Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers From Solid-State NMR: Insights Into the Sequence Determinants of Trimer Structure and Fusion Activity

Myungwoon Lee¹, Hongwei Yao¹, Byungsu Kwon¹, Alan Waring², Peter Ruchala², Chandan Singh¹, and Mei Hong¹*

¹ Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139

² Department of Physiology and Biophysics, University of California, Irvine, CA 92697

Residue	Peak	POPC/Chol	POPE
I488	Cα-Cγ2/δ	100%	22%
A490	Cα-Cβ	91%	38%
I491 ^a	Cα-Cγ2/δ	66%	41%
A492	Cα-Cβ	64%	49%
L493 ^b	Cα-CO	82%	57%
G494	Cα-CO	91%	81%
S495	Cα/β-CO	100%	100%
G497	Cα-CO	94%	70%
L498	Cα-CO	100%	57%
I499 ^a	Cα- Cγ2/δ	77%	54%
L500 ^b	Cα-CO	82%	57%
I501	Cα- Cγ2/δ	100%	88%
1502	Cα- Cγ2/δ	79%	70%
L503	Cα-CO	74%	69%
S505	Cα/β-CO	79%	61%
V506	Cα-Cγ	59%	39%
V507	Cα-Cγ	56%	44%
V508	Cα-Cγ	35%	25%
Average		79%	57%

Table S1. Fractions of α -helical cross peak intensities out of the total intensities in the PIV5 TMD obtained from low-temperature 2D ¹³C-¹³C correlation spectra of all samples measured in this study and in a previous study [1].

^a The I491 and I499 C α -C γ 2/ δ cross peaks in the ILSILV-labeled peptide are overlapped. The helicity values reported here are interpolated from the helicity of their neighboring residues and averaged to satisfy the observed helicity. The I491 helicity is interpolated from the A490 and A492 helicity values, while the I499 helicity is interpolated from the L498 and L500 values. For the POPC/cholesterol-bound peptide, the observed overlapped I491/I499 C α -C γ 2/ δ helicity is 72%, while the POPE-bound sample has an overlapped helicity of 47%.

^b The reported helicity of the overlapped L493/L500 C α -CO cross peaks in the ILSILV-labeled peptide was the directly measured value without interpolation, since these residues both reside within the central α -helical domain.

Derther	POPC/Chol					РОРЕ						
Residue	N	CO	Сα	Сβ	Сү	Сδ	N	CO	Сα	Сβ	Сү	Сδ
¹ I488	-	175.6	63.4	35.7	27.3/15.7	11.9	124.0	172.2	57.9	39.8	25.9/15.1	12.4
							121.3	175.5	62.4	35.2	26.9/15.6	11.5
1 A490	-	177.3	53.8	16.8			128.8	173.1	48.0	20.2		
	-	172.6	47.8	19.9			120.6	177.4	53.4	16.5		
³ I491	117.8	176.5	63.2	35.6	27.7/15.3	11.8	121.8	171.5	57.2	39.9	25.5/15.0	12.3
	122.2	171.5	57.2	39.9	25.5/15.1	12.3	117.7	176.5	62.8	35.6	27.6/15.3	11.6
⁴ A492	121.9	176.8	54.0	16.4			-	173.5	48.1	20.8		
	124.2	173.2	48.1	20.8			-	176.8	53.8	16.4		
³ L493	117.4	176.5	55.7	39.5	24.4	20.8	117.4	176.6	55.7	39.5	24.4	20.7
	123.1	172.2	51.0	43.6	24.9	23.6	123.1	172.5	51.1	43.6	24.9	23.5
⁴ G494	104.0	172.7	45.7				-	172.8	45.6			
	-	169.3	43.1				-	169.3	42.9			
³ S495	118.4	173.0	61.1	61.1			118.2	173.0	60.9	60.9		
¹ G497	-	172.2	45.7				105.5	172.2	45.4			
							-	169.0	42.9			
$^{1}L498$	-	176.3	56.1	39.5	24.9	21.5	120.8	176.1	55.8	39.6	24.6	21.4
							-	172.4	51.9	44.4	25.1	24.3
³ I499	118.2	175.0	63.8	35.4	27.7/15.0	11.4	117.9	175.0	63.7	35.4	27.6/15.0	11.5
	122.2	171.5	57.2	39.9	25.5/15.1	12.3	121.8	171.5	57.2	39.9	25.5/15.0	12.3
$^{3}L500$	118.9	176.5	55.7	39.5	24.4	20.8	119.0	176.6	55.7	39.5	24.4	20.7
	123.1	172.2	51.0	43.6	24.9	23.6	123.1	172.5	51.1	43.6	24.9	23.5
¹ I501	-	176.8	63.8	35.8	27.9/15.3	11.9	-	176.8	63.5	35.4	27.4/15.2	11.7
							-	-	58.0	38.4	25.3/15.3	12.2
⁴ I502	118.9	175.3	64.4	35.8	27.6/15.6	12.3	-	175.5	64.3	35.8	27.6/15.5	12.2
	122.7	172.0	57.6	39.8	25.8/15.4	12.7	-	172.1	57.9	39.7	25.8/15.4	12.7
⁴ L503	115.4	176.5	56.6	39.9	24.7	21.0	-	176.8	56.6	39.8	24.7	21.0
	123.8	172.2	51.5	43.7	25.7	24.2	-	172.4	51.6	43.8	25.7	23.9
¹ S505	-	173.4	61.3	61.3			119.0	171.2	54.4	64.5		
	-	171.1	54.3	64.3			115.6	173.3	60.9	60.9		
¹ V506	-	175.3	64.9	29.4	21.0/20.2		125.0	172.4	58.5	33.1	19.1	
4	-	172.0	58.5	33.3	19.0		121.6	175.4	64.3	29.4	20.8/19.9	
4V507	115.8	176.9	65.1	29.5	21.3/19.9		-	172.7	58.7	33.3	19.4	
3	122.7	172.3	58.7	33.2	19.3		-	176.9	64.9	29.5	21.2/20.0	
V508	126.3	171.8	58.5	32.5	18.9		126.1	171.9	58.4	32.5	18.9	
	119.9	1/5.5	64.0	29.4	21.0/20.0		119.4	1/5.3	63.9	29.3	20.7/19.7	

