA Surg. Published online August 16, 2017. doi:10.1001/jamasurg.2017.2872

eTable 1. Risk of Bias Summary From Randomized Clinical Trials for Non-Pharmacological Postoperative Pain Management After Total Knee Arthroplasty

eTable 2. GRADE of Evidence Assessment for Non-Pharmacological Postoperative Pain Management After Total Knee Arthroplasty

eTable 3. Summary of Key Review Findings for Non-Pharmacological Postoperative Pain Management After Total Knee Arthroplasty

eFigure 1. PRISMA Flowchart Depicting the Search Strategy

eFigure 2. Pain Relief: Cryotherapy

eFigure 3. Pain Relief: Continuous Passive Motion (CPM)

eFigure 4. Pain Relief: Continuous Passive Motion (CPM)

eFigure 5. Pain Relief: Preoperative Exercise

eFigure 6. NSAID Consumption: Cryotherapy

eFigure 7. Opioid Consumption: Acupuncture

eFigure 8. Opioid Consumption: Continuous Passive Motion (CPM)

eFigure 9. Acupuncture

eFigure 10. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 11. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 12. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 13. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 14. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 15. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 16. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 17. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 17. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 18. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 18. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

eFigure 19. Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation eFigure 20. Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary) eFigure 21. Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary) eFigure 22. Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary) eFigure 23. Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary) eFigure 24. Funnel Plot of Comparison for CPM Trials Measured in Terms of Reported Points in the VAS Scale at 1 Week eFigure 25. Funnel Plot of Comparison for CPM Trials Measured in Terms of Opioid Consumption (mg/kg/48 Hours of Morphine Equivalent) eFigure 26. Funnel Plot of Comparison for Cryotherapy Trials Measured in Terms of Reported Points in the VAS Scale eFigure 27. Funnel Plot of Comparison for Cryotherapy Trials Measured in Terms of Opioid Consumption (mg/kg/48 Hours of Morphine Equivalent) eFigure 28. Funnel Plot of Comparison for Electrotherapy Trials Measured in Terms of Reported Points in the VAS Scale at 1 Week eFigure 29. Funnel Plot of Comparison for Acupuncture Trials Measured in Terms of Reported Points in the VAS Scale at 1 Week eFigure 30. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 31. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 32. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 33. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 34. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 35. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 36. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 37. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 38. Subgroup Sensitivity Analysis Comparing Studies by Type of Control eFigure 39. Subgroup Sensitivity Analysis Comparing Studies by Time (Studies Divided If Published Prior or Comprising Year 2000 or From 2001 Onwards) eFigure 40. Subgroup Sensitivity Analysis Comparing Studies by Time (Studies Divided If Published Prior or Comprising Year 2000 or From 2001 Onwards) eFigure 41. Results of the Meta-Regression for the Distribution of Age in the Groups (Treatment vs Control) eFigure 42. Results of the Meta-Regression for the Distribution of Sex in the Groups (Treatment vs Control)

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable 1. Risk of Bias Summary from Randomized Controlled Trials for Non-pharmacological Postoperative Pain Management after Total Knee Arthroplasty.

Study	Random sequence generation	Allocation concealment	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Blinding
Adravanti et al. (2013)	Low	High	Unclear	High	Low	High
Albrecht et al. (2008)	Unclear	Unclear	Low	Unclear	Unclear	High
Beauprè et al. (2001)	Unclear	Unclear	Low	Unclear	Low	High
Bennett et al. (2005)	Low	Low	Low	High	Low	High
Borckardt et al. (2013)	Low	Low	Low	Unclear	Low	High
Bruun-Olsen et al. (2009)	High	Low	Low	Low	Unclear	High
Calatayud et al. (2016)	Low	Low	Low	Low	Unclear	High
Chen et al. (2013)	High	High	Unclear	Unclear	Low	High
Chen et al. (2015)	Unclear	Unclear	Low	Unclear	Unclear	High
Colwell et al. (1992)	Unclear	Unclear	Low	High	Low	High
Denis et al. (2006)	Low	Low	Low	Low	Low	High
Gibbons et al. (2001)	Unclear	Unclear	Low	High	Low	High

Gstoettner et al.	Low	Low	Unclear	Low	Low	High
(2011)						
Harms et al.	Unclear	Unclear	Unclear	High	Low	High
(1991)				<u> </u>		<u> </u>
lvey et al.	Low	Low	Unclear	Unclear	Unclear	Low
(1994)						
Kim et al.	Low	Unclear	Unclear	Low	Unclear	High
(2009)						-
Kullenberg et al.	Unclear	Unclear	Low	High	Low	High
(2006)						
Lensson et al	Low	Low		Low	Low	High
(2002)	LOW	LOW		EOW	LOW	riigii
(2003)	1	1	1.	1.12 - 1.	1	1.12 - 1-
Lenssen et al.	LOW	LOW	LOW	High	LOW	High
(2008)						
Levy et al.	Unclear	Unclear	Unclear	High	Low	Unclear
(1993)						
MacDonald et	Low	Low	Unclear	High	Low	High
al. (2000)				0		U U
Maniar et al.	Hiah	low	Unclear	Low	Hiah	High
(2012)		2011	erioloai	2011	· ···g···	
May at al	Lincloar	Low	Low	High		High
(1000)	Unclear	LOW	LOW	riigii	LOW	riigii
(1999)		1.12 - 1-	1		1.	1.12 - 1-
McKay et al.	Unclear	High	LOW	Unclear	LOW	High
(2012)						
McInnes et al.	High	Low	Low	Low	Unclear	High
(1992)						
Mikashima et al.	Low	Low	Low	Unclear	Unclear	Unclear
(2012)						
Montgomery et	High	Unclear	Low	Unclear	Low	High
al (1006)	i ngin	Griotea		Choical		i ngi i
Maratti at al	Low	Low	Lliab	High	Undoor	Lliab
	LOW	LOW	пıyn	пуп	Unclear	пığıı
(2012)						

Morsi E. (2002)	High	High	Low	High	Low	High
Pope et al. (1997)	Unclear	Unclear	Low	Unclear	Unclear	High
Radkowski et al. (2007)	Low	Unclear	Low	High	Low	Low
Sahin et al. (2006)	High	Unclear	Low	Low	Unclear	High
Smith et al. (2002)	High	Unclear	Low	Unclear	Unclear	High
Su et al. (2012)	Unclear	Unclear	Low	Unclear	Low	High
Thienpont et al. (2014)	Low	Low	Low	Low	Unclear	Unclear
Tsang et al. (2007)	Low	Low	Low	High	Unclear	Unclear
Tzeng et al. (2015)	Unclear	Low	Unclear	Unclear	Low	High
Walker et al. (1991)	Unclear	Unclear	Low	Unclear	Low	Unclear
Webb et al. (1998)	Unclear	Unclear	Low	Unclear	Low	Unclear

eTable 2. GRADE of Evidence Assessment for Non-pharmacological Postoperative Pain Management after Total Knee Arthroplasty.

Study Outcome	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	GRADE
Pain relief – VAS						
CPM	Very Serious	Not Serious	Not Serious	Serious	Not Serious	⊕ Very Low
Cryotherapy	Very Serious	Serious	Not Serious	Not Serious	Serious	⊕ Very Low
Electrotherapy	Very Serious	Serious	Not Serious	Not Serious	Serious	⊕ Very Low
Acupuncture	Serious	Serious	Not Serious	Not Serious	Not Serious	⊕⊕ Low
Pain relief – WOMAC						
СРМ	Very Serious	Not Serious	Not Serious	Not Serious	Not Serious	⊕⊕ Low
Preoperative exercise	Serious	Serious	Not Serious	Not Serious	Not Serious	⊕⊕ Low
Opioid consumption						
СРМ	Serious	Serious	Not Serious	Serious	Not Serious	⊕ Very Low
Cryotherapy	Serious	Serious	Not Serious	Not Serious	Serious	⊕ Very Low
Electrotherapy	Serious	Not Serious	Not Serious	Not Serious	Not Serious	⊕⊕⊕ Moderate

Acupuncture	Serious	Serious	Not Serious	Not Serious	Not Serious	⊕⊕ Low
NSAID consumption						
Cryotherapy	Very Serious	Serious	Not Serious	Serious	Not Serious	⊕ Very Low
Time to first PCA						
Acupuncture	Serious	Not Serious	Not Serious	Not Serious	Not Serious	⊕⊕⊕ Moderate

 $\ensuremath{\mathbb{C}}$ 2017 American Medical Association. All rights reserved.

eTable 3. Summary of Key Review Findings for Non-pharmacological Postoperative Pain Management after Total Knee Arthroplasty.

Study	Duration of intervention	Outcome measure timepoints	Primary outcome measure	Secondary outcome measure	Main findings/Conclusi on	Conflict of interest/funding disclosure
Continuous passive	motion (CPM)	-				
Beauprè et al. (2001)	3 days postoperative ly (PO)	3 and 6 months PO	Knee extension and flexion	WOMAC (Pain, Stiffness, Function), SF36	Self-reported pain, function, or overall quality of life was not different at either of the postoperative measurement times.	Study funded by a grant from the Health Services Research and Innovation Fund, Canada.
Bennett et al. (2005)	6 days PO	3 months, 1 year PO	Range of Motion (ROM)	Length of stay (LOS), Pain, Wound healing, Perceived Health Status Measure SF-12	Statistically significant differences in mean pain scores between groups. The differences are not clinically significant (≤1 point on a 10-point scale).	Funds received in partial or total support of the research material described in this article from the Alfred Grant, Australia.

Brunn-Olsen et al. (2009)	6 to 12–14 weeks PO	14 weeks, 9 months PO	Pain (VAS scale)	ROM	CPM was not found to have an additional short- time effect compared with physiotherapy. After three months pain relief was obtained.	A grant for the study was received from the Norwegian Foundation of Postgraduate Physiotherapists. Conflict of interest not stated.
Chen et al. (2013)	3 days PO	2 weeks, 6 weeks, 3month, 6 month PO	ROM	Pain	No significant difference	Project funded by the National Health Research Institute, Taiwan.
Colwell et al. (1992)	3 days PO	1, 2 and 3 days PO	ROM	Analgesia use	CPM reduces opioid consumption and LOS.	Not stated.
Denis et al. (2006)	9 days PO	Discharge	ROM (flexion, extension, Timed up and go test - TUG)	WOMAC (Pain, Stiffness, Function)	The results do not support the addition of CPM applications to conventional physical therapy. CPM did not show to further reduce knee impairments or disability or the length of the hospital stay.	Not stated.
Harms et al. (1991)	6hr/day for 1 week PO	Discharge	Pain (VAS scale)	ROM, LOS	No significant differences found in VAS scores	Not stated.

Kim et al. (2009)	20 minutes/day, from day 2 to day 14 PO	Flexion contracture and maximum flexion: day 7 after TKA, day 14. 6 weeks, 3 months and 6 months. Level of pain during ROM exercise: day 7 and day 14.	Flexion contracture, maximum flexion	AKS knee score, AKS function score, WOMAC pain, WOMAC stiffness, WOMAC function	Regular passive ROM exercise does not offer additional clinical benefits to the patients after TKA	Not stated.
Lenssen et al. (2003)	4 days PO	4days	Pain (VAS scale)	ROM	No significant differences found in VAS scores	Not stated.
Lenssen et al. (2008)	4 hours/day for 4 days PO	17 day, 6 weeks, 3 months	Function and pain (WOMAC scale), ROM	Medication Use, Satisfaction	No significant differences found in WOMAC scores	The authors declare that they have no competing interests.
MacDonald et al. (2000)	6 weeks PO	6, 12, 26 weeks, and 1 year PO	Function (KSS scale)	ROM, Pain	No significant differences found in VAS scores	Not stated
Maniar et al. (2012)	Day 1 and 3 PO	3, 5, 14±2, 42±5, 90±10	Pain-VAS, ROM, TUG, swelling and wound healing	WOMAC, SF-12	No significant differences found in VAS scores	The Conflict of Interest disclosure related to this article available at doi:10.1016/j.arth.2011.04.0 09.
May et al. (1999)	1 week PO	1 month	ROM, VAS,	LOS	No differences at	Not stated.

