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1. The bag of words model

We will present a basic model for language transmission. The basic premise is
that language production is based, in part, on an internalised distribution of words.
This internalised distribution will be formed dependent on the frequency of words
in the language that an individual is exposed to, and this internalised distribution
will in turn be used for the production of language. We will assume that this part
of the internalised language functions like a bag (also known as a multiset): a set
of which can have multiple instances of its elements can appear more than once. In
a bag of words the same word can appear multiple times. We assume that the bag
has got a fixed size.

Language is produced by sampling from this bag. As a consequence, for suffi-
ciently long text the word frequency in the text will tend to the frequency in the
bag. Language is internalised through sampling from the words that an individual
receives. Our model assumes that words are sampled from the incoming text, and
placed in the bag. To keep the size of the bag constant, a random element is then
removed from the bag.

Individuals are in contact, and communicate with other individuals. These con-
tacts span up a network on which communication takes place and messages are
exchanged. The words produced are sampled from the bag of words of the indi-
vidual that sends the message. A sample of these words will be internalised by the
receiver of the message.

We consider a population of n individuals. Individual i sends words to individual
j with rate rij . Let the bag of words of individual i be given by the set {xi1, . . . , xiw}
where the xik is number of copies of the kth word that individual i has in its bag
of words. The numbering of the words is the same for all individuals and the w is
the total number of words in the population. The size of the bag, s, is constant
and the same for all individuals, and hence

∑w
k=1 xik = s for all 1 ≤ i ≤ n.

Through the internalisation of words received, the internalised word numbers xk,i
change over time. We will describe this change through a stochastic process similar
to a Moran process (Blythe 2012, BLythe and McKane 2007). The Moran process,
in its simplest form, describes the change in a population of genes through selection
and random drift caused by replacement through birth in a finite population. Here,
we will apply a similar logic to describe the changes in the bag of words. Words are
internalised with a rate proportional to the words received. Individual i receives
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messages from individual j at rate rij , and we will assume that individuals do not
act on messages received from self and hence take all rii = 0. The rate with word m
is internalised is αm

∑n
j=1 rij

xjm

s , where αm is the rate constant for word m, or the
probability per word of type m received that it will lead to an internalisation event.
In every internalisation event a random word is removed from the receiver’s bag.
The rate with which a copy of word k is removed is therefore αm

∑n
j=1 rij

xjm

s
xik

s .

Table S1. Parameters used in the model

Parameter Description
n Number of individuals
w Number of words in population
s Size of the bag
rij Rate individual i sends words to individual j
xik Number of copies of the kth word that individual i has in its bag of word
αm Probability that a word of type m is internalised

Thus the event:

xik → xik − 1;xim → xim + 1

takes place with rate

αm

n∑
j=1

rij
xjm
s

xik
s

1.1. Simulating change. The model above is a generic description of the trans-
mission and internalisation of word frequencies. It can be used to simulate networks
of communicating individuals to study their changes in word frequencies. This can
be done as follows: first, set up a network through specifying the rates of commu-
nication rij . Initialise the network by assigning an initial bag of words to all nodes
on the network, which specifies the network at t = 0. Internalisation events take
place with total rate

n∑
i=1

w∑
m=1

w∑
k=1

αm
xik
s

n∑
j=1

rij
xjm
s

=

n∑
j=1

n∑
i=1

rij

w∑
m=1

αm
xjm
s
.

Using the Gillespie algorithm, the waiting time until the next event is exponentially
distributed with mean  n∑

j=1

n∑
i=1

rij

w∑
m=1

αm
xjm
s

−1

.

We can draw the waiting time until the next event and update time from this
distribution. The chance that the next event is in individual i is n∑

j=1

rij

w∑
m=1

αm
xjm
s

 n∑
j=1

n∑
i=1

rij

w∑
m=1

αm
xjm
s

−1

,

and use this to identify i. Word k is removed with probability xik

s , use this to lower
the number of xik by one. Refill the gap with word m. Word m is now chosen with
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probability αm n∑
j=1

rij
xjm
s

 n∑
j=1

rij

w∑
m=1

αm
xjm
s

−1

.

Note that these expressions simplify considerably if the internalisation rates are the
same for all words: if αm = α then

∑w
m=1 αm

xjm

s = α

1.2. Ensemble means of word frequencies. We will next derive the behaviour
of the system if it would be averaged over many simulations, of the same network,
all starting from the same initial conditions. We will refer to one such simulation
as a single realisation of the process. To find the average over many realisations we
will write down the master equation for this process.