Table S2. ¹³C and ¹⁵N chemical shifts (ppm) of the PIV5 TMD in POPC/cholesterol and POPE membranes. The ¹³C chemical shifts are referenced to TMS and the ¹⁵N chemical shifts are referenced to liquid ammonia. Chemical shift values in bold are those of the major conformer.

Chemical shifts were obtained from 2D ¹³C-¹³C and ¹⁵N-¹³C correlation spectra measured at 253-263 K. ¹From the IAGLSV sample. ²From the mixed GV and IS sample. ³From the ILSILV sample. ⁴From the AGILV (L493F) sample.

	CCA				
Samula	CSA	4 (Number of	l otal Europrimental	
Sample	recoupling	t_{mix} (ms)	scans for S_0	Experimental	
L493F, POPC/Chol membrane		1	11264	10	
		1	11204	10	
		100	11204	10	
		100	11264	11	
	0.5 ms	250	11264	12	
		600	16384	20	
		1000	16384	24	
		1500	49152	85	
		2000	47104	94	
		1	10240	9	
		10	10240	9	
L493F, POPE membrane		100	10240	10	
	0.5 ms	250	10240	11	
		500	11264	13	
		1000	31744	46	
		1500	48128	83	
		100	9216	10	
L500F		250	9216	11	
POPC/Chol membrane	0.25 ms	500	17408	23	
		1000	28160	47	
		1500	60928	115	
		10	9216	9	
		50	11264	12	
T F 0 4 F		100	10240	11	
L504F,	0.5 ms	250	10240	12	
popc/Chol membrane		350	11264	14	
		500	10240	13	
		1000	25600	40	
		1500	32768	60	

 Table S3. ¹⁹F CODEX experimental conditions for membrane-bound PIV5 fusion protein TMD.

Figure S1. 2D ¹³C-¹H DIPSHIFT data to determine the mobility of membrane-bound PIV5 TMD. ¹³C spectra of the (a) AGILV (L493F) and (b) ILSILV samples in the POPE membrane, measured at 303 K under 7 kHz MAS. (c-d) ¹H-¹³C dipolar dephasing curves for (c) the AGILV (L493F) sample and (d) the ILSILV sample. Best-fit C-H dipolar couplings are scaled from the rigid-limit value by the FSLG scaling factor of 0.577 [2]. The C-H order parameters are given for each panel. Both α -helical and β -strand conformations of the TMD show large C-H dipolar couplings, with backbone C α -H α order parameters of 0.82-0.95 for the α -helical TMD and 0.86-0.92 for the β -sheet TMD, indicating that the peptide backbone is largely immobilized in the lipid membrane.

Figure S2. 2D ¹H-¹³C correlation spectra of (a) ILSILV-TMD and (b) AGILV (L493F)-TMD in liquid-crystalline POPE membranes. Clear cross peaks with lipid CH₂ were observed from α -helical and β -strand conformations at 100 ms of ¹H spin diffusion, indicating that both conformations are well inserted into the membrane.

Figure S3. Optimization of ¹⁹F CODEX experiments. (a) ¹⁹F CODEX data of 5-¹⁹F-Trp measured under 8 kHz MAS using a total CSA recoupling time of 0.25 ms. The S/S₀ values equilibrated to 0.5, consistent with the $P2_1$ space group of Trp. Best fit for a nearest-neighbor ¹⁹F-¹⁹F distance of 4.62 Å was obtained using an F(0) value of 37 µs. (b) Simulated ¹⁹F CSA dephasing as a function of the length of the π -pulse train. Simulation used a ¹⁹F Larmor frequency of 376 MHz (9.4 Tesla), an MAS frequency of 10 kHz, variable ¹⁹F CSAs of 30 kHz (80 ppm) and 15 kHz (40 ppm), and ¹⁹F rf field strengths from infinitely strong to 62.5 kHz and 30 kHz. Under these conditions, the recoupled ¹⁹F CSAs fully dephased the intensities by 0.4 ms.

References

[1] Yao HW, Lee MW, Waring AJ, Wong GCL, Hong M. Viral fusion protein transmembrane domain adopts beta-strand structure to facilitate membrane topological changes for virus-cell fusion. Proc. Natl. Acad. Sci. U.S.A. 2015;112:10926-10931.

[2] Bielecki A, Kolbert AC, Levitt MH. Frequency-Switched Pulse Sequences - Homonuclear Decoupling and Dilute Spin Nmr in Solids. Chem. Phys. Lett. 1989;155:341-346.