			KSS		VAS outcome	
McInnes et al. (1992)	Starting within 24 hours from surgery	7 days, 6 weeks	Cost	Pain (VAS scale), swelling, ROM	No significant differences found in VAS scores	Study supported by National Institutes of Health.
Montgomery et al. (1996)	3 hours 3 times daily, 7 days a week	1, 3, 5 days PO	Pain (VAS scale)	Mid-patellar effusion, Knee flection, ROM	Postoperative pain levels and LOS similar in the two groups.	Not stated.
Pope et al. (1997)	1 week PO	Up to 1 year PO	ROM	Blood loss, analgesia use	Clinical disadvantages in the short term in CPM groups with no worthwhile improvement in the range of movement or function.	No benefits in any form received from a commercial party.
Sahin et al. (2006)	1 week PO	2 weeks, 6 weeks, 6 months PO	ROM, Pain (VAS scale)	Swelling, KSS score	No significant differences found in VAS scores in CPM groups	Not stated.
Walker et al. (1991)	From day 3 PO until discharge	1 month, 12 months.	Manipulatio, adverse events	ROM, pain (VAS scale), LOS	CPM showed a significant reduction in analgesia consumption	Supported by a grant from the National Institutes of Health, General Clinical Research Center Branch. Division of Research Resources.
Preoperative exercise						

Calatayud et al. (2016)	3 days/week for 8 weeks before surgery	8 weeks before surgery (T1), after 8 weeks of training (T2), 1 month after TKA (T3) and finally 3 months after TKA (T4)	WOMAC functional and pain scale	SF-36 scale, pain VAS scale, TUG	The present study supports the use of preoperative training in end- stage OA patients to improve early postoperative outcomes.	The authors did not receive financial support for this study, and there are no known conflicts of interest associated with this publication that could have influenced its outcome.
Gstoettner et al. (2011)	1 day/week for 6 weeks before surgery.	6 weeks pre- operatively; 6 weeks PO	Balance, gait speed, and function	WOMAC pain and stiffness subscales, KSS scale	There was a significant improvement in KSS, WOMAC pain and stiffness within both groups after TKA. No difference in clinical outcome was observed between the two groups.	Not stated.
МсКау et al. (2012)	3 days/week for 6 weeks before surgery	Baseline testing 6 weeks (±3 days) before surgery. Before TKA, at 6 and 12 weeks after TKA,	Isometric quadriceps strength.	Mobility, pain, self- reported function, health- related quality of life, and arthritis self-	Reduction of pain within the groups, but there is not a direct comparison between them. Perceived functional ability shows an inverse relationship to pain,	Not stated.

		participants completed the questionnair e battery and physical testing.		efficacy.	but no information on significance.	
Cryotherapy						
Albrecht et al. (2008)	2 days PO	1 week PO	VAS Scale	Blood loss, ROM, Adverse effects	Significant reduction in VAS for CT group	Not stated.
Gibbons et al. (2001)	6 hours/day throughout the hospital stay	Blood loss: during the procedure. Amount of morphine received: over the 48 h The amount of oral analgesia: up to the 10- day stage. Pain scores recorded on alternate days after a period of physiotherap y at the end	Blood loss	ROM, pain scores, analgesia, LOS, complication s	No difference was found between the 2 groups except for less blood loss in the surgical drains in the cold compression group.	Not stated.

		of the afternoon. The range of movement: 10 days after TKA.				
lvey et al. (1994)	72 hours PO	Number of attempts: every hour PO Amount of morphine: daily	Pain	Number of Patient- controlled analgesia (PCA) attempts	Different temperature did not show any significant differences in pain improvement after surgery, and in the amount of injected morphine.	Not stated.
Kullenberg et al. (2006)	3 days PO	Up to 3 weeks PO	ROM	Pain, LOS, Hemoglobin loss	Cold compression therapy improves control of pain and might lead to improvement in ROM and reduce the length of hospital stay.	No benefits or funds were received in support of the study.
Levy et al. (1993)	4 days PO	Up to 2 weeks PO	Blood loss	Pain, ROM	Significant lower blood loss and morphine consumption in the intervention group; Significant	Not stated.

					improvement in ROM at 7 and 14 days from surgery.	
Morsi E. (2002)	2 weeks PO	Up to 6 weeks after discharge	Analgesic consumptio n	Pain score, ROM	Continuous-flow cold therapy is advantageous after TKA. It showed to provide better results in all the areas compared.	Not stated.
Radkowski et al. (2007)	Postsurgical period until discharge	2 weeks PO	Adverse events	Pain, Analgesia, Blood loss, ROM	Postoperative narcotic consumption, postoperative drainage, self- reported knee function, and range of motion were not affected by the different cryotherapy temperatures.	Not stated.
Smith et al. (2002)	Treatment 1 for 24 hours after surgery; treatment 2 for 6 hours; and then cryo-pad	Day 1-3 PO	Function, swelling	Pain, Analgesia	Not significant differences in pain improvement	Not stated.

Su et al. (2012)	Inpatient stay: 2 hours on plus 1 hour off for a minimum of 4 cycles per day. After discharge: 1 hour on plus 30 minutes off for a minimum of 4 cycles per day.	Pre- operative, 2 weeks, 6 weeks PO	ROM and function	Pain (VAS scale) and morphine consumptio n	No improvement in ROM and pain perception. Significant decrease in pain medication consumption and higher satisfaction.	Not stated.
Thienpont et al. (2014)	Postsurgical period	Day 2, 6 weeks PO	Pain (VAS scale), and analgesics consumptio n.	ROM, swelling, and blood loss.	Advanced cryotherapy with a continuous cooling for a prolonged period did not provide an earlier recovery.	The authors report no conflict of interest. All conflict of interest forms are on file with the publication.
Webb et al. (1998)	48 hours PO	Pre- operative, 5 days, 6 weeks, 3 months PO	Blood loss	Pain scores, pain medication consumptio n, and ROM	Cryo/cuff showed improvement in postoperative blood loss and pain but did not influence swelling and return to motion	Not stated

Walker et al. (1991)	From day 3 PO until discharge	Discharge, 3 months	Manipulatio, adverse events	ROM, pain (VAS scale), LOS	Cryotherapy showed a significant reduction in analgesia request.	Supported by a grant from the National Institutes of Health, General Clinical Research Center Branch. Division of Research Resources.
Electrotherapy						
Adravanti et al. (2013)	2 months PO	1 month, 2 months, 6 months, 3 years PO	Pain (VAS scale)	KSS function score, SF36 score, Knee swelling	PEMFs showed significant differences in pain improvement and in functional scores in all timepoints.	One of the authors is employee of the device manufacturer.
Borckardt et al. (2013)	80 minutes/day in postoperative period	48 hours PO	Opioid Consumptio n	Pain (BPI and VAS scales)	TENS may be able to reduce post-TKA opioid requirements.	Not stated.
Moretti et al. (2012)	Treatment began within seven days from TKA, and consisted of 4-hour sessions/day for 60 days PO	Pre- operatively, and at 1, 2, 6, 12 months PO	Pain (VAS scale)	Knee Society Score; SF- 36; Joint swelling score; Functional score	PEMFs showed significant differences in pain improvement and in functional scores in all timepoints.	Two of the authors are employees of the device manufacturer.
Walker et al. (1991)	From day 3 PO until discharge	3 day PO, discharge	Manipulatio, adverse events	ROM, pain (VAS scale), LOS	TENS did not show a significant difference in analgesia consumption.	Supported by a grant from the National Institutes of Health, General Clinical Research Center Branch. Division of Research

Resources.

Acupuncture						
Chen et al. (2015)	20 minutes/day in the postoperative period	2, 4, 8, 12, 24, 36, 48 hours PO	Opioid consumptio n	Time to the first PCA request; pain intensity	Acupuncture showed significant pain improvement and opioid consumption.	The authors declare that they have no competing interests.
Mikashima et al. (2012)	3 times/week from day 7 until day 21 PO	6, 14, 21 days PO	VAS pain score	Swelling; time to achieve preoperative ROM	Acupuncture showed significant improvement in pain, reduction of swelling around the knee and early recovery of ROM.	Not stated.
Tsang et al. (2007)	Postsurgical period	4-8, 11-15 days PO	Pain at rest and at maximum after exercise (VAS scale).	ROM, TUG.	Acupuncture did not show significant improvement in pain, reduction of swelling around the knee and early recovery of ROM.	The authors declare that they have no competing interests.

Tzeng et al. (2015)	48 hours PO	48 hours PO	Time for first PCA request	N/A	Acupuncture showed significant longer time to the first demand for Patient-controlled Analgesia.	Supported by China Medical University under the Aim for Top University Plan of the Ministry of Education, Taiwan and by the Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence. The authors declare that they have no competing interests.
---------------------	-------------	-------------	----------------------------------	-----	---	--

eFigure 2. Pain relief: Cryotherapy

	Cry	Cryotherapy Control						Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
12.2.1 Cryotherapy	- postope	rative da	ay 1						
Albrecht 1997	6	3.16	32	7	3.16	16	4.0%	-1.00 [-2.90, 0.90]	+ _
Albrecht 1997	2.65	5.11	35	7	5.11	15	2.0%	-4.35 [-7.44, -1.26]	
Gibbons 2001	6.7	3.101	30	6.2	3.101	30	5.0%	0.50 [-1.07, 2.07]	_
Kullenberg 2006	2.1	4.55	43	2.2	1	40	5.6%	-0.10 [-1.49, 1.29]	
Levy 1993	7.4	2.7	40	7.8	2.7	40	6.4%	-0.40 [-1.58, 0.78]	
Morsi 2002	4	0	30	6.9	0	30		Not estimable	
Radkowski 2007	6	2.72	28	5.5	2.72	36	5.8%	0.50 [-0.84, 1.84]	_ +- _
Smith 2002	4.3	1.8	44	4.2	2	40	8.0%	0.10 [-0.72, 0.92]	+
Subtotal (95% CI)			282			247	36.8%	-0.21 [-0.89, 0.48]	+
Heterogeneity: Tau ² :	= 0.32; CI	hi² = 9.93	3, df =	6 (P = 0	l.13); l ² ∈	= 40%			
Test for overall effect	t: Z = 0.59	(P = 0.5	5)						
12.2.2 Cryotherapy	- postope	rative da	av 2						
Albrecht 1997	512	4 5 4	32	65	4 5 4	16	2.5%	-1 38 -4 10 1 341	
Albrecht 1997	2.34	4.94	36	6.5	4.94	15	2.3%	-4.16[-7.12]-1.20]	
Lew 1993	59	24	40	73	1.00	40	7 7 %	-1 40 [-2 28 -0 52]	
Morsi 2002	5.5	2.4	30	9	1.0	30	1.1.70	Not estimable	
Smith 2002	4.3	2	44	48	1 9	40	79%	-0.50[-1.33_0.33]	
Thiennont 2014	4	3	50	3.5	5	50	4.8%	0.50[-1.12, 2.12]	_ _
Subtotal (95% CI)		0	231	0.0		191	25.1%	-1.00 [-2.01, 0.02]	•
Heterogeneity: Tau ² :	= 0.69: CI	hi² = 9.80). df =	4 (P = 0		= 59%			-
Test for overall effect	: Z = 1.93	(P = 0.0	5)						
12.2.3 Cryotherapy	- postope	rative da	av 3						
Gibbons 2001	3.8	2 41	30	4.2	2 41	30	63%	-0.40 [-1.62 0.82]	
Kullenberg 2006	0.0	4 09	43	1.2	3.19	40	5.0%	-0.40[-1.97, 1.17]	_
Lew 1993	5.6	1.6	40	6.9	1.9	40	8.2%	-1.30 [-2.070.53]	-
Morsi 2002	5	2.73	30	7	2.63	30	5.7%	-2.00 [-3.36, -0.64]	_ —
Radkowski 2007	7.1	2.75	28	6.3	3.75	36	4.9%	0.80 [-0.79, 2.39]	_
Smith 2002	4.2	1.8	44	3.5	1.9	40	8.1%	0.70 (-0.09, 1.49)	
Subtotal (95% CI)			215			216	38.1%	-0.44 [-1.37, 0.49]	◆
Heterogeneity: Tau ² :	= 0.97; CI	hi² = 20.1	4, df=	= 5 (P =	0.001);	l² = 75°	%		
Test for overall effect	t: Z = 0.94	(P = 0.3	5)						
Total (95% CI)			728			654	100.0%	-0.51 [-1.00, -0.02]	•
Heterogeneity: Tau ² :	= 0.61: CI	hi² = 44.2	24. df=	= 17 (P =	= 0.000	3); 2 = 6	62%	- / -	
Test for overall effect	Z = 2.06	(P = 0 0	4)			-,			-10 -5 0 5 10
To at fair and another at	~			<	0.00	17 00	,		Favours Cryotherapy Favours control

Test for subgroup differences: $Chi^2 = 1.59$, df = 2 (P = 0.45), $I^2 = 0\%$

eFigure 3. Pain relief: Continuous Passive Motion (CPM)

		СРМ		С	ontrol			Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI			
12.1.1 CPM vs. control	ol - 1 we	ek										
Bennet 2005	3.6	3	47	3.1	2.9	52	4.6%	0.50 [-0.66, 1.66]				
Bennet 2005	2.6	2.9	48	3.1	2.9	52	4.8%	-0.50 [-1.64, 0.64]				
Bruun-Olsen 2009	4	2.3	30	4	2.1	33	5.1%	0.00 [-1.09, 1.09]				
Lenssen 2003	2.6	1.8	20	4.7	2.6	19	3.5%	-2.10 [-3.51, -0.69]				
MacDonald 2000	5.1	1.3	40	5.2	1.2	40	10.5%	-0.10 [-0.65, 0.45]				
May 1999	1.5	1.6	7	2.1	2.4	7	1.7%	-0.60 [-2.74, 1.54]				
McInnes 1992	2.8	2.05	47	3.6	2.05	45	7.1%	-0.80 [-1.64, 0.04]				
Montgomery 1996	5	2.5	28	5	1.5	32	5.3%	0.00 [-1.06, 1.06]				
Sahin 2006	3.85	1.29	14	3.5	1.34	14	5.9%	0.35 [-0.62, 1.32]				
Subtotal (95% CI)			281			294	48.6%	-0.27 [-0.70, 0.16]	◆			
Heterogeneity: Tau² =	0.14; C	hi² = 1	2.30, dt	f= 8 (P :	= 0.14)); I ^z = 38	5%					
Test for overall effect: Z = 1.24 (P = 0.21)												
40.4.0.000												
12.1.2 CPM vs. control	ol - 2 we	eks										
Chen 2013	5.12	1.39	68	4.77	1.56	39	9.9%	0.35 [-0.24, 0.94]	—			
Lenssen 2003	2.3	2.6	20	4.5	2.4	18	2.9%	-2.20 [-3.79, -0.61]				
Subtotal (95% CI)			88			57	12.8%	-0.81 [-3.30, 1.68]				
Heterogeneity: Tau ² =	2.88; C	hi ² = 8	.68, df=	= 1 (P =	0.003;); I ^z = 88	8%					
l est for overall effect:	Z = 0.64	F (H = I	J.52)									
12.1.3 CPM vs. contro	ol - 3 ma	onths										
Bruun-Olsen 2009	29	22	30	19	1.5	33	6.2%	1 00 00 06 1 941				
Chen 2013	3.22	1 28	68	3.05	1.54	39	10.2%	0 17 [-0 40 0 74]	_ _			
Subtotal (95% CI)	0.22	1.20	98	0.00	1.01	72	16.4%	0.50 [-0.30, 1.29]	-			
Heterogeneity: Tau ² =	0.19: C	hi ² = 2	.19. df=	= 1 (P =	0.14):	$ ^{2} = 54^{\circ}$	%		-			
Test for overall effect:	Z = 1.23		1.22)		0.1.171							
			,									
12.1.4 CPM vs. control	ol - 6 mo	onths										
Chen 2013	0.37	0.6	68	0.21	0.47	39	15.2%	0.16 [-0.05, 0.37]	-			
Sahin 2006	1.21	1.12	14	1.14	1.16	14	7.0%	0.07 [-0.77, 0.91]				
Subtotal (95% CI)			82			53	22.2%	0.15 [-0.04, 0.35]	♦			
Heterogeneity: Tau² =	0.00; C	hi² = 0	.04, df=	= 1 (P =	0.84);	l ^z = 0%	,					
Test for overall effect:	Z = 1.52	2 (P = 0).13)									
Total (05% CI)			540			476	100.0%	0.05[0.35_0.25]				
Hotorogonoity Tou? -	0.14:0	hiz - O	049 042 4	- 11/1		470	500.0%	-0.00 [-0.00, 0.20]	T			
Teat for everall effects	7 - 0.22	nr= z) / = - (9.12,01 1.745	i = 14 (F	- = 0.0	1), 12 = 3	5270		-4 -2 0 2 4			
Test for overall effect.	∠ = 0.33) (F = l	J.74) - 4 CC	df = 2.4	n_ 0.2	0) 17	25.70		Favours CPM Favours control			
Test for subgroup diff	erences	. Uni≛	= 4.06,	ur = 3 (i	P = 0.2	u), in=	33.1%					

eFigure 4. Pain relief: Continuous Passive Motion (CPM)

		СРМ		С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
14.1.1 WOMAC - 6 w	eeks								
Denis 2006	7.36	3.12	26	7.96	4.96	27	0.9%	-0.60 [-2.82, 1.62]	
Denis 2006	5.54	3.42	28	7.96	4.96	27	0.9%	-2.42 [-4.68, -0.16]	
Lenssen 2008	16.8	0.74	30	16.68	0.8	30	29.8%	0.12 [-0.27, 0.51]	
Subtotal (95% CI)			84			84	31.6%	-0.66 [-2.12, 0.81]	•
Heterogeneity: Tau² =	= 1.03; C	hi² = 5.	.03, df:	= 2 (P =	0.08);	I ² = 60°	%		
Test for overall effect:	Z = 0.88) (P = 0).38)						
14.1.2 WOMAC - 3 m	onths								
Beaupre 2001	14.6	3.4	34	14.6	3.6	34	1.6%	0.00 [-1.66, 1.66]	_ <u>_</u>
Lenssen 2008	16.54	0.76	30	16.5	0.18	30	58.1%	0.04 [-0.24, 0.32]	–
Maniar 2012	3	2.11	28	3.2	2.98	28	2.5%	-0.20 [-1.55, 1.15]	
Maniar 2012	4	3.34	30	3.2	2.98	28	1.7%	0.80 [-0.83, 2.43]	<u>+</u>
Subtotal (95% CI)			122			120	63.9%	0.05 [-0.22, 0.32]	•
Heterogeneity: Tau² =	= 0.00; C	hi = 0.	.96, df=	= 3 (P =	0.81);	I ² = 0%			
Test for overall effect:	Z = 0.37	' (P = 0	0.71)						
444200000000000000000000000000000000000									
14.1.3 WOWAC - 0 M	ontris								
Beaupre 2001	15.2	3	34	15.8	3.2	34	2.1%	-0.60 [-2.07, 0.87]	
Kim 2009 Subtotal (05% CI)	3.5	3.6	50	3.6	3.5	50	2.3%	-0.10 [-1.49, 1.29]	
Subtotal (95% CI)			84	=		84	4.4%	-0.34 [-1.33, 0.08]	T
Heterogeneity: Tau*=	= U.UU; C	hif = U.	.23, dt:	= 1 (P =	0.63);	1*= 0%			
l est for overall effect	Z = 0.65) (P = t	J.5Z)						
Total (95% CI)			200			289	100.0%	0.03[.0.10.0.24]	
Hotorogonoity Touž-		hiz – C	74 df.	- 0 /0 -	0.663	12 - 004	100.070	0.05 [-0.15, 0.24]	
Telefoyeneity. Tau	- 0.00, C	n== 0. L/D = 0	.74, ui - 1.04 \	- o (r –	0.56),	- 0 %			-10 -5 Ó Ś 10
Test for cubarous dif	. <u>2</u> = 0.24 foroneco	r (n = t ∘ Chi≇-	.01) - 1 22	df = 2/2	0 - 0 4	2) 12 -	0%		Favours CPM Favours control
rest for subgroup dif	ierences	. One:	- 1.32,	$u_1 = Z(1)$	= 0.5	2), [*=	0.70		

eFigure 5. Pain relief: Preoperative Exercise

Preopera	itive exer	cise	C	ontrol			Mean Difference	Mean Difference		
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl		
e - 6 weeks	5									
1.3	1.1	18	0.98	0.99	20	40.7%	0.32 [-0.35, 0.99]			
5.6	2.72	10	4.92	4.5	12	8.4%	0.68 [-2.37, 3.73]			
		28			32	49.1%	0.34 [-0.32, 0.99]	◆		
0.00; Chi ² =	: 0.05, df:	= 1 (P = I	0.82); I ^z	= 0%						
Z = 1.01 (P :	= 0.31)									
e - 12 week	(S									
2.9	1.02	25	3.8	1.02	25	43.0%	-0.90 [-1.47, -0.33]	-		
4.4	3.2	10	3.58	4.4	12	7.9%	0.82 [-2.36, 4.00]			
		35			37	50.9%	-0.78 [-1.63, 0.07]	\bullet		
0.12; Chi ² =	: 1.09, df:	= 1 (P = I	0.30); l ^a	= 8%						
Z = 1.80 (P =	= 0.07)									
		63			69	100.0%	-0.14 [-1.11, 0.84]	+		
0.49; Chi ² =	8.45, df	= 3 (P = I	0.04); I ^z	= 65%)					
Z = 0.27 (P :	= 0.78)							-4 -2 U Z 4 Eavours Preop exercise Eavours control		
erences: Ch	i ^z = 4.18,	df = 1 (F	9 = 0.04), l ² = 7	6.1%			ravours rreop, exercise rravours control		
	Preopera <u>Mean</u> e - 6 week 1.3 5.6 0.00; Chi [#] = Z = 1.01 (P: e - 12 week 2.9 4.4 0.12; Chi [#] = Z = 1.80 (P: 0.49; Chi [#] = Z = 0.27 (P: erences: Ch	Preoperative exer Mean SD e - 6 weeks 1.3 1.1 5.6 2.72 0.00; Chi² = 0.05, df: Z Z = 1.01 (P = 0.31) e e - 12 weeks 2.9 1.02 4.4 3.2 0.12; Chi² = 1.09, df: Z = 1.80 (P = 0.07) 0.49; Chi² = 8.45, df: Z = 0.27 (P = 0.78) erences: Chi² = 4.18, dr: Z = 0.27 (P = 0.78) Z = 0.27 (P = 0.78)	Preoperative exercise Mean SD Total e - 6 weeks 1.3 1.1 18 5.6 2.72 10 28 0.00; Chi ² = 0.05, df = 1 (P = 1 28 10 28 0.00; Chi ² = 0.05, df = 1 (P = 1 29 1.02 25 4.4 3.2 10 e - 12 weeks 2.9 1.02 25 4.4 3.2 10 0.12; Chi ² = 1.09, df = 1 (P = 1 25 3.6 3.5 3.12; Chi ² = 1.09, df = 1 (P = 1 35 0.49; Chi ² = 8.45, df = 3 (P = 1 63 0.49; Chi ² = 8.45, df = 3 (P = 1 2 2.9 1.02 z = 0.27 (P = 0.78) 9 9 9 9 10	Preoperative exercise C Mean SD Total Mean e - 6 weeks 1.3 1.1 18 0.98 5.6 2.72 10 4.92 28 0.00; Chi ² = 0.05; df = 1 (P = 0.82); l ² 2 10 4.92 2.00; Chi ² = 0.05; df = 1 (P = 0.82); l ² 2 3.8 4.4 3.2 10 3.58 0.12; Chi ² = 1.09; df = 1 (P = 0.30); l ² 3.5 3.5 3.5 3.5 3.5 0.12; Chi ² = 1.09; df = 1 (P = 0.30); l ² 63 0.49; Chi ² = 8.45; df = 3 (P = 0.04); l ² 5 2.9 2.7 (P = 0.78) 3 3.5 3.5	Preoperative exercise Control Mean SD Total Mean SD e - 6 weeks 1.3 1.1 18 0.98 0.99 5.6 2.72 10 4.92 4.5 0.00; Chi² = 0.05, df = 1 (P = 0.82); l² = 0% 28 0.00; Chi² = 0.05, df = 1 (P = 0.82); l² = 0% 2 = 1.01 (P = 0.31) e - 12 weeks 2.9 1.02 25 3.8 1.02 4.4 3.2 10 3.58 4.4 35 0.12; Chi² = 1.09, df = 1 (P = 0.30); l² = 8% Z = 1.80 (P = 0.07) 63 0.49; Chi² = 8.45, df = 3 (P = 0.04); l² = 65% Z = 0.27 (P = 0.78) erences: Chi² = 4.18, df = 1 (P = 0.04), l² = 7	Preoperative exercise Control Mean SD Total Mean SD Total e - 6 weeks 1.3 1.1 18 0.98 0.99 20 5.6 2.72 10 4.92 4.5 12 28 32 32 0.00; Chi² = 0.05, df = 1 (P = 0.82); i² = 0% Z = 1.01 (P = 0.31) e - 12 weeks 2.9 1.02 25 3.8 1.02 25 4.4 3.2 10 3.58 4.4 12 35 37 0.12; Chi² = 1.09, df = 1 (P = 0.30); i² = 8% Z = 1.80 (P = 0.07) 63 69 0.49; Chi² = 8.45, df = 3 (P = 0.04); i² = 65% Z = 0.27 (P = 0.78) erences; Chi² = 4.18, df = 1 (P = 0.04), i² = 76.1%	Preoperative exercise Control Mean SD Total Mean SD Total Weight e 6 weeks 1.3 1.1 18 0.98 0.99 20 40.7% 5.6 2.72 10 4.92 4.5 12 8.4% 0.00; Chi ² = 0.05, df = 1 (P = 0.82); l ² = 0% 22 49.1% c = 12 weeks 2.9 1.02 25 3.8 1.02 25 43.0% 4.4 3.2 10 3.58 4.4 12 7.9% 0.12; Chi ² = 1.09, df = 1 (P = 0.30); l ² = 8% 37 50.9% 37 50.9% 2.13: 0 (P = 0.07) 63 69 100.0% 0.49; Chi ² = 8.45, df = 3 (P = 0.04); l ² = 85% 2 2.0.27 (P = 0.78) 9 9 100.0% 0.49; Chi ² = 4.18, df = 1 (P = 0.04); l ² = 76.1% 65% 7 7 7 5 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	Preoperative exercise Control Mean Difference Mean SD Total Mean SD Total Weight IV, Random, 95% CI e 6 weeks 1.3 1.1 18 0.98 0.99 20 40.7% 0.32 [-0.35, 0.99] 5.6 2.72 10 4.92 4.5 12 8.4% 0.68 [-2.37, 3.73] 28 32 49.1% 0.34 [-0.32, 0.99] 0.04 [-0.32, 0.99] 0.034 [-0.32, 0.99] 0.00; Chi [#] = 0.05, df = 1 (P = 0.82); I [#] = 0% 2 49.1% 0.34 [-0.32, 0.99] 2.9 1.02 25 3.8 1.02 25 43.0% -0.90 [-1.47, -0.33] 4.4 3.2 10 3.58 4.4 12 7.9% 0.82 [-2.36, 4.00] 35 37 50.9% -0.78 [-1.63, 0.07] 0.12; Chi [#] = 1.09, df = 1 (P = 0.30); I [#] = 8% 2 1.80 (P = 0.07) 63 69 100.0% -0.14 [-1.11, 0.84] 0.49; Chi [#] = 8.45, df = 3 (P = 0.04); I [#] = 86% 2 2.0.27 (P = 0.78) 2 2 2		

