Supplemental information

Table of Contents

Supplemental figures	2
Supplemental figure S1. RPKM-derived log2(TE) and scikit-ribo log2(TE).	2
Supplemental figure S2. Multi-class ROC curves for A-site prediction.	3
Supplemental figure S3. Feature importance from the random forest model.	4
Supplemental figure S4. Analysis of mRNA abundance in TPM by region.	5
Supplemental figure S5. Violin plots of stAI for genes in the six regions	6
Supplemental figure S6. Statistically enriched sequences based on scikit-ribo's TIE estimates using HOMER	7
Supplemental figure S7. Statistically enriched sequences based on RPKM-derived TE estimates using HOMER	8
Supplemental figure S8. Higher correlation between scikit-ribo derived PA and SRM measurement, af considering protein degradation rate	ter 9
Supplemental figure S9. Highly reproducible TE estimates between replicates.	10
Supplemental figure S10. High correlation of codon dwell time (DT) between biological replicates.	11
Supplemental figure S11. The complete workflow of Scikit-ribo analysis.	12
Supplemental Tables	13
Supplemental Table S1. Prediction accuracy of A-site locations.	13
Supplemental table S2. Interpretation of the pair-wise comparison in Figure 4A.	14
Supplemental Table S3. Gene set enrichment in region 4 genes.	15

Supplemental figures

Supplemental figure S1. RPKM-derived log2(TE) and scikit-ribo log2(TE). Related to Figure 1. (A) The RPKM-derived log2(TE) reported high dispersion among low abundance genes (TPM<1), while the genes with TPM > 1 still reported a long tail on the negative side. (B) Scikit-ribo reported a balanced log2(TE) distribution (mean=0.1). The red solid line denotes the mean. (C) The RPKM-derived log2(TE) reported a skewed distribution (mean=-0.5). (D) Even increasing the TPM cutoff to 10, the RPKM-derived log2(TE) still reported a long tail on the negative side.

Supplemental figure S2. Multi-class ROC curves for A-site prediction. Related to Figure 2. (A) *S. cerevisiae* RNase I data. (B) *E. coli* RelE data. Each curve represents the data with different A-site locations (12 to 18 in RNase I, 1 to 8 in RelE). The dash line represents the micro-average across classes.

В

Supplemental figure S3. Feature importance from the random forest model. Related to Figure 2. (A) *S. cerevisiae* RNase I data. (B) *E. coli* RelE data. 5/3_offet represents whether the 5'/3' end of the read is in the first/second/third reading frame. Nt_-1/0/n-1/n represents the nucleotide at that position.

А

Supplemental figure S4. Analysis of mRNA abundance in TPM by region. Related to Figure 4; (A) Histograms of mRNA TPM in all genes (blue), and region 1 (green). (B) Violin plots of TE difference in the three regions, similar to Figure 4.

Supplemental figure S5. Violin plots of stAI for genes in the six regions. Related to Figure 4; left: log2(TE) < 0, right: log2(TE) > 0.

Rank	Motif	P-value	log P-nyalue	% of Targets	% of Background	STD(Bg STD)
1	AAAATGICT	1e-21	-4.854e+01	21.09%	2.13%	29.2bp (31.9bp)
2 *	<u> <u>EAATAAGCTCFC</u></u>	1e-11	-2.569e+01	13.61%	1.88%	14.6bp (16.2bp)
3 *	TG<u>C</u>C<u>A</u>ATA<u>S</u>AA	1e-10	-2.440e+01	4.08%	0.04%	8.7bp (14.6bp)
4 *	ATAC<u>AC</u>A<u>G</u>A	1e-9	-2.266e+01	14.29%	2.49%	28.6bp (36.0bp)
5 *	ASTAGCAAAC	1e-8	-2.062e+01	5.44%	0.21%	11.6bp (15.4bp)
6*	Ţ<u>Ş</u>ŢŢ<u>Į</u>ĄĮŢĮŢĢ	1e-8	-1.945e+01	5.44%	0.24%	9.2bp (16.0bp)
7 *	GGIITGICG	1e-8	-1.897e+01	5.44%	0.26%	20.4bp (31.5bp)
8 *	AACTAAGTA	1e-8	-1.878e+01	16.33%	4.06%	27.9bp (38.8bp)
9 *	<u><u>GCAAAAA</u>TTEAA</u> A	1e-7	-1.777e+01	4.08%	0.11%	6.1bp (16.6bp)
10 *	ITIAIGAI	1e-6	-1.479e+01	7.48%	1.01%	17.3bp (17.7bp)
11 *	TTGTT <u>&t</u> cqi	1e-6	-1.436e+01	2.72%	0.04%	9.5bp (11.8bp)
12 *	GATAAIT	1e-4	-1.031e+01	25.17%	12.76%	28.9bp (35.5bp)
13 *	<u> </u>	1e-1	-3.783e+00	0.68%	0.02%	0.5bp (15.8bp)
14 *	GTÇCZ	1e0	-2.205e+00	33.33%	28.41%	23.6bp (33.8bp)

* - possible false positive

Supplemental figure S6. Statistically enriched sequences based on scikit-ribo's TIE estimates using HOMER. Related to Figure 4; The Homer's suggested p-value threshold is 1×10^{-10} to 1×10^{-12} .

Rank	Motif	P-value	log P-pvalue	% of Targets	% of Background	STD(Bg STD)
1 *	CAACATCCCT	1e-11	-2.587e+01	9.95%	1.34%	12.2bp (14.3bp)
2 *	ATATAAGTACAA	1e-9	-2.123e+01	2.49%	0.02%	10.1bp (17.9bp)
3 *	Ç ÇITITAGT	1e-7	-1.829e+01	4.98%	0.40%	12.6bp (16.0bp)
4 *	AACTAGAAAST	1e-7	-1.705e+01	4.98%	0.45%	11.2bp (14.7bp)
5 *	AGCGAGCT	1e-6	-1.586e+01	4.98%	0.52%	15.6bp (18.8bp)
6*	ATA<u>G</u>GGGT	1e-6	-1.442e+01	6.47%	1.12%	14.5bp (17.0bp)
7 *	<u>EATAATAETEE</u>	1e-6	-1.393e+01	5.47%	0.80%	14.2bp (14.0bp)
8 *	ĮATTT<u>S</u>CS	1e-6	-1.385e+01	8.46%	2.03%	9.1bp (17.7bp)
9*	<u>ÇAÇAÇAÇA</u>	1e-5	-1.199e+01	5.47%	0.98%	9.3bp (21.4bp)
10 *	<u>TAGAAGETIC</u>	1e-4	-1.111e+01	3.98%	0.53%	11.5bp (13.9bp)

Supplemental figure S7. Statistically enriched sequences based on RPKM-derived TE estimates using HOMER. Related to Figure 4; The Homer's suggested p-value threshold is 1×10^{-10} to 1×10^{-12} .

* - possible false positive

Supplemental figure S8. Higher correlation between scikit-ribo derived PA and SRM measurement, after considering protein degradation rate. Related to Figure 5; The protein degradation rate was obtained from Christiano et al (r = 0.83).

Supplemental figure S9. Highly reproducible TE estimates between replicates. Related to Figure 6; (A) WT: wild type, 55 million and 16.7 million in replicate 1 and 2 (r=0.87). (B) WT with TPM greater than (r=0.94). (C) KO: knock out *Dhh1p* (r=0.99), 74 million and 56 million in replicate 1 and 2. (D) OE: Overexpression of *Dhh1p*, 80 million and 39 million in replicate 1 and 2 (r=0.96). The correlation was a function of the number of reads in each replicate. the mean correlation of log(TE) were all very high between the biological replicates for a given strain (r=0.95), indicating that the data are of high quality and that the inference procedures in Scikit-ribo are stable.

Supplemental figure S10. High correlation of codon dwell time (DT) between biological replicates. Related to Figure 6; (A) wild-type, range of DT: 2.01, SD: 0.36, (B) KO, range: 3.05, SD: 0.45, (C) OE, range: 1.35, SD: 0.27. WT: wild type, KO: knock out *Dhh1p*, OE: Overexpression of *Dhh1p*. The mean correlation of relative DT and were all very high between the biological replicates for a given strain (r=0.99), indicating that the data are of high quality and that the inference procedures in Scikit-ribo are stable.

Supplemental figure S11. The complete workflow of Scikit-ribo analysis. First the RNA-seq and Riboseq sequencing reads are preprocessed to cut adapter sequences, filter rRNA reads, and then quantify the gene expression from the aligned RNAseq reads. After this pre-processing, Scikit-ribo is then used to predict the A-site locations and analyze the translation efficiency. Related to Figure 2.

Supplemental Tables

Study	SRR #	Mean accuracy	SD	# Optimal features
S. cerevisiae RNase I				
Weinberg et al (2016)	SRR1049521	0.987	0.004	3
Radhakrishnan et al (2016)	SRR3493886	0.981	0.008	2
Radhakrishnan et al (2016)	SRR3493887	0.929	0.036	2
Radhakrishnan et al (2016)	SRR3493890	0.982	0.008	4
Radhakrishnan et al (2016)	SRR3493891	0.963	0.022	2
Radhakrishnan et al (2016)	SRR3493894	0.941	0.019	7
Radhakrishnan et al (2016)	SRR3493895	0.936	0.025	2
Radhakrishnan et al (2016)	SRR3493898	0.938	0.03	2
<i>E. coli</i> RelE				
Hwang et al (2016)	SRR4023280	0.910	0.041	1
Hwang et al (2016)	SRR4023281	0.810	0.043	1

Supplemental Table S1. Prediction accuracy of A-site locations. Related to Figure 2. Mean and SD were computed via 10-fold cross validation. SD: standard deviation.

Region	Comparison	Sign of log2(TE)	# genes	Color
1	Under-estimated by RPKM	Negative	629	Green
2	Similar	Negative	1846	Gray
3	Over-estimated by RPKM	Negative	79	Orange
4	Under-estimated by RPKM	Positive	268	Green
5	Similar	Positive	1305	Gray
6	Over-estimated by RPKM	Positive	981	Orange

Supplemental table S2. Interpretation of the pair-wise comparison in Figure 4A. Related to Figure 4; The sign of log(TE) are based on TE of Scikit-ribo. $\Delta log2(TE) = log2(TE_{scikit-ribo}) - log2(TE_{RPKM})$. For gene with $\Delta log2(TE) < -0.5$, they were previously underestimated by RPKM-derived TE, and genes with $\Delta log2(TE) < -0.5$ were previously overestimated, and other genes have similar TE.

GO Term	Accession #	p-value	# genes
cytoplasmic translation	GO:0002181	3×10 ⁻²⁵	49
translational elongation	GO:0006414	1×10 ⁻⁸	59
ribosome assembly	GO:0042255	2×10 ⁻⁶	19
translation	GO:0006412	3×10 ⁻⁶	63
peptide biosynthetic process	GO:0043043	4×10 ⁻⁶	63

Supplemental Table S3. Gene set enrichment in region 4 genes. Related to Figure 4; There were 268 genes in region 4: 1) positive Scikit-ribo log2(TE), 2) previously under-estimated by RPKM derived TE. The p-values shown were adjusted with Bonferroni correction.