Stem Cell Reports, Volume 10

Supplemental Information

Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent

Stem Cells

Sandeep Gupta, Daniel Sivalingam, Samantha Hain, Christian Makkar, Enrique Sosa, Amander Clark, and Samantha J. Butler

Supplementary information

(A-E) RA-treated hEBs were assessed for the levels of *HOX* gene expression by RT-qPCR, which was normalized to day 0. By day 14-20 in the hESC differentiation protocol, there was significant increase in *HOXA9* (lower thoracic identity A, p<0.04, day 0 is similar to day 14), *HOXA5* (cervical level, B, p<0.030, day 0 versus day 20), and *HOXA11* (mid-lumbar level, C, p<0.03, day 0 versus day 20) expression in the hESC-derived EBs. There were no significant

changes in *HOXD11* (lower lumbar level, D, p>0.84, day 0 versus day 20) and HOXA13 (sacral level, E, p>0.24 for day 0 versus day 20).

Data are represented as mean±SEM. Two biological replicates were performed; the qRT-PCR conditions were run in triplicate.

Supplementary Figure 2: BMP4 suppresses the dI2 fate in hEBs.

(A-D, I, J) By day 36 of the protocol, RA-treated hEBs still contain significant numbers of SOX2⁺ progenitors and phospho-HISTONEH3⁺ mitotic cells. The addition of BMP4, from day 8 on, significantly decreases the number of progenitors and dividing cells in hEBs (I, J; probability similar to RA control: p<0.0001, BMP4-D8; p<0.0003, BMP4-D10; p<0.016, BMP4-D17).

(E-H, K-N) RA treatment results in the generation of numerous LHX1/5⁺ PAX2⁻ cells (dI2) (E, E', K) and a few LHX1/5⁺ PAX2⁺ cells (dI4; dI6-v2) (E, E'', L). However, the specification of these cell types is suppressed by addition of BMP4 between day 6 and day 10 (dI2: F-G', K, p<0.0015, BMP4-D6; p<0.0001, BMP4-D8; p<0.0005, BMP4-D10; dI4, dI6-v2: p<0.0001 for all conditions) in hESCs derived EBs. By day 17, the addition of BMP4 no longer suppresses

dI2 identity (H-H", K; p>0.9, L; p>0.48). The effect of BMP4 on dI2 fates was also observed in an RT-qPCR analysis of *LHX1* and *LHX5* expression (M, N).

Data are represented as mean \pm SEM. Two biological replicates were performed; the qRT-PCR conditions were run in triplicate and between 9-18 EBs were quantified for each condition, normalized to the total number of DAPI⁺ cells and represented as the percent cell numbers. Scale bar=100 μ m.

Supplementary Figure 3: Biological replicates for upregulation of LHX2 and ISL1 mRNA in the directed differentiation protocol

(A-F) RT-qPCR analysis of *LHX2* (A-C) and *ISL1* (D-F) expression in three biological replicates of the directed differention protocol. EBs were treated with RA, with BMP4 added at day 6, 8, 10 and 17. In each biological replicate *LHX2* and *ISL1* expression is upregulated after addition of BMP4, however there are marked differences in the magnitude of relative fold change. Three technical replicates were performed. Values are represented as mean±SEM.

Supplementary Figure 4: Characterization of hESC-derived mechanosensory dI3 cells

By day 36, BMP4 addition significantly increases the number of $ISL1^+ TLX3^+ dI3$ INs in the BMP4-D8 (B, E, p<0.0001 similar to RA control) and BMP4-D10 (C, p<0.0001) conditions compared to RA controls (A, F,). ~60% of dI3s are double positive for ISL1 and TLX3 (G). In contrast, the $ISL1^+$ cells are not co-labeled by the spinal motor neuron marker HB9 (D) and a RT-qPCR analysis showed that there was no *HB9* mRNA enrichment in any of the BMP4 conditions (H). Thus, the hESC-derived $ISL1^+$ cells no not have a motor neuron identity.

Data are represented as mean \pm SEM. Two biological replicates were performed; the qRT-PCR conditions were run in triplicate and between 7-10 EBs were quantified for each condition. The number of ISL1⁺ cells and ISL1⁺ TLX3⁺ cells were normalized to the number of DAPI⁺ cells in D and to the total ISL1⁺ cells in E.

Scale bar=100µm.

Table 1: Primary Antibodies

Antigen	Species	Dilution	Source		
Sox2	Goat	1:1000	Santa Cruz Biotechnology (sc-17320)		
Pax3	Goat	1:500	R&D Systems (AF2457)		
Lhx2	Goat	1:250	Santa Cruz Biotechnology (sc-19344)		
Isl1	Goat	1:500	R&D Systems (AF1837)		
Sox1	Goat	1:500	Santa Cruz Biotechnology (sc-17318)		
Pax6	Mouse	1:100	Developmental studies Hybridoma Bank (AB528427)		
Nanog	Rabbit	1:200	Cell Signaling Technology (D73G4)		
HoxA5	Goat	1:1000	Santa Cruz Biotechnology (sc-13199)		
Olig2	Rabbit	1:300	Milipore (AB9610)		
Tuj1	Mouse	1:1000	BioLegend (801202)		
Dcc	Goat	1:200	R&D System (AF844)		
Robo3	Goat	1:200	R&D System (AF3076)		
Tlx3	Guinea pig	1:200	gift from Thomas Müller (Muller et al., 2005)		
Lhx1/5	Mouse	1:20	Developmental Studies Hybridoma Bank		
Pax2	Rabbit	1:500	Invitrogen		

Table 2: RT-qPCR primer sequences

Gene name	Primer sequence		
Nanog	For: CCCCAGCCTTTACTCTTCCTA		
	Rev: CCAGGTTGAATTGTTCCAGGTC		

Sox2	For: CAAAGAAAAACGAGGGAAATGGG		
	Rev: TACCGGGTTTTCTCCATGCTG		
Sox1	For: GCGGTAACAACTACAAAAAACTTGTAA		
	Rev: GCGGAGCTCGTCGCATT		
Pax6	For TTGAGCCATCACCAATCAGC		
	Rev: TTTCTCCACGGATGTTGCTG		
TUBB3 (β-III tubulin)	For: GGCCAAGGGTCACTACACG		
	Rev: GCAGTCGCAGTTTTCACACTC		
HoxA5	For: AAGTCATGACAACATAGGCGG		
	Rev: TTCAATCCTCCTTCTGCGGG		
Pax3	For: AGCACTGTACACCAAAGCAC		
	Rev: AAAATCCATGCCTGGTGCTG		
Olig2	For: CCCTAAAGGTGCGGATGCTT		
	Rev: ACCCGAAAATCTGGATGCGA		
Lhx2	For: TGGACCGAGGAACAACTTGG		
	Rev: TCGCTCAGTCCACAAAACTG		
Isl1	For: GATTTGGAATGGCATGCGGC		
	Rev: GCGCATTTGATCCCGTACAA		
Atoh1	For: ACCAGCTGCGCAATGTTATC		
	Rev: TTTGTAGCAGCTCGGACAAG		
Ascl1	For: AGCTTCTCGACTTCACCAACTG		
	Rev: TGCTTCCAAAGTCCATTCGC		
FoxD3	For: CGGCCTCGAGCAACAAATG		
	Rev: AAATTGGGGAGAGGGCAGAGTC		
Lhx1	For: CAACATGCGCGTCATTCAGG		
	Rev: ACTCGCTCTGGTAATCTCCG		
Lhx5	For: GCGTCATCCAGGTGTGGTTT		
	Rev: GGTGGACCCCAACATCTCAG		

HoxA9	For: GTCCCACGCTTGACACTCA			
	Rev: GCTGCTGGGTTATTGGGATCG			
HoxD11	For: CAGCAGCGCAGTTGCC			
	Rev: CGGTCAGTGAGGTTGAGCAT			
HoxA13	For: CTGCCCTATGGCTACTTCGG			
	Rev: CCGGCGGTATCCATGTACT			
HoxA11	For: CCCGCAGTCTCGTCCAATTT			
	Rev: AGGCTGTCTCGAAAAACTGGT			

Table 3. Summary of the differentiation efficiencies.

	SOX2 (progenitor)	LHX2 (dI1)	LHX1/5 ⁺ PAX2 ⁻ (dI2)	ISL1 (dI3)	LHX1/5 ⁺ PAX2 ⁺ (dI4; dI6-v2)
RA	53%	8.5%	15%	1.5%	4.5%
RA+BMP4-D6	47%	26%	3%	15%	<0.2%
RA+BMP4-D8	26.5%	20%	2%	14.5%	<0.5%
RA+BMP4-D10	34%	18.5%	3%	8%	<0.2%
RA+BMP4-D17	39%	8%	14%	2%	5%