eFigure 6. NSAID Consumption: Cryotherapy

	Cryotherapy Control Mean SD Total Mean SD Total y vs. nothing 1.9 0.73 30 3.8 0.63 30 30 30 applicable							Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
13.3.1 Cryotherapy v	s. nothin	g							
Morsi 2002 Subtotal (95% CI)	1.9	0.73	30 30	3.8	0.63	30 30	25.6% 25.6%	-1.90 [-2.25, -1.55] - 1.90 [-2.25, -1.55]	→
Heterogeneity: Not ar	oplicable								•
Test for overall effect:	Z=10.7	9 (P <	0.0000	1)					
13.3.2 Cryotherapy v	s. comp	ressio	n						
lvey 1994	1.3	0.6	30	1.6	0.8	28	25.4%	-0.30 [-0.67, 0.07]	
lvey 1994	1.4	0.7	30	1.6	0.8	28	25.3%	-0.20 [-0.59, 0.19]	
Su 2012 Subtotal (95% CI)	1.76	1.71	103 163	2.36	2.29	84 140	23.7% 74.4%	-0.60 [-1.19, -0.01] - 0.31 [-0.55, -0.07]	•
Heterogeneity: Tau ² =	: 0.00; CI	hi² = 1.	24, df=	= 2 (P =	0.54);	l² = 0%			-
Test for overall effect:	Z = 2.52	(P = 0	.01)						
Total (95% CI)			193			170	100.0%	-0.75 [-1.63, 0.12]	•
Heterogeneity: Tau ² =	: 0.75; CI	hi ^z = 5:	5.70, df	'= 3 (P ·	< 0.00	001); P	= 95%	-	
Test for overall effect:	Z = 1.69	(P = 0	.09)						-4 -2 U 2 4 Eavours Cryotherany Eavours control
Test for subgroup diff	ferences	: Chi²:	= 54.47	. df = 1	(P < 0.	00001)), l² = 98.2	?%	

eFigure 7. Opioid consumption: Acupuncture

	Acup	ounctu	ге	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
13.5.1 Acupuncture v	s. sharr	n acup	ounctur	е					
Chen 2015	0.37	0.16	30	0.53	0.2	30	29.3%	-0.16 [-0.25, -0.07]	
Tzeng 2015 Subtotal (95% CI)	0.42	0.11	16 46	0.45	0.11	14 44	33.1% 62.4%	-0.03 [-0.11, 0.05] - 0.09 [-0.22, 0.03]	•
Heterogeneity: Tau ² =	0.01; CI	hi² = 4	.44, df=	= 1 (P =	0.04);	$ ^2 = 779$	%		
Test for overall effect:	Z=1.43	(P = 0	0.15)						
13.5.2 Acupuncture v	s. nothi	ng							
Tzeng 2015 Subtotal (95% CI)	0.42	0.1	16 16	0.46	0.09	17 17	37.6% 37.6%	-0.04 [-0.11, 0.03] - 0.04 [-0.11, 0.03]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 1.21	(P = 0	0.23)						
Total (95% CI)			62			61	100.0%	-0.07 [-0.15, 0.00]	•
Heterogeneity: Tau ² =	0.00; CI	hi ² = 5	.45, df=	= 2 (P =	0.07);	I ² = 639	%	-	
Test for overall effect: .	Z = 1.90) (P = 0	D.06)	-				-0.5 -0.25 0 0.25 0.5 Eavours Acupuncture Eavours control	
Test for subgroup diffe	erences	: Chi²:	= 0.52,	df = 1 (F	P = 0.4	7), l² =	0%		Favours Acupuncture Fravours control

eFigure 8. Opioid consumption: Continuous Passive Motion (CPM)

		СРМ		0	Control			Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
13.1.1 Opioids - 1 we	ek										
MacDonald 2000	88	51	40	80	51	40	13.8%	8.00 [-14.35, 30.35]			
Pope 1997	72.6	25.4	18	48.1	23.91	19	17.3%	24.50 [8.59, 40.41]		— -	
Pope 1997	81.5	24.08	20	48.1	23.91	19	17.8%	33.40 [18.33, 48.47]		_ _	
Walker 1991	96	32.75	12	148	64.25	10	6.3%	-52.00 [-95.92, -8.08]			
Subtotal (95% CI)			90			88	55.1%	11.12 [-12.21, 34.44]			
Heterogeneity: Tau ² =	419.09	Chi ² =	14.69,	df = 3 (F	= 0.003	2); I ² = 8	80%				
Test for overall effect:	Z = 0.93	P = 0.1	35)								
13.1.2 Opioids - 2 we	eks										
Colwell 1992	9.6	3.75	12	14.8	6.4	10	22.8%	-5.20 [-9.70, -0.70]		-	
Harms 1991	28	19	55	29	16	58	22.1%	-1.00 [-7.49, 5.49]			
Subtotal (95% CI)			67			68	44.9%	-3.78 [-7.67, 0.11]		•	
Heterogeneity: Tau ² =	0.70; C	hi ² = 1.0)9, df=	1 (P = 0)	.30); I ² :	= 8%					
Test for overall effect:	Z = 1.90) (P = 0.	06)								
										-	
Total (95% CI)			157			156	100.0%	6.58 [-6.33, 19.49]		-	
Heterogeneity: Tau ² =	185.17	Chi²=	38.98,	df = 5 (F	< 0.00	001); P	= 87%		-100	-50 0 50	100
Test for overall effect:	Z = 1.00) (P = 0.)		-100	Favours CPM Favours control	100					
Test for subgroup diff	erences	: Chi² =									

eFigure 9. Acupuncture

	Acu	punctu	ire	C	ontrol			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI	
11.1.1 Acupuncture	vs. shan	n acup	unctur	е							
Chen 2015	89	75	30	37	21	30	54.6%	52.00 [24.13, 79.87]		-	
Tzeng 2015	92	81.7	14	90.7	94.9	17	15.0%	1.30 [-60.88, 63.48]			
Subtotal (95% CI)			44			47	69.6%	34.58 [-12.61, 81.77]		•	
Heterogeneity: Tau ² :	= 680.87;	; Chi ≃ =	: 2.13, 1	df = 1 (F	² = 0.14	4); I² = ∮	53%				
Test for overall effect	t: Z = 1.44	4 (P = 0).15)								
11.1.2 Acupuncture	vs. nothi	ing									
Tzeng 2015	92	81.7	16	34.1	22	17	30.4%	57.90 [16.52, 99.28]			
Subtotal (95% CI)			16			17	30.4%	57.90 [16.52, 99.28]		•	
Heterogeneity: Not a	pplicable										
Test for overall effect	t: Z = 2.74	4 (P = 0).006)								
Total (05% CI)			60			64	100.0%	46 17 [20 84 71 50]			
Listeregeneitr Teu?	- 402.05	ONR-	- 2 A C	46 – D.7E	- 0 - 1	•••0 • = z i - 20	100.0%	40.17 [20.04, 71.50]		•	
Heterogeneity: Tau-	= 103.95) NZ - 0.55	Chine e	2.46,1	ar = 2 (F	r = 0.2;	9); I= = -	19%		-500 -25	o ó 2	250 500
Test for overall effect	l.∠=3.5/ #	(r=t 	.0004)	16-10		7) 17 -	004		Favou	irs control Favours a	cupuncture
lest for subgroup di	πerences	: Unite	= 0.53,	at = 1 ()	- = 0.4	∩, i*=	0%				

eFigure 10: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Intervention Control							Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.1.1 LOW_LOW									
Bennet 2005	3.6	3	47	3.1	2.9	52	9.6%	0.50 [-0.66, 1.66]	- +
Bennet 2005	2.6	2.9	48	3.1	2.9	52	9.9%	-0.50 [-1.64, 0.64]	
Lenssen 2003	2.6	1.8	20	4.7	2.6	19	7.2%	-2.10 [-3.51, -0.69]	_
MacDonald 2000	5.1	1.3	40	5.2	1.2	40	21.6%	-0.10 [-0.65, 0.45]	-
Subtotal (95% CI)			155			163	48.3%	-0.44 [-1.31, 0.42]	◆
Heterogeneity: Tau² =	0.49; C	hi = 8.	.67, df=	= 3 (P =	0.03);	I ^z = 65°	%		
Test for overall effect:	Z = 1.00) (P = 0).32)						
16.1.2 OTHER									
Bruun-Olsen 2009	4	23	30	4	21	33	10.5%	0.001-1.09.1.091	
May 1999	15	1.6	7	21	2.4	7	3.6%	-0.60[-2.74, 1.54]	
McInnes 1992	2.8	2.05	47	3.6	2.05	45	14.6%	-0.80[-1.64_0.04]	
Montgomery 1996	5	2.5	28	5	1.5	32	10.9%	0.00 [-1.06, 1.06]	_ _
Sahin 2006	3.85	1.29	14	3.5	1.34	14	12.2%	0.35 [-0.62, 1.32]	<u>_</u>
Subtotal (95% CI)			126			131	51.7%	-0.20 [-0.68, 0.27]	•
Heterogeneity: Tau ² =	0.00; C	hi ² = 3.	.59, df=	= 4 (P =	0.46);	$ ^{2} = 0\%$			
Test for overall effect:	Z = 0.84	(P = 0).40)	,					
Total (95% CI)			281			294	100.0%	-0.27 [-0.70, 0.16]	• • •
Heterogeneity: Tau² =	0.14; C	hi² = 1:	2.30, di	f= 8 (P =	= 0.14)); I ž = 39	5%		-4 -2 0 2 4
Test for overall effect:	Z=1.24	(P = 0	0.21)						Favours CPM Favours control
Test for subgroup diff	erences	∶Chi ² ∶	= 0.22.	df = 1 (F	P = 0.6	64), I²=	0%		

eFigure 11: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inte	rventio	on	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.2.1 LOW_LOW									
Radkowski 2007	6	2.72	28	5.5	2.72	36	18.6%	0.50 [-0.84, 1.84]	_
Thienpont 2014	4	3	50	3.5	5	50	15.2%	0.50 [-1.12, 2.12]	
Subtotal (95% CI)			78			86	33.8%	0.50 [-0.53, 1.53]	◆
Heterogeneity: Tau ² =	= 0.00; Cl	hi ² = 0	.00, df:	= 1 (P =	1.00);	l [≈] = 0%			
Test for overall effect	: Z = 0.95	i (P = 0	0.34)						
16.2.2 OTHER									
Albrecht 1997	2.65	5.11	35	7	5.11	15	6.0%	-4.35 [-7.44, -1.26]	
Albrecht 1997	6	3.16	32	7	3.16	16	12.5%	-1.00 [-2.90, 0.90]	
Levy 1993	7.4	2.7	40	7.8	2.7	40	20.9%	-0.40 [-1.58, 0.78]	
Morsi 2002	4	0	30	6.9	0	30		Not estimable	
Smith 2002	4.3	1.8	44	4.2	2	40	26.8%	0.10 [-0.72, 0.92]	_ + _
Subtotal (95% CI)			181			141	66.2%	-0.80 [-2.01, 0.42]	◆
Heterogeneity: Tau ² =	= 0.88; Cl	hi² = 8	.06, df:	= 3 (P =	0.04);	l ² = 63'	%		
Test for overall effect	: Z = 1.28) (P = (0.20)						
Total (95% CI)			259			227	100.0%	-0.27 [-1.10, 0.55]	•
Heterogeneity: Tau ² =	= 0.49; Cl	hi = 9	.90, df:	= 5 (P =	0.08);	l ^z = 49'	%	-	
Test for overall effect	: Z = 0.65	i (P = 0).52)						-4 -2 U Z 4 Eavours cryotherapy Eavours control
Test for subaroup dif	ferences	: Chi ≇∘	= 2.53.	df = 1 (i	P = 0.1	1), I ² =	60.5%		ravours cryomerapy Favours control

eFigure 12: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inter	venti	on	Co	ontro	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.3.1 LOW_LOW									
Moretti 2012	2.4	1.6	15	4.9	1.8	15	31.2%	-2.50 [-3.72, -1.28]	_ _
Subtotal (95% CI)			15			15	31.2%	-2.50 [-3.72, -1.28]	◆
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 4.02	(P < I	0.0001))					
16.3.2 OTHER									
Adravanti 2014	2.5	1.4	17	4.2	0.7	16	68.8%	-1.70 [-2.45, -0.95]	
Subtotal (95% CI)			17			16	68.8%	-1.70 [-2.45, -0.95]	◆
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z= 4.45	(P < I	0.0000	1)					
Total (95% CI)			32			31	100.0%	-1.95 [-2.68, -1.22]	•
Heterogeneity: Tau ² =	0.05; Cł	ni² = 1	.20, df:	= 1 (P =	0.27); l² = 1`	7%		
Test for overall effect:	Z = 5.26	(P < I	0.0000	1)					-4 -2 U 2 4 Equatra electrotherapy Equatra
Test for subgroup diff	or subgroup differences: Chi ² = 1.20, df = 1 (P = 0.27), l ² = 16.8%								Favours electronierapy Favours control

eFigure 13: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inter	ventio	on	Co	ontro	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.4.1 LOW_LOW									
Tsang 2007 Subtotal (95% CI)	4.6	1.5	30 30	6	2.4	30 30	19.4% 19.4%	-1.40 [-2.41, -0.39] - 1.40 [-2.41, -0.39]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z= 2.71	(P = (0.007)						
16.4.2 OTHER									
Chen 2015	5.7	1.7	15	6.5	1.5	15	17.0%	-0.80 [-1.95, 0.35]	
Chen 2015	4.5	1.3	30	5.3	1.4	30	26.7%	-0.80 [-1.48, -0.12]	
Mikashima 2012 Subtotal (95% CI)	5.8	0.5	40 85	5.9	0.6	40 85	37.0% 80.6%	-0.10 [-0.34, 0.14] - 0.43 [-0.98, 0.12]	•
Heterogeneity: Tau ² =	0.14; Cł	ni² = 4	.67, df:	= 2 (P =	0.10); I² = 5	7%		-
Test for overall effect:	Z=1.53	(P = (0.13)						
Total (95% CI)			115			115	100.0%	-0.66 [-1.29, -0.03]	•
Heterogeneity: Tau ² =	0.26; Cł	ni = 9	.79, df:	= 3 (P =	0.02); l ^z = 6	9%	-	
Test for overall effect:	Z= 2.05	(P = 0)	0.04)		-4 -2 U Z 4				
Test for subgroup diff	ferences:	Chi²	= 2.71,	df=1 (P = 0	.10), I ^z a	= 63.1%		Favours acupuncture Favours control

eFigure 14: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inte	erventio	n	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.5.1 LOW_LOW									
MacDonald 2000	88	51	40	80	51	40	25.8%	8.00 [-14.35, 30.35]	
Subtotal (95% CI)			40			40	25.8%	8.00 [-14.35, 30.35]	+
Heterogeneity: Not a	oplicable								
Test for overall effect	Z = 0.70) (P = 0.	48)						
16.5.2 OTHER									
Pope 1997	81.5	24.08	20	48.1	23.91	19	29.6%	33.40 [18.33, 48.47]	-
Pope 1997	72.6	25.4	18	48.1	23.91	19	29.2%	24.50 [8.59, 40.41]	
Walker 1991	96	32.75	12	148	64.25	10	15.4%	-52.00 [-95.92, -8.08]	_ _
Subtotal (95% CI)			50			48	74.2%	10.40 [-20.54, 41.34]	+
Heterogeneity: Tau ² =	= 584.37;	Chi ≃ =	12.99, (df = 2 (P	= 0.00	2); I 2 = 8	85%		
Test for overall effect	Z = 0.66	6 (P = 0.	51)						
Total (95% CI)			90			88	100.0%	11.12 [-12.21, 34.44]	•
Heterogeneity: Tau ² =	= 419.09	Chi ² =	14.69, (df = 3 (P	= 0.003	2); I ² = 8	B0%		
Test for overall effect	Z = 0.93) (P = 0.	35)						-200 -100 0 100 200
Test for subgroup dif	ferences	: Chi²=	0.02, d	f=1 (P	= 0.90),	l ² = 09	6		

eFigure 15: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inte	rventio	n	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.6.1 LOW_LOW									
Thienpont 2014 Subtotal (95% CI)	0.792	0.563	50 50	0.802	0.542	50 50	16.4% 16.4%	-0.01 [-0.23, 0.21] -0.01 [-0.23, 0.21]	
Heterogeneity: Not ap	plicable								
Test for overall effect: 2	Z = 0.09	(P = 0.9	93)						
16.6.2 OTHER									
Gibbons 2001	0.65	0.31	30	0.6	0.31	30	19.1%	0.05 [-0.11, 0.21]	_ _
Kullenberg 2006	0.37	0.11	43	0.43	0.05	40	23.2%	-0.06 [-0.10, -0.02]	-
Levy 1993	0.53	0.2	40	0.96	0.3	40	21.0%	-0.43 [-0.54, -0.32]	
Smith 2002 Subtotal (95% CI)	0.32	0.29	44 157	0.42	0.31	40 150	20.3% 83.6%	-0.10 [-0.23, 0.03] - 0.14 [-0.32, 0.05]	-
Heterogeneity: Tau ² = Test for overall effect: 2	0.03; Ch Z = 1.47	ni ^z = 41. (P = 0.1	.27,df= 14)	= 3 (P <	0.0000′	1); I² = 9	33%		
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3	0.03; Cł Z = 1.44	$hi^2 = 41.$ (P = 0.1	207 .77, df= 15) 0.77, d	= 4 (P <	0.0000 [,]	200 1); I² = 9 IZ = 00	100.0% 90%	-0.12 [-0.28, 0.04]	-1 -0.5 0 0.5 1 Favours cryotherapy Favours control

eFigure 16: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inter	ventio	on	Co	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.7.1 LOW_LOW									
lvey 1994	1.3	0.6	30	1.6	0.8	28	44.0%	-0.30 [-0.67, 0.07]	-=+
lvey 1994	1.4	0.7	30	1.6	0.8	28	39.1%	-0.20 [-0.59, 0.19]	
Subtotal (95% CI)			60			56	83.1%	-0.25 [-0.52, 0.01]	•
Heterogeneity: Tau ² = Test for overall effect:	: 0.00; Cł Z = 1.86	ni ^z = 0 (P = 0	.14, df:).06)	= 1 (P = 1	0.71);	I [≠] =0%			
16.7.2 OTHER									
Su 2012	1.76	1.71	103	2.36	2.29	84	16.9%	-0.60 [-1.19, -0.01]	
Subtotal (95% CI)			103			84	16.9%	-0.60 [-1.19, -0.01]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 1.99	(P = 0	0.05)						
Total (95% CI)			163			140	100.0%	-0.31 [-0.55, -0.07]	◆
Heterogeneity: Tau ² =	0.00; Cł	ni² = 1	.24, df :	= 2 (P = I	0.54);	I ^z = 0%			
Test for overall effect:	Z= 2.52	(P = 0)).01)						-4 -2 U 2 4
Test for subaroup diff	erences	Chi²∶	= 1.10,	df = 1 (F	e = 0.2	9), I ² =	9.3%		Favours cryotherapy Favours control

eFigure 17: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inter	ventio	on	Co	ontrol	I		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.8.1 LOW_LOW									
Borckardt 2013 Subtotal (95% CI)	6.3	5.6	20 20	12.3	6.6	19 19	32.3% 32.3%	-6.00 [-9.85, -2.15] - 6.00 [-9.85, -2.15]	
Heterogeneity: Not ap	plicable								
Test for overall effect: .	Z = 3.05	(P = (0.002)						
16.8.2 OTHER									
Walker 1991	6.6	5.7	18	8.7	5	12	32.1%	-2.10 [-5.96, 1.76]	
Walker 1991 Subtotal (95% CI)	6.2	4.9	18 36	8.7	5	12 24	35.7% 67.7%	-2.50 [-6.12, 1.12] - 2.31 [-4.96, 0.33]	•
Heterogeneity: Tau ² =	0.00; Cł	ni² = 0	.02, df:	= 1 (P =	0.88); I ^z = 0	%		
Test for overall effect:	Z=1.72	(P = (0.09)						
Total (95% CI)			56			43	100.0%	-3.50 [-5.90, -1.10]	•
Heterogeneity: Tau ² =	0.77; Cł	ni² = 2	.42, df	= 2 (P =	0.30); l² = 1	7%		-20 -10 0 10 20
Test for overall effect: .	Z = 2.86	(P = (0.004)						Favours electrotherapy Favours control
Test for subgroup diffe	erences	Chi²	= 2.39,	df=1 (P = 0	.12), I²÷	= 58.2%		

eFigure 18: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inte	rventio	on	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.9.1 LOW_LOW									
Lenssen 2008 Subtotal (95% CI)	16.54	0.76	30 30	16.5	0.18	30 30	90.9% 90.9%	0.04 [-0.24, 0.32] 0.04 [-0.24, 0.32]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.28	(P = 0	1.78)						
16.9.2 OTHER									
Beaupre 2001	14.6	3.4	34	14.6	3.6	34	2.6%	0.00 [-1.66, 1.66]	
Maniar 2012	4	3.34	30	3.2	2.98	28	2.7%	0.80 [-0.83, 2.43]	
Maniar 2012 Subtotal (95% Cl)	3	2.11	28 <mark>92</mark>	3.2	2.98	28 90	3.9% <mark>9.1%</mark>	-0.20 [-1.55, 1.15] 0.15 [-0.73, 1.03]	•
Heterogeneity: Tau ² = Test for overall effect: .	0.00; Cl Z = 0.33	hi² = 0. : (P = 0	90, df= 1.74)	= 2 (P =	0.64);	I² = 0%			
Total (95% CI)			122			120	100.0%	0.05 [-0.22, 0.32]	+
Heterogeneity: Tau ² = Test for overall effect:	0.00; Cl Z = 0.37	hi ² = 0. ' (P = 0	96, df= 1.71)	= 3 (P =	0.81);	l ² = 0%			-4 -2 0 2 4 Favours CPM Favours control
Test for subgroup diffe	erences	: Chi ^z :	= 0.05,	df = 1 (F	P = 0.8	2), f² =	0%		

eFigure 19: Subgroup Sensitivity Analysis Comparing Studies Based on Allocation Concealment and Random Sequence Generation