To do so we will consider the probability of the system to be in a certain state
as the process develops. The system consist of n individuals, who each have bags
of words with s spaces, and we need to keep track of all possible permutations
of words possible. To help us do the book keeping we need some extra notation.
All communication rates can be put together in a n × n matrix R = (rij). We
will represent the state of the system by a n × w matrix X = (xim), which has as
elements the word counts of all individuals. Let P (X)(t) be the probability for the
system to be in state X at time t. This probability changes over time according to
the master equation, given by:

dP (X)

dt
=

n∑
i=1

n∑
j=1

rij

w∑
m=1

αm
xjm
s

(
w∑
k=1

xik + 1

s
P (X−Ei,m + Ei,k)−

w∑
k=1

xik
s
P (X)

)

where Ei,m is a n× w matrix, in which all elements are zero, expect from element
i,m, which is one. We will use the master equation to calculate how the ensemble
mean of the word frequencies change over time. The ensemble mean of all the
word counts of all individuals X is given by

∑
X∈Ω XP (X), where Ω is the set that

contains all the different states that X can be in. For example, if we would have
only two places in the bag (s = 2) and only two words (w = 2), and 2 individuals
then Ω would be:{[

2 2
0 0

]
,

[
2 1
0 1

]
,

[
2 0
0 2

]
,

[
1 2
1 0

]
,

[
1 1
1 1

]
,[

1 0
1 2

]
,

[
0 2
2 0

]
,

[
0 1
2 1

]
,

[
0 0
2 2

]}
.

We will collect the ensemble means of the word frequencies of individuals (i.e. the
values of xim

s ) in a n× w matrix F, with elements fim = 1
s

∑
X∈Ω ximP (X).

The ensemble means change over time as:

dF

dt
=

1

s

∑
X∈Ω

X
P (X)

dt

=
∑
X∈Ω

n∑
i=1

n∑
j=1

rij

(
w∑
k=1

w∑
m=1

αm
xik + 1

s

xjm
s

XP (X−Ei,m + Ei,k)−
w∑
k=1

w∑
m=1

αm
xik
s

xjm
s

XP (X)

)
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We will next substitute Y = X−Ei,m + Ei,k in the first sum, and denote with Ω′

the set of all states the Y can be in:

dF

dt
=

=

n∑
i=1

n∑
j=1

rij

w∑
m=1

αm
yjm
s

(∑
Y∈Ω′

w∑
k=1

yik
s

(Y + Ei,m −Ei,k)P (Y)−
∑
X∈Ω

w∑
k=1

yik
s
XP (X)

)

=

n∑
i=1

n∑
j=1

rij

w∑
m=1

αm
yjm
s

∑
Y∈Ω′

w∑
k=1

yik
s

(Ei,m −Ei,k)P (Y)

=

n∑
i=1

n∑
j=1

rij

w∑
m=1

αm
yjm
s

∑
Y∈Ω′

w∑
k=1

yik
s
Ei,mP (Y)−

n∑
i=1

n∑
j=1

rij

w∑
m=1

αm
yjm
s

∑
Y∈Ω′

w∑
k=1

yik
s
Ei,kP (Y)

=

n∑
i=1

∑
Y∈Ω′

n∑
j=1

w∑
m=1

rijαm
yjm
s

Ei,mP (Y)

w∑
k=1

yik
s
−
∑
Y∈Ω′

n∑
i=1

w∑
k=1

yik
s
Ei,kP (Y)

n∑
j=1

rij

w∑
m=1

αm
yjm
s

=
∑
Y∈Ω′

1

s
(R ·Y · diag(α))P (Y)−

∑
Y∈Ω′

1

s
(diag(R ·Y ·α) ·Y)P (Y)

= R · F · diag(α)−
∑
Y∈Ω′

1

s
(diag(R ·Y ·α) ·Y)P (Y)

where α is a vector with elements αi.
The second term contains second order elements, and we can see that if there

is selection of certain words the ensemble means do not form a closed system. If,
however, all words are internalised with the same rate, as the results in the main
paper suggest, and there is no selection between words we have αm = α for all m,
then the ensemble means obey:

dF

dt
= α (R · F− diag(r̂) · F ) ,

where r̂ is a vector with elements r̂i =
∑n
j=1 rij . The ensemble means now are

a closed system and change over time as a linear system of ordinary differential
equations. As the results in the main paper suggest that internalisation rate is
independent of word frequency, we will from hereon assume that all these rates are
the same.

The ensemble mean of an individual’s word frequency changes as:

dfim
dt

= αr̂i

 n∑
j=1

rij
r̂i
fjm − fim


The word frequencies of a user change in response to other users in the network
connected to this user, but are independent of the frequencies of other words. It
is straightforward to solve this system of ODEs. However, to gain insight we will,
rather than providing a general solution, solve a number of cases of special interest.

2. An individual exposed to constant word frequencies

As a first example we will study how an individual adjust its word frequencies
to that of its environment. We will therefore assume that an individual commu-
nicates with a large number of individuals, and that the word frequencies in the
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communication received are constant. Let the word frequency of word m that the
focal individual i is exposed to be him =

∑n
j=1

rij
r̂i
fjm, which is assumed constant.

We thus study the following w differential equations for the ensemble means of the
word frequencies of the focal individual i:

dfim
dt

= αr̂i(him − fim)

These systems have as equilibrium fim = him, meaning that all word frequencies
converge to the word frequencies that they are exposed to. The solution of the
differential equations is

fim(t) = him − (him − fim(0)) e−αr̂it.

The word frequency of the words an individual is exposed to depends on the
way that the individual is embedded in the social network. What is the effect of
community structure on the word frequency if word frequencies transmit between
communicators? Assume that individuