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 2 

Data source 3 

All analyses were performed on previously published data. 16S rRNA gene abundance data from 2553 4 

samples, comprising 1266 oral, 187 stool, 836 skin and 264 vaginal, originating from the Human 5 

Microbiome Project (HMP)1 were downloaded from their web resource (http://www.hmpdacc.org/). Of 6 

these, 172 had less than 1000 reads and were discarded from future analysis. An additional 139 stool 7 

metagenomic shotgun sequenced samples were downloaded from the same location. Additional 8 

metagenomic shotgun sequencing data originate from samples (368 Chinese samples and 278 samples 9 

from the MetaHIT project) described in Qin et al. (2012) and Le Chatelier et al. (2014), respectively. 10 

Three additional samples from the US were used, which are described in Schloissnig et al. (2013). 11 

Data, together with code for generating the main figures can be found at: 12 

https://hub.docker.com/r/costeapaul/enterotype_figures/. Instructions for pulling and running the 13 

docker can also be found there. 14 

Taxonomic and functional analysis 15 

For 16S rRNA gene-based taxonomic composition analysis, we used operational taxonomic unit (OTU) or 16 

genus level relative abundances. Genus level abundance matrices were calculated by adding relative 17 

abundances of all taxonomically annotated OTUs. OTUs not annotated at genus level are considered 18 

“unclassified” and their relative abundances were agglomerated into that category. 19 

For cross-study analyses, shotgun sequencing reads were mapped to a database of selected single copy 20 

phylogenetic marker genes (mOTU.v1.padded)2 and summarized into species-level (mOTU) and genus-21 

level relative abundances. Functional profiles of clusters of orthologous groups (COGs) and KEGG 22 

orthology groups (KO), including both those of eukaryotic and bacterial origin, for MetaHIT, Chinese, and 23 

HMP samples were computed using MOCAT 3 by mapping shotgun sequencing reads to an annotated 24 

reference gene catalogue as described in Voigt et al. 4. COG category abundances were calculated by 25 

summing the abundance of the respective COGs belonging to each category per sample, excluding 26 

NOGs. 27 

Weighted and unweighted UniFrac distances were downloaded from the HMP web resource 28 

(http://www.hmpdacc.org/). Jensen-Shannon distances were computed on genus level relative 29 

abundance matrices, as described in the enterotyping tutorial 30 

(http://enterotype.embl.de/enterotypes.html). 31 

For determining the optimal number of clusters on all data matrices, three different measures were 32 

used from the R fpc package5 (version 2.1.9). The Calinski-Harabasz index6 and the silhouette index7 of a 33 

given distance matrix and a set number of clusters were computed using the function pamk with default 34 

parameters. The prediction strength8 was calculated with a modified version of the prediction.strength 35 

function, allowing a distance matrix as a parameter, with the dataset being randomized 50 times. For all 36 
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the different measures, we varied the number of clusters between two and ten and considered the 37 

cluster number with the highest value for each measure to be the optimal one.   38 

Ordination 39 

Visualization of distance matrices was performed using unsupervised ordination methods. Principal 40 

coordinate analysis was performed with the R ade4 package (version 1.6.2), using the dudi.pco function.  41 

Parallel to each pair of enterotypes, we plotted the abundances of selected genera and functional 42 

categories (Fig. 3). For each combination, we performed principal component analysis on the 2-43 

dimensional PCoA coordinates, to identify the axis that explains the greatest variation between 44 

enterotypes (i.e. the first eigenvector). This component forms the x-axis for the distributional plots. 45 

Subsequently, we log transformed abundance of genera/ functions, then scaled and centered them. The 46 

plotted line is a smoothed spline fitted to these transformed abundances, using the R base function 47 

smooth.spline. To test for significant bimodal distribution of feature abundance, Hartigan’s dip test 48 

statistic from R package diptest was used. 49 

Feature significance testing 50 

Univariate testing for differential abundances of taxonomic and functional features between two or 51 

more groups was tested using a Wilcoxon-Rank Sum test or Kruskal-Wallis test (p-value), respectively, 52 

corrected for multiple testing using the Benjamini-Hochberg false discovery rate (q- value). COGs and 53 

KOs occurring in less than four samples or with an average normalized count abundance < 30 across 54 

were excluded from the univariate analysis.  55 

Diversity analysis 56 

Richness and Shannon diversity index for taxonomic and functional features, mOTU and OTU were 57 

calculated after rarefaction of matrices to 3,000 and 5,000, units per sample, respectively, using the 58 

vegan R package. Rarefactions of COG, KO and gene matrices were done using rtk9 with a per sample 59 

rarefaction depth of 6,900,000. In total we performed 30 repetitions, in each of which we measured the 60 

richness and Shannon diversity metrics within a rarefaction. The median value of these was taken as the 61 

respective richness/ diversity measurement for each sample. These thresholds were chosen to include 62 

most samples. Diversity differences were plotted as boxplots (Suppl. Fig. 7 and 8), with boxes defined as 63 

25th and 75th quantiles, and whiskers by 1.5 * interquartile range. 64 

Parameter-dependence of clustering 65 

Clustering algorithms have been developed and employed for nearly 100 years (e.g. Driver and Kroeber 66 

1932) and have more recently been applied to analyze microbial compositions, especially those of the 67 

human gut. However, it is challenging to determine whether there are actual clusters present, and if so, 68 

how many? A number of clustering optimality measures, as well as distance measures were employed 69 

for determining the number of microbial clusters that may be present in the human gut microbiota.  To 70 

describe inter-sample differences, most studies use a combination of weighted and unweighted UniFrac 71 

distances or Jensen-Shannon distance (JSD) (Suppl. Table 1). To determine the optimal number of 72 

clusters in the space described by the distance measure, the CH-index6, silhouette index7 and prediction 73 

strength8 are commonly used.  74 



Different distance metrics will give a different weight to community features. For example, the UniFrac 75 

distance11, be it weighted (taking abundance into account) or unweighted (presence-absence only), is 76 

based on the importance of phylogenetic distance between the components of the community. In 77 

contrast, the JSD distance does not take phylogenetic information into account, and measures the 78 

mutual information shared between two samples. For both weighted UniFrac and Jensen-Shannon, the 79 

underlying hypothesis is that variation in highly abundant members is the most relevant feature for 80 

describing similarities. The hypothesis of unweighted analysis is that community membership is the 81 

most important feature. While these distances are conceptually very distinct, they may result in the 82 

same outcome, though they exhibit quantitatively and qualitatively different properties. Another 83 

property worth considering is the absolute numbers of microbes in any given sample; it may be that 84 

observed fluctuations in composition poorly reflect the actual cell counts of the members, as the total 85 

amount varies considerably. This may constitute a further confounder when trying to disentangle 86 

compositional properties. 87 

Within the Human Microbiome Project (HMP) dataset, 2910 samples are available from a range of 88 

human body sites1. We used this dataset to benchmark the aforementioned distances and optimality 89 

criteria, based on the assumption that human body-sites are inhabited by different microbial 90 

populations and that their separation should be clear (Fig. 1).  The PCoA projections of the distance 91 

space into two dimensions shows that the largest part of the variation does not separate the body sites 92 

properly, except in the case of the JSD distance on genus level (Suppl. Fig. 4A). This metric and weighted 93 

UniFrac both recovered the four expected clusters in conjunction with PS or Silhouette index (Suppl. Fig. 94 

4B). However, even when recovered, the separation appears not to be very strong, with silhouette 95 

values being low (0.4 at best). Since often three or less clusters are chosen to be the optimal cluster 96 

number, we conclude that the clustering approach may underpowered. 97 

Cross-study enterotype comparison 98 

Comparability of the structure across multiple datasets is a necessary characteristic of the enterotype 99 

concept. However, although similar genera were reported as being most abundant in gut stratifications 100 

(Suppl. Table 1), this does not automatically imply similar communities or structure. To test the 101 

assumption of comparability, we used three unrelated large datasets, with different sampling 102 

procedures (US HMP1, Chinese diabetes type 2 study12, European MetaHIT consortium13) and clustered 103 

these with the PAM clustering algorithm on a JSD distance at genus level14. The obtained clusters had an 104 

overrepresentation of Prevotella, Bacteroides or Firmicutes (the latter represented by Ruminococcus, 105 

Eubacterium and Subdilogranulum respectively), as expected. 106 

Although we do not exclude alternative scenarios (see Fig. 2), we first trained a LASSO logistic regression 107 

classifier15 to recover the three enterotypes within the MetaHIT samples. This was then used to classify 108 

samples from the other two studies. The respective ROC-AUC was high (Suppl. Fig. 11), meaning that the 109 

classifier and unsupervised clustering mostly assigned the same cluster memberships to samples. One 110 

difference is that the classifier can be used on any arbitrarily small dataset. This approach could also be 111 

expanded to classify single samples based on other machine learning techniques, e.g. a trained DMM 112 

model. 113 



Furthermore, if enterotypes reflect community compositions and not just differences in the driver 114 

species, i.e. are reflecting different ecological networks, we expect the classification to remain pertinent 115 

after removing Bacteroides and Prevotella from the data. Indeed, although with lower accuracy than 116 

when including these two taxa, the classification still captures the initial enterotypes in all datasets.  117 