	Inter	ventio	n	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.10.1 LOW_LOW									
Calatayud 2016	1.3	1.1	18	0.98	0.99	20	47.8%	0.32 [-0.35, 0.99]	
Gstoettner 2011	1.3	1.1	18	0.98	0.99	20	47.8%	0.32 [-0.35, 0.99]	
Subtotal (95% CI)			36			40	95.6%	0.32 [-0.15, 0.79]	◆
Heterogeneity: Tau ² =	0.00; Cł	ni² = 0.	00, df=	= 1 (P =	1.00);	$ ^{2} = 0\%$			
Test for overall effect:	Z = 1.33	(P = 0	.18)						
16.10.2 OTHER									
McKay 2012	5.6	2.72	10	4.92	4.5	12	2.3%	0.68 [-2.37, 3.73]	
McKay 2012	4.4	3.2	10	3.58	4.4	12	2.1%	0.82 [-2.36, 4.00]	
Subtotal (95% CI)			20			24	4.4%	0.75 [-1.46, 2.95]	
Heterogeneity: Tau ² =	0.00; Ch	ni² = 0.	00, df=	= 1 (P =	0.95);	l² = 0%			
Test for overall effect:	Z = 0.66	(P = 0	.51)						
Total (95% CI)			56			64	100.0%	0.34 [-0.12, 0.80]	◆
Heterogeneity: Tau ² =	0.00; Cł	ni² = 0.	14, df=	= 3 (P =	0.99);	l ² = 0%			
Test for overall effect:	Z=1.44	(P = 0	.15)						-4 -2 U Z 4
Test for subgroup diff	erences:	Chi ≇∍	= 0.14,	df = 1 (i	^o = 0.7	1), I ² =	0%		Favours preoperative exer Favours control

eFigure 20: Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary)

1	Intervent	on	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup Me	an SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.18.1 Primary								
Bruun-Olsen 2009	4 2.3	30	4	2.1	33	5.1%	0.00 [-1.09, 1.09]	
Bruun-Olsen 2009	2.9 2.2	30	1.9	1.5	33	6.2%	1.00 [0.06, 1.94]	
Lenssen 2003 🛛 🔅	2.6 1.8	20	4.7	2.6	19	3.5%	-2.10 [-3.51, -0.69]	
Lenssen 2003 🛛 🔅	2.3 2.6	20	4.5	2.4	18	2.9%	-2.20 [-3.79, -0.61]	
Montgomery 1996	5 2.5	28	5	1.5	32	5.3%	0.00 [-1.06, 1.06]	
Sahin 2006 3.	.85 1.29	14	3.5	1.34	14	5.9%	0.35 [-0.62, 1.32]	
Sahin 2006 1.	.21 1.12	14	1.14	1.16	14	7.0%	0.07 [-0.77, 0.91]	
Subtotal (95% CI)		156			163	35.9%	-0.27 [-1.03, 0.49]	-
Heterogeneity: Tau ² = 0.73	3; Chi ž = 3	20.69, dt	f=6(P=	= 0.002	2); I z = 7	71%		
Test for overall effect: Z = 0	0.70 (P =	0.49)						
40.40.2.0								
16.18.2 Secondary								
Bennet 2005	3.6 3	47	3.1	2.9	52	4.6%	0.50 [-0.66, 1.66]	
Bennet 2005	2.6 2.9	48	3.1	2.9	52	4.8%	-0.50 [-1.64, 0.64]	
Chen 2013 5.	.12 1.39	68	4.77	1.56	39	9.9%	0.35 [-0.24, 0.94]	
Chen 2013 3.	.22 1.28	68	3.05	1.54	39	10.2%	0.17 [-0.40, 0.74]	
Chen 2013 0.	.37 0.6	68	0.21	0.47	39	15.2%	0.16 [-0.05, 0.37]	*
MacDonald 2000	5.1 1.3	40	5.2	1.2	40	10.5%	-0.10 [-0.65, 0.45]	
May 1999 - 1	1.5 1.6	7	2.1	2.4	7	1.7%	-0.60 [-2.74, 1.54]	
McInnes 1992	2.8 2.05	47	3.6	2.05	45	7.1%	-0.80 [-1.64, 0.04]	
Subtotal (95% CI)		393			313	64.1%	0.07 [-0.14, 0.29]	•
Heterogeneity: Tau ² = 0.01	l;Chi ^z = i	'.95, df=	= 7 (P =	0.34);	$ ^{2} = 129$	%		
Test for overall effect: Z = 0	0.67 (P =	0.50)						
Total (95% CI)		549			476	100.0%	-0.05 [-0.35, 0.25]	•
Hotorogeneity: Tou ² – 0.14	t: ⊂hi≅ – 1	0 1 2 di	f = 1,4 /P	- n n-	1): IZ = 4	57%	0.00 [0.00, 0.20]	
Tect for overall effect: 7 – 0	+, OUL - 7	0.74) 0.74)	- 14 (F	- 0.0	·//	12.70		-4 -2 0 2 4
Test for subgroup differen	0.00 (r. –	0.(4)	A6 A (1		0) 17	~~		Favours CPM Favours control

eFigure 21: Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary)

	Inte	erventio	n	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
16.19.1 Primary									
Albrecht 1997	2.65	5.11	35	7	5.11	15	2.0%	-4.35 [-7.44, -1.26]	
Albrecht 1997	6	3.16	32	7	3.16	16	4.0%	-1.00 [-2.90, 0.90]	
Albrecht 1997	5.12	4.54	32	6.5	4.54	16	2.5%	-1.38 [-4.10, 1.34]	
Albrecht 1997	2.34	4.89	35	6.5	4.89	15	2.2%	-4.16 [-7.12, -1.20]	
Thienpont 2014 Subtotal (95% CI)	4	3	50 184	3.5	5	50 112	4.8% 15.5%	0.50 [-1.12, 2.12] - 1.79 [-3.62, 0.04]	
Heterogeneity: Tau ² =	= 2.82; C	hi ² = 12	.15, df:	= 4 (P =	0.02); l ^a	= 67%			
Test for overall effect:	Z = 1.91	(P = 0.	06)						
16.19.2 Secondary									
Gibbons 2001	6.7	3.101	30	6.2	3.101	30	5.0%	0.50 [-1.07, 2.07]	_
Gibbons 2001	3.8	2.41	30	4.2	2.41	30	6.3%	-0.40 [-1.62, 0.82]	
Kullenberg 2006	2.1	4.55	43	2.2	1	40	5.6%	-0.10 [-1.49, 1.29]	
Kullenberg 2006	0.8	4.09	43	1.2	3.19	40	5.0%	-0.40 [-1.97, 1.17]	
Levy 1993	7.4	2.7	40	7.8	2.7	40	6.4%	-0.40 [-1.58, 0.78]	—
Levy 1993	5.9	2.4	40	7.3	1.5	40	7.7%	-1.40 [-2.28, -0.52]	
Levy 1993	5.6	1.6	40	6.9	1.9	40	8.2%	-1.30 [-2.07, -0.53]	
Morsi 2002	4	0	30	6.9	0	30		Not estimable	
Morsi 2002	5.5	0	30	9	0	30		Not estimable	
Morsi 2002	5	2.73	30	7	2.63	30	5.7%	-2.00 [-3.36, -0.64]	_ —
Radkowski 2007	6	2.72	28	5.5	2.72	36	5.8%	0.50 [-0.84, 1.84]	-
Radkowski 2007	7.1	2.75	28	6.3	3.75	36	4.9%	0.80 [-0.79, 2.39]	
Smith 2002	4.3	1.8	44	4.2	2	40	8.0%	0.10 [-0.72, 0.92]	+
Smith 2002	4.3	2	44	4.8	1.9	40	7.9%	-0.50 [-1.33, 0.33]	
Smith 2002	4.2	1.8	44	3.5	1.9	40	8.1%	0.70 [-0.09, 1.49]	
Subtotal (95% CI)			544			542	84.5%	-0.35 [-0.83, 0.13]	•
Heterogeneity: Tau ² =	= 0.44; C	hi ² = 29	.80, df:	= 12 (P =	= 0.003)); I² = 6I	D%		
Test for overall effect:	Z=1.41	(P = 0.	16)						
Total (95% CI)			728			654	100.0%	-0.51 [-1.00, -0.02]	◆
Heterogeneity: Tau ² =	= 0.61; C	hi² = 44	.24, df:	= 17 (P =	= 0.000	3); I 2 = I	62%		
Test for overall effect:	Z = 2.08	6 (P = 0.	04)						Favours cryotherapy Eavours control
Test for subgroup diff	ferences	: Chi ^z =	2.23, c	lf = 1 (P	= 0.14),	l² = 55	.1%		

eFigure 22: Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary)

	Inte	erventio	n	0	Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
16.20.1 Primary									
Harms 1991 Subtotal (95% CI)	28	19	55 55	29	16	58 58	25.1% 25.1%	-1.00 [-7.49, 5.49] - 1.00 [-7.49, 5.49]	*
Heterogeneity: Not ap	oplicable	,							
Test for overall effect	Z = 0.30) (P = 0.1	76)						
16.20.2 Secondary									
Colwell 1992	9.6	3.75	12	14.8	6.4	0		Not estimable	
MacDonald 2000	88	51	40	80	51	40	19.3%	8.00 [-14.35, 30.35]	_ _
Pope 1997	81.5	24.08	20	48.1	23.91	19	22.4%	33.40 [18.33, 48.47]	
Pope 1997	72.6	25.4	18	48.1	23.91	19	22.0%	24.50 [8.59, 40.41]	
Walker 1991 Subtotal (95% CI)	96	32.75	12 102	148	64.25	10 88	11.1% 74.9%	-52.00 [-95.92, -8.08] 11.12 [-12.21, 34.44]	
Heterogeneity: Tau ² =	419.09	; Chi ^z = 1	14.69,	df = 3 (F	e = 0.002	2); I z = 8	30%		
Test for overall effect	Z = 0.93	8 (P = 0.3	35)						
Total (95% CI)			157			146	100.0%	8.38 [-11.05, 27.81]	•
Heterogeneity: Tau ² =	379.87	; Chi² = :	29.09,	df = 4 (F	° < 0.000	001); I ^z	= 86%	-	
Test for overall effect	Z = 0.84	4 (P = 0	40)						Favours CPM Favours control
Test for subgroup dif	ferences	: Chi ² =	0.96, d	f=1 (P	= 0.33),	$ ^{2} = 0\%$	6		

eFigure 23: Subgroup Sensitivity Analysis Comparing Studies Based on How Pain Outcome Was Considered (Either Primary or Secondary)

	Inte	erventio	n	C	Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.21.1 Primary									
Thienpont 2014 Subtotal (95% CI)	0.792	0.563	50 50	0.802	0.542	50 <mark>50</mark>	11.4% 11.4%	-0.01 [-0.23, 0.21] - 0.01 [-0.23, 0.21]	↓
Heterogeneity: Not ap	oplicable								
Test for overall effect:	Z = 0.09	(P = 0.9)	93)						
16 01 0 Cocondony									
TO.21.2 Secondary									
Gibbons 2001	0.65	0.31	30	0.6	0.31	30	13.8%	0.05 [-0.11, 0.21]	
Kullenberg 2006	0.37	0.11	43	0.43	0.05	40	17.6%	-0.06 [-0.10, -0.02]	•
Levy 1993	0.53	0.2	40	0.96	0.3	40	15.5%	-0.43 [-0.54, -0.32]	+
Smith 2002	0.32	0.29	44	0.42	0.31	40	14.9%	-0.10 [-0.23, 0.03]	
Walker 1991	0.622	0.169	15	0.844	0.293	15	13.2%	-0.22 [-0.39, -0.05]	
Webb 1998	0.57	0.23	15	0.71	0.23	16	13.6%	-0.14 F-0.30, 0.021	
Subtotal (95% CI)			187			181	88.6%	-0.15 [-0.29, -0.02]	•
Heterogeneity: Tau ² =	: 0.02 [,] CI	hi² = 43	79 df:	= 5 (P <	0 0000	1): IP = 1	89%		-
Test for overall effect:	7 = 2.20	(P = 0.0	13)	• •		.,,			
	2-2.20	, (i = 0	,						
Total (95% CI)			237			231	100.0%	-0.13 [-0.26, -0.01]	•
Heterogeneity: Tau ² =	= 0.02: CI	hi² = 44.	38. df=	= 6 (P <	0.0000	1);	86%		
Test for overall effect:	7=217	P = 0.0	13)						-2 -1 0 1 2
Test for subaroun diff	ferences	∵Chi²=	117 d	f= 1 (P	= 0.28)	$l^2 = 1.4$	9%		Favours cryotherapy Favours control
reactor adoptioup uni	erences		1.17.0	-100	- 0.20),	1 - 14	.5.0		

eFigure 24: Funnel Plot of Comparison for CPM Trials Measured in Terms of Reported Points in the VAS Scale at 1 Week

eFigure 25: Funnel Plot of Comparison for CPM Trials Measured in Terms of Opioid Consumption (mg/kg/48 Hours of Morphine Equivalent)

eFigure 26: Funnel Plot of Comparison for Cryotherapy Trials Measured in Terms of Reported Points in the VAS Scale

eFigure 27: Funnel Plot of Comparison for Cryotherapy Trials Measured in Terms of Opioid Consumption (mg/kg/48 Hours of Morphine Equivalent)

eFigure 28: Funnel Plot of Comparison for Electrotherapy Trials Measured in Terms of Reported Points in the VAS Scale at 1 Week

eFigure 30: Subgroup Sensitivity Analysis Comparing Studies by Type of Control.

	Сгус	yotherapy Control						Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
4.1.1 Cryotherapy vs	s. nothing								
Albrecht 1997	2.65	5.11	35	7	5.11	15	4.4%	-4.35 [-7.44, -1.26]	-
Albrecht 1997	6	3.16	32	7	3.16	16	9.8%	-1.00 [-2.90, 0.90]	
Kullenberg 2006	2.1	4.55	43	2.2	1	40	14.8%	-0.10 [-1.49, 1.29]	-+-
Morsi 2002	4	0	30	6.9	0	30		Not estimable	
Subtotal (95% CI)			140			101	29.0%	-1.41 [-3.44, 0.62]	◆
Heterogeneity: Tau ² =	= 2.10; Cł	ni² = 6.0	6, df=	2 (P = 0	.05); l² =	= 67%			
Test for overall effect	: Z = 1.36	(P = 0.1	17)						
1120									
4.1.2 Cryotherapy vs	s. compre	ession							
Gibbons 2001	6.7	3.101	30	6.2	3.101	30	12.8%	0.50 [-1.07, 2.07]	
Levy 1993	7.4	2.7	40	7.8	2.7	40	17.9%	-0.40 [-1.58, 0.78]	-
Radkowski 2007	6	2.72	28	5.5	2.72	36	15.5%	0.50 [-0.84, 1.84]	
Smith 2002	4.3	1.8	44	4.2	2	40	24.8%	0.10 [-0.72, 0.92]	+
Subtotal (95% CI)			142			146	71.0%	0.11 [-0.45, 0.67]	♦
Heterogeneity: Tau ² =	= 0.00; Cł	ni = 1.2	8, df =	3 (P = 0	.74); l² =	= 0%			
Test for overall effect	: Z = 0.38	(P = 0.7)	70)						
			202			247	400.0%	0.24 [0.00 0.40]	
Total (95% CI)			282			247	100.0%	-0.21 [-0.89, 0.48]	· · · · · ·
Heterogeneity: Tau ² =	= 0.32; Cł	ni² = 9.9	3, df =	6 (P = 0	.13); I ≥ =	= 40%			-10 -5 0 5 10
Test for overall effect	: Z = 0.59	(P = 0.5	55)						Favours cryotherapy Favours control
Test for subgroup dif	ferences	Chi ² =	2.00, d	f=1 (P	= 0.16),	l² = 50	.1%		

eFigure 31: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Сгус	thera	erapy Control					Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
5.1.1 Cryotherapy vs.	nothing								
Albrecht 1997	5.12	4.54	32	6.5	4.54	16	10.2%	-1.38 [-4.10, 1.34]	
Albrecht 1997	2.34	4.89	35	6.5	4.89	15	9.0%	-4.16 [-7.12, -1.20]	
Subtotal (95% CI)			67			31	19.3%	-2.71 [-5.43, 0.01]	
Heterogeneity: Tau ² =	1.76; Cl	ni² = 1.	84, df :	= 1 (P =	0.18);	$l^{2} = 46^{\circ}$	%		
Test for overall effect:	Z = 1.95	(P = 0	1.05)						
5.1.2 Cryotherapy vs.	compre	ession							
Levy 1993	5.9	2.4	40	7.3	1.5	40	30.2%	-1.40 [-2.28, -0.52]	
Morsi 2002	5.5	0	30	9	0	30		Not estimable	
Smith 2002	4.3	2	44	4.8	1.9	40	30.9%	-0.50 [-1.33, 0.33]	
Thienpont 2014	4	3	50	3.5	5	50	19.6%	0.50 [-1.12, 2.12]	
Subtotal (95% CI)			164			160	80.7%	-0.64 [-1.57, 0.30]	◆
Heterogeneity: Tau² =	0.38; CI	ni² = 4.	75, df :	= 2 (P =	0.09);	I ² = 58°	%		
Test for overall effect:	Z=1.34	(P = 0	1.18)						
Total (95% CI)			231			191	100.0%	-1.00 [-2.01, 0.02]	•
Heterogeneity: Tau ^z =	0.69; Cl	ni² = 9.	80, df :	= 4 (P =	0.04);	I ^z = 599	%	-	
Test for overall effect:	Z=1.93	(P = 0	.05)						-4 -2 U Z 4 Equates existences - Equates
Test for subgroup diff	erences	: Chi " ⊧	= 1.99,	df = 1 (F	P = 0.1	6), I ^z =	49.8%		Favours cryourerapy Favours control

eFigure 32: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Сгус	othera	ру	C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
6.1.1 Cryotherapy vs	. nothing)							
Kullenberg 2006 Subtotal (95% Cl)	0.8	4.09	43 43	1.2	3.19	40 40	14.0% 14.0%	-0.40 [-1.97, 1.17] - 0.40 [-1.97, 1.17]	•
Heterogeneity: Not ap	oplicable	!							
Test for overall effect:	Z = 0.50) (P = 0).62)						
6.1.2 Cryotherapy vs	. compr	ession	I						
Gibbons 2001	3.8	2.41	30	4.2	2.41	30	16.6%	-0.40 [-1.62, 0.82]	
Levy 1993	5.6	1.6	40	6.9	1.9	40	20.1%	-1.30 [-2.07, -0.53]	-
Morsi 2002	5	2.73	30	7	2.63	30	15.6%	-2.00 [-3.36, -0.64]	
Radkowski 2007	7.1	2.75	28	6.3	3.75	36	13.8%	0.80 [-0.79, 2.39]	+
Smith 2002	4.2	1.8	44	3.5	1.9	40	19.9%	0.70 [-0.09, 1.49]	-
Subtotal (95% CI)			172			176	86.0%	-0.45 [-1.53, 0.63]	♠
Heterogeneity: Tau² =	= 1.17; C	hi ² = 21	0.14, di	f= 4 (P :	= 0.00	05); I ² =	80%		
Test for overall effect:	Z = 0.82	? (P = 0).41)						
Total (95% CI)			215			216	100.0%	-0.44 [-1.37, 0.49]	•
Heterogeneity: Tau ² =	= 0.97; C	hi ² = 21	0.14, di	f = 5 (P =	= 0.00	1); I ² = 3	75%	-	
Test for overall effect:	Z = 0.94	l (P = 0).35)						Eavours cryotherapy Eavours control
Test for subgroup dif	ferences	: Chi ⁼⊧	= 0.00.	df = 1 (F	P = 0.9	6), I ² =	0%		ravous orjourcrapy ravous control

eFigure 33: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Сгу	otherap	y	0	Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
7.1.1 Cryotherapy vs.	. nothing]							
Walker 1991	0.622	0.169	15	0.844	0.293	15	13.2%	-0.22 [-0.39, -0.05]	
Webb 1998	0.57	0.23	15	0.71	0.23	16	13.6%	-0.14 [-0.30, 0.02]	
Subtotal (95% CI)			30			31	26.8%	-0.18 [-0.30, -0.06]	•
Heterogeneity: Tau ² =	0.00; C	hi² = 0.4	6, df =	1 (P = 0	.50); I² =	= 0%			
Test for overall effect:	Z = 2.98	8 (P = 0.)	003)						
712 Cryotherapy vs	compre	noiese							
Cibbono 2004	0.05	0.04	20	0.0	0.24	20	42.00	0.051044.0041	
Kullophorg 2001	0.00	0.31	30	0.0	0.31	30	13.8%	0.05[0.11,0.21]	_ [_]
Kullenberg 2006	0.37	0.11	43	0.43	0.05	40	17.0%	-0.06 [-0.10, -0.02]	
Levy 1993 Cmith 2002	0.00	0.2	40	0.90	0.3	40	10.0%	-0.43 [-0.34, -0.32]	
Smiri 2002	0.32	0.29	44	0.42	0.31	40	14.970	-0.10[-0.23, 0.03]	
Subtotal (95% CI)	0.792	0.005	207	0.002	0.042	200	73.2%	-0.01[-0.23, 0.21]	
Hotorogeneity: Tou ² –	0.02.0	bi Z – ∦1	77 df-	- 1 /0 -	0 0000	1\· IZ = (20%	-0.12 [-0.20, 0.04]	$\overline{}$
Telefogeneily, rau –	7 - 1 44	111 — 41. 170 — 0 ·	77, ui - 16)	- 4 (1- 5	0.0000	1), 1 = 3	50 70		
restion overall ellect.	2 - 1.44	(F = 0.	10)						
Total (95% CI)			237			231	100.0%	-0.13 [-0.26, -0.01]	◆
Heterogeneity: Tau ² =	0.02; C	hi ^z = 44.	38, df=	= 6 (P <	0.0000	1); I ^z = 8	86%		
Test for overall effect:	Z= 2.17	' (P = 0.)	03)						- I - U.S U U.S I Eavours cryothorapy, Eavours control
Test for subgroup diff	erences	: Chi² =	0.38, d	f=1 (P	= 0.54),	l² = 0%	6		Tavours cryourerapy Pavours control

eFigure 34: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Acu	ounctu	ire	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	CI IV, Random, 95% CI
11.1.1 Acupuncture	vs. sharr	1 acup	unctur	е					
Chen 2015	89	75	30	37	21	30	54.6%	52.00 [24.13, 79.87]	7] 🚽
Tzeng 2015 Subtotal (95% CI)	92	81.7	14 <mark>44</mark>	90.7	94.9	17 47	15.0% <mark>69.6%</mark>	1.30 [-60.88, 63.48] 34.58 [-12.61, 81.77]	
Heterogeneity: Tau ² = Test for overall effect:	= 680.87; Z = 1.44	Chi ² = (P = 0	: 2.13, i).15)	df=1 (F	? = 0.1	4); I² = (53%		
11.1.2 Acupuncture	vs. nothi	ng							
Tzeng 2015 Subtotal (95% CI)	92	81.7	16 16	34.1	22	17 17	30.4% 30.4%	57.90 [16.52, 99.28] 57.90 [16.52, 99.28]	
Heterogeneity: Not ap Test for overall effect:	plicable Z = 2.74	(P = 0).006)						
Total (95% CI)			60			64	100.0%	46.17 [20.84, 71.50]	•
Heterogeneity: Tau ² =	103.95;	Chi ² =	2.46, 1	df = 2 (F	e = 0.2	9); i² = 1	19%		
Test for overall effect:	Z= 3.57	(P = 0).0004)						-500 -250 0 250 500
Test for subgroup dif	ferences	∶Chi ⁼∶	= 0.53,	df = 1 (i	^o = 0.4	7), l² =	0%		Favours control Favours acupuncture