Further, using the abundance of gene families within each respective enterotype, the prediction of 118 

enterotype state is even stronger in cross validation than when using taxa abundances (Suppl. Fig 11). 119 

For this analysis, we used only commonly represented functional categories (i.e., COG’s that have 120 

representative genes in at least five of the 50 most abundant genera), ensuring that the classifier does 121 

not exploit functional categories which are restricted to taxonomic subgroups.  122 

Determining if samples are within enterotype space 123 

Using the HMP dataset1, we compute the distance between all stool samples using a genus summarized 124 

OTU table. This allows us to define the expected distance distribution of stool samples. For any novel 125 

sample, we compute the distance to all stool samples in the HMP data and consider it to be in the 126 

enterotyping space if its average distance is within one standard deviation of the stool distance 127 

distribution. Using this approach, we correctly identify western-like stool sample and reject all other 128 

body-site samples as not being in the enterotyping space. Furthermore, we also correctly classify infant 129 

samples as being outside the enterotyping space (data not shown). 130 



 131 

Supplementary Table 1: Microbial community studies researching the presence of enterotypes (ET). 132 

Abbreviations: F=ET F (Firmicutes enriched), B=ET B (Bacteroides enriched), P=ET P (Prevotella enriched), 133 

CH= Calinski−Harabasz pseudo F−statistic, SIL= Silhouette internal cluster optimality criterion.  134 

Study Year Technology ET reported Optimal Cluster 
number 

Notes 

14 2011 454 rRNA, 

illumina 

WGS, Sanger 

WGS 

B, F, P CH (3) First study to show 
ET’s 

16 2011 Sanger rRNA B, F, P visual clone library 
17 2011 454 rRNA (F+B), P CH (3), SIL (2) Diet relation to ET’s 
18 2012 454 rRNA B, F, P 19 (3), SIL (2) Species network 

based ET 
identification 

20 2012 454 rRNA P, (F+B), 
Bifidobacteria 

SIL (2) Includes children 
that form a separate 
cluster 

21 2012 454 rRNA gradient visual Analysis not based 
on clustering, HMP 

22 2013 454 rRNA, 
illumina WGS 

various SIL(2), CH(3) (rDNA); 
2 (WGS) 

Extensive testing of 
methodology, HMP 

23,24 2012  P, B, 
Ruminococcus
, Oscillibacter, 
Alistipes, 
Odoribacter 

CAGs (6), SIL(2), 
CH(2) 

co-abundance 
groups  

12 2012 illumina WGS B, F, P SIL (3)  
25 2012 illumina sg B, F, P CH (3), SIL (2) Atherosclerosis 

associated to ET F 
26 2012 Sanger rRNA Similar to F, P, 

B, F2 
Dirichlet 
Multinomial 
Mixtures (4) 

 

27 2012 illumina 
rRNA 

B, F, P CH (3), SIL(2/3) Chimpanzee 

28 2013 454 rRNA B, F, P 26 (3) Association of ET P 
to CD risk allele 

29 2013 454 rRNA B, F, P Based on 
composition 

obesity and NASH in 
adolescents 

30 2013 illumina 
rRNA 

F, B CH (2), SIL (2) Mouse; ET B shows 
links to 
inflammation 

31 2013 454 rRNA B, F, P Based on 
composition 

Time series 



32 2014 454 rRNA Similar to B, F, 
P, F2 

Dirichlet 
Multinomial 
Mixtures (4) 

HMP reanalysis 

33 2014 454 rRNA B, F, P Complete linkage, 
Bray-Curtis 
clustering, SIL(3) 

HMP reanalysis 

34 2014 qPCR B, P Prevotella to 
Bacteroides ratio 

Time series on Food 
trials 

35 2014 454 rRNA B, P Weighted Unifrac 
SIL(2) 

 

36 2014 454 rRNA B, Robinsella 
(Firmicutes 
dominated) 

CH (2) Wild mice; 
predictable ET 
switch after capture 

37 2014 illumina WGS B, F, P CH(3), SIL(3) 4 datasets 
combined 1,12,38,39 

40 2015 illumina 
rRNA 

Similar to F, P CH(2) Gorilla, no 
association to SIV 
infection 

41 2015 454 rRNA F, P CH(2), SIL(2) Swine, juvenile 
development into 
adult enterotypes 

42 2016 illumina 
rRNA 

F,B,P JSD clustering (2,3), 
DMM(4) 

3984 Samples from 
US and Europe 

 135 
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Supplementary Table 2: Percentage of CAZY enzymes annotated within 8 substrate categories on a 137 
selected subset of gut specific bacterial genomes as published in43. Bacteroides contains 15 genomes of 138 
genus Bacteroides, Firmicutes are 104 genomes of phylum Firmicutes and Prevotella contains 3 139 
genomes of genus Prevotella. Note that due to multiple substrate specificities, percentage do not add 140 
up to 100%. 141 

CAZY category Bacteroidetes Firmicutes Prevotella 

Plant.Cell.Wall.Carbohydrates 50% 35% 42% 

Chitin 0% 0% 0% 

Alpha.glucans 5% 20% 10% 

Animal.Carbohydrates 50% 28% 35% 

Bacterial.Cell.Wall.Carbohydrates 4% 23% 12% 

Fructans 1% 4% 1% 

Fungal.Carbohydrates 11% 7% 9% 

Dextran 0% 0% 0% 

 142 

Supplementary Table 3: Functional differences between 3 different enterotype models: 2 Types 143 
represents a model comparing ET P against a combined ET F+ ET B, 3 Types compares the three first 144 
reported enterotypes (ET B, ET F, ET P) and 4 Types are enterotypes as determined by DMM modelling. 145 
Used gene families are derived from COG44 and KEGG45 annotations. 146 

Supplementary Table 4: Associations between obesity related parameters reported in13 and ET state, 147 
split for the 2, 3 and 4 clusters. 148 

Supplementary Table 5: Studies reporting associations between enterotype drivers and host states 149 

Study Enriched driver Phenotype 
25 Bacteroides Atherosclerosis 
46,47 Bacteroides High-fat diet 
28 Prevotella CD risk allele 
48,49 Prevotella Colitis susceptible mice 
17,20,50–52 Prevotella Fiber-rich diet  
29 Bacteroides NASH and ROS 
17,52 Bacteroides Protein & animal fat 
53 Bacteroides Fibers & fructans 
13,23,30,54,55 Bacteroides Low-grade inflammation, CRP and insulin resistance  

 150 

 151 

 152 

Supplementary Figures 153 



 154 

Supplementary Figure 1: Log10 transformed relative abundance of relevant genera, 155 

superimposed onto the PCoA ordination of the MetaHIT dataset13, consisting of 278 samples, 156 

showing the bimodal distributions of Prevotella and Methanobrevibacter and the unimodal 157 

distribution of Bacteroides and Firmicutes, similar to Fig. 2A and 3A where the modality can be 158 

more clearly seen based on density distributions.  159 

 160 

 161 

 162 

 163 



Supplementary Figure 2: PCoA of three datasets (Danish represented by MetaHit13 (278 164 

samples), Chinese12 (368 samples) and American by HMP1 (142 samples)), on a Jensen-Shannon 165 

distance computed on the genus abundance profiles of the samples. In all cases, the samples 166 

are not randomly distributed throughout the space, with similar higher density regions.  167 

 168 

 169 

Supplementary Figure 3: Hierarchical structure of different clusterings using 278 MetaHIT13 170 

samples. Each circle represents a cluster, as obtained by PAMk for 2 and 3 clusters and DMM 171 

for 4 clusters. The connecting lines show the number of samples that overlap between the 172 

cluster definitions. Overall, the different clusterings are highly associated, forming a hierarchical 173 

structure.  174 



 175 

Supplementary Figure 4: Clustering of human body sites, based on the genus level abundance 176 

of 2381 HMP samples. Body-site separation as in Fig. 1, using frequently used enterotype 177 

clustering methods. (A) Ordination of the HMP 16S rRNA (v35) dataset using four common 178 

inter-sample distance measures. (B) The optimal cluster number calculated within each 179 

distance measure using common clustering optimality measures. Body site separation was 180 

recovered by Jensen Shannon divergence (JSD) distance and weighted UniFrac.   181 



 182 

Supplementary Figure 5: Systematic shifts in the microbiota composition under different 183 

conditions can obscure clusters in the data. In this theoretical example, the discrete mouse 184 

enterotypes F and B, represented as red and blue data points, respectively (60 samples; original 185 

data from publication30). These were linearly shifted on the y-axis, representing three 186 

hypothetical confounders acting on the microbiome. When combining these three conditions 187 

(green points), the discrete clustering is no longer observable. Such a systematic confounder 188 

that shifts all samples within each of the three exemplarily conditions, could for example be the 189 

immune system or different diets, as well as technical biases, such as different DNA extraction 190 

methods. For example, in the mouse microbiota30 a discrete separation between ET F and ET B 191 

is possible. Due to the design of this study, more factors were controlled for than possible in 192 

human studies, like diet and environment. Thus, this figure illustrates how confounders may 193 

impact the observed composition space and the clustering of samples therein. 194 

 195 

 196 



 197 

Supplementary Figure 6: Although 23/25 eggNOG categories are significantly different between 198 

three enterotypes defined on the 278 MetaHIT13 samples (table S3), the overall composition 199 

remains relatively stable between them, due to consistently small effect size differences 200 

between enterotypes in their functional composition, which is more stable than the taxonomic 201 

composition. 202 

 203 

 204 

Supplementary Figure 7: Functional richness differs substantially between enterotypes defined 205 

on the MetaHIT dataset (278 samples), as measured on COG44 and KO45 level data. Boxes 206 

represent the 25th to 75th quantiles, and whiskers extend to 1.5x the interquartile range. 207 



 208 

Supplementary Figure 8: ET richness differences calculated on (a) 278 MetaHIT samples13, (b) 209 

142 HMP samples1 and (b) 368 Chinese samples12. Boxes represent the 25th to 75th quantiles, 210 

and whiskers extend to 1.5x the interquartile range. High consistency in diversity distribution 211 

between enterotypes is visible, despite the underlying data being different community profiling 212 

techniques: MetaHIT and Chinese samples are gene richness estimates derived from a gene 213 

catalog that encompasses functional as well as taxonomic diversity, while HMP richness was 214 

estimated based on v35 16S rRNA gene OTUs, thus only representing taxonomic diversity. 215 

Further, using the marker genes based mOTU approach2 to calculate richness and diversity, 216 

similar trends could be derived (d). 217 



 218 

Supplementary Figure 9: Stability of enterotypes: Considering 100 HMP individuals sampled 219 

with metabarcoding (16S) at two different time points, roughly 200 days apart, we illustrate 220 

their enterotype stability in PCoA projection. Samples from the same individual are connected 221 

through a line, with the arrow pointing to the later sample. Significance of stability is assessed 222 

through a permutation test and illustrated in the bottom right panel (* p < 0.05, ** p < 0.01). 223 

The insert “Overall stability” describes the number of samples that were switching between 224 

time points or remained within the same enterotype. 225 

 226 

 227 



 228 

Supplementary Figure 10: Three hypotheses that could account for the observed enterotype 229 

gradient in temporal data: (A) the Bacteroides/Firmicutes gradient could be driven by 2 global 230 

optimal states or (B) temporal samples are auto correlating to an optimum specified by each 231 

microbiota individually, but not driven by global attractors. Last, (C) the Bacteroides/Firmicutes 232 

gradient does not reflect an ecological pattern and is subject to strong temporal changes, but 233 

this is unlikely to apply to most samples.  234 

 235 

 236 

 237 



 238 

Supplementary Figure 11: Robust classification of enterotypes across studies. A three 239 

enterotype model classifier was trained on log-ratio transformed genus level abundances of the 240 

278 MetaHIT13 metagenomic samples in order to address possible compositional effects. This 241 

model is shown to also recover enterotypes in 142 HMP samples as well as 368 Chinese 242 

samples. The receiver operating characteristic area under the curve (ROC-AUC) for classifier 243 

performance on the MetaHIT (internal cross-validation), Chinese and HMP datasets are shown, 244 

with the clustering ground truth being estimated using unsupervised clustering of samples in 245 

the respective dataset. Although there are known batch effects between these datasets38, the 246 

properties of the enterotypes are comparable and recoverable. Furthermore, the classification 247 

is possible even when removing the genera Bacteroides and Prevotella from the feature set 248 

(labelled “Without drivers”). The classification of enterotypes on functional (COG) abundances 249 

in almost all cases outperforms the taxonomic classification across all three datasets. In the 250 

functional context, “Without drivers” represents a dataset where COGs that contain a gene 251 

from either the Bacteroides or Prevotella genus were removed prior to training and subsequent 252 

classification.  253 

 254 

 255 

 256 
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