eFigure 35: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Acup	unctu	re	Co	ontro	I		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
11.2.1 Acupuncture	/s. sham	acup	unctur	e					
Chen 2015	3.7	1.6	30	5.3	2	30	28.6%	-1.60 [-2.52, -0.68]	
Tzeng 2015 Subtotal (95% CI)	4.2	1	16 46	4.5	1	14 44	34.6% <mark>63.2%</mark>	-0.30 [-1.02, 0.42] -0.92 [-2.19, 0.35]	
Heterogeneity: Tau ² = Test for overall effect:	0.67; Ch Z = 1.41	ni ² = 4. (P = 0	.79, df= 1.16)	= 1 (P =	0.03)	i; ² = 79	3%		
11.2.2 Acupuncture	vs. nothir	Ig							
Tzeng 2015 Subtotal (95% CI)	4.2	1	16 16	4.6	0.9	17 17	36.8% 36.8%	-0.40 [-1.05, 0.25] -0.40 [-1.05, 0.25]	↓
Heterogeneity: Not ap Test for overall effect:	plicable Z = 1.21	(P = 0	1.23)						
Total (95% CI)			62			61	100.0%	-0.71 [-1.44, 0.02]	▲
Heterogeneity: Tau² = Test for overall effect: Test for subgroup difl	: 0.26; Ch Z = 1.91 ferences:	ii ² = 5. (P = 0 Chi ² :	.60, df= 1.06) = 0.50,	= 2 (P = df = 1 (F	0.06) P = 0.	(; l² = 64 48), l² =	4% = 0%		-10 -5 0 5 10 Favours acupuncture Favours control

eFigure 36: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Inte	Intervention			ontrol			Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.23.1 CPM vs Std o	are								
Bennet 2005	3.6	3	47	3.1	2.9	52	9.6%	0.50 [-0.66, 1.66]	- + •
Bennet 2005	2.6	2.9	48	3.1	2.9	52	9.9%	-0.50 [-1.64, 0.64]	
Lenssen 2008	2.6	1.8	20	4.7	2.6	19	7.2%	-2.10 [-3.51, -0.69]	
MacDonald 2000	5.1	1.3	40	5.2	1.2	40	21.6%	-0.10 [-0.65, 0.45]	
McInnes 1992	2.8	2.05	47	3.6	2.05	45	14.6%	-0.80 [-1.64, 0.04]	
Sahin 2006	3.85	1.29	14	3.5	1.34	14	12.2%	0.35 [-0.62, 1.32]	
Subtotal (95% CI)			216			222	75.1%	-0.36 [-0.95, 0.24]	◆
Heterogeneity: Tau² =	0.30; C	hi ^z = 1	1.76, d	f = 5 (P :	= 0.04)); I ^z = 53	7%		
Test for overall effect:	Z = 1.17	' (P = 0	0.24)						
16.23.2 CPM vs Exer	cise								
Bruun-Olsen 2009	4	2.3	30	4	2.1	33	10.5%	0.00 [-1.09, 1.09]	_ _
Montgomery 1996	5	2.5	28	5	1.5	32	10.9%	0.00 [-1.06, 1.06]	_
Subtotal (95% CI)	-		58	-		65	21.4%	0.00 [-0.76, 0.76]	◆
Heterogeneity: Tau ² =	0.00; C	hi² = 0	.00. df=	= 1 (P =	1.00);	$ ^{2} = 0\%$			
Test for overall effect:	Z = 0.00) (P = 1	1.00)						
16.23.3 CPM vs LLM	B AND S	td car	e						
May 1999	15	1.6	- 7	21	24	7	3.6%	-0.60[-2.74, 1.54]	
Subtotal (95% CI)	1.0	1.0	7	2.1	2.1	7	3.6%	-0.60 [-2.74, 1.54]	
Heterogeneity: Not ar	nlicable								
Test for overall effect:	Z = 0.55	5 (P = 0	0.58)						
Total (95% CI)			281			294	100.0%	-0.27 [-0.70, 0.16]	•
Heterogeneity: Tau ² =	0.14:0	hi z = 1	2 30 d	f = 8 (P :	= 0.14): IZ = 3/	596		
Tect for overall effect:	7 = 1.24	– 1 L (P = 0	2.00, u 1.21)		- 0.14	/, i = 3.	5,0		-4 -2 0 2 4
Teet for eubaroun diff	2 - 1.29 oroncoc	r (i — U ⊴ Chi≩-	-064	df = 2/0	9 – N 7	2) 12-	n%		Favours CPM Favours control
reactor aupproup un	cicilles		- 0.04,	ui – 2 (i	- 0.7	57.1 -	0.0		

eFigure 37: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Inter	venti	on	С	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.25.1 CPM+Act exe	ercise vs	s Stan	dard T	reat					
Bruun-Olsen 2009 Subtotal (95% CI)	2.9	2.2	30 <mark>30</mark>	1.9	1.5	33 33	39.5% 39.5%	1.00 [0.06, 1.94] 1.00 [0.06, 1.94]	•
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 2.09	(P = (0.04)						
16.25.2 Aggressive (CPM vs S	td tre	at						
Chen 2013 Subtotal (95% CI)	3.22	1.28	68 <mark>68</mark>	3.05	1.54	39 39	60.5% <mark>60.5%</mark>	0.17 [-0.40, 0.74] 0.17 [-0.40, 0.74]	‡
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.58	(P = ().56)						
Total (95% CI)			98			72	100.0%	0.50 [-0.30, 1.29]	•
Heterogeneity: Tau ² =	0.19; Cł	ni ≈ = 2	.19, df :	= 1 (P =	0.14);	l ² = 54	%	_	
Test for overall effect:	Z = 1.23	(P = ().22)	•					-4 -2 U 2 4
Test for subgroup diff	erences:	Chi²	= 2.19,	df = 1 (i	P = 0.1	4), l ² =	54.4%		Favours CFIM Favours control

eFigure 38: Subgroup Sensitivity Analysis Comparing Studies by Type of Control

	Inter	venti	on	Co	ontro	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.22.1 CPM-new vs	CPM-sta	indar	d						
Kim 2009 Subtotal (95% CI)	3.5	3.6	50 <mark>50</mark>	3.6	3.5	50 <mark>50</mark>	52.9% <mark>52.9%</mark>	-0.10 [-1.49, 1.29] - 0.10 [-1.49, 1.29]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.14	(P = 1	0.89)						
16.22.2 CPM vs Std r	ehabilata	ation	progra	mme					
Beaupre 2001 Subtotal (95% CI)	15.2	3	34 34	15.8	3.2	34 34	47.1% 47.1%	-0.60 [-2.07, 0.87] - 0.60 [-2.07, 0.87]	-
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.80	(P = 1	0.43)						
Total (95% CI)			84			84	100.0%	-0.34 [-1.35, 0.68]	•
Heterogeneity: Tau ² =	0.00; Ch	ni² = 0	.23, df:	= 1 (P =	0.63); I ² = 0	%		
Test for overall effect:	Z= 0.65	(P = 1		-4 -2 U 2 4 Equatra CPM Equatra control					
Test for subgroup diff	erences:	Chi ≇		Favours CFIM Favours control					

eFigure 39: Subgroup Sensitivity Analysis Comparing Studies by Time (Studies Divided If Published Prior or Comprising Year 2000 or From 2001 Onwards)

	Intervention			Control				Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl			
16.15.1 >2000												
Gibbons 2001	0.65	0.31	30	0.6	0.31	30	14.1%	0.05 [-0.11, 0.21]				
Kullenberg 2006	0.37	0.11	43	0.43	0.05	40	17.9%	-0.06 [-0.10, -0.02]	•			
Smith 2002	0.35	0.29	44	0.47	0.31	40	15.2%	-0.12 [-0.25, 0.01]				
Thienpont 2014	0.792	0.563	50	0.802	0.542	50	11.7%	-0.01 [-0.23, 0.21]				
Subtotal (95% CI)			167			160	58.8%	-0.06 [-0.09, -0.02]	•			
Heterogeneity: Tau² =	Heterogeneity: Tau ² = 0.00; Chi ² = 2.91, df = 3 (P = 0.41); i ² = 0%											
Test for overall effect:	Z = 3.36	i (P = 0.1	0008)									
16.15.2 <=2000												
Levy 1993	0.53	0.2	40	0.96	0.3	40	15.8%	-0.43 [-0.54, -0.32]				
Walker 1991	0.65	0.17	15	0.83	0.4	15	11.5%	-0.18 [-0.40, 0.04]				
Webb 1998	0.57	0.23	15	0.71	0.23	16	13.8%	-0.14 [-0.30, 0.02]				
Subtotal (95% CI)			70			71	41.2%	-0.26 [-0.47, -0.05]	•			
Heterogeneity: Tau² =	Heterogeneity: Tau ² = 0.03; Chi ² = 10.00, df = 2 (P = 0.007); i ² = 80%											
Test for overall effect:	Z= 2.47	' (P = 0.)	01)									
Total (95% CI) 237 231 10							100.0%	-0.13 [-0.25, -0.01]	\bullet			
Heterogeneity: Tau ^z = 0.02; Chi ^z = 42.96, df = 6 (P < 0.00001); I ^z = 86%												
Test for overall effect: Z = 2.09 (P = 0.04)												
Test for subgroup diff	erences	: Chi² =	3.60, d	lf = 1 (P	= 0.06),	. I ² = 72	.2%		, areas algenterapy i arouro control			

eFigure 40: Subgroup Sensitivity Analysis Comparing Studies by Time (Studies Divided If Published Prior or Comprising Year 2000 or From 2001 Onwards)

	Intervention			Control				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.16.1 >2000									
Borckardt 2013 Subtotal (95% CI)	6.3	5.6	20 20	12.3	6.6	19 19	32.3% 32.3%	-6.00 [-9.85, -2.15] - 6.00 [-9.85, -2.15]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 3.05	(P = 0	.002)						
16.16.2 <=2000									
Walker 1991	6.6	5.7	18	8.7	5	12	32.1%	-2.10 [-5.96, 1.76]	
Walker 1991	6.2	4.9	18	8.7	5	12	35.7%	-2.50 [-6.12, 1.12]	
Subtotal (95% CI)			36			24	67.7%	-2.31 [-4.96, 0.33]	◆
Heterogeneity: Tau ² =	0.00; Cł	ni = 0.	02, df:	= 1 (P =	0.88)	; I² = 0	%		
Test for overall effect:	Z=1.72	(P = 0	1.09)						
Total (95% CI)			56			43	100.0%	-3.50 [-5.90, -1.10]	•
Heterogeneity: Tau ² =	0.77; Cł	ni² = 2.	42, df:	= 2 (P =	0.30)	; l² = 1	7%		
Test for overall effect: Z = 2.86 (P = 0.004)									-20 -10 0 10 20
Test for subgroup diff	erences:	Chi ² :	= 2.39,	df = 1 (P = 0.	12), P	= 58.2%		Tavours electronierapy Tavours control

eFigure 41: Results of the Meta-regression for the Distribution of Age in the Groups (Treatment vs Control)

. metareg AGE Group, wsse (SD) Meta-regression Number of obs = 28 tau2 = .6622 REML estimate of between-study variance % residual variation due to heterogeneity I-squared_res = 0.00% Proportion of between-study variance explained Adj R-squared = 53.35% With Knapp-Hartung modification AGE Coef. Std. Err. t P>|t| [95% Conf. Interval] -4.86628 -1.365645 1.703033 -0.80 0.430 2.134991 Group

57.70

0.000

66.28128

71.17813

eFigure 42: Results of the Meta-regression for the Distribution of Sex in the Groups (Treatment vs Control)

68.7297 1.19114

. metareg SEX Group1, wsse (SD1)

_cons

Meta-regressio	on	Number of obs	=	57			
REML estimate	of between-s	tau2	=	213.6			
% residual var	riation due t	I-squared_res	=	95.96%			
Proportion of	between-stud	y variance e	xplained		Adj R-squared	=	-1.26%
With Knapp-Har	tung modific	ation					
SEX	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
Group1 cons	2.310076	4.002792	0.58	0.566	-5.711698	1	0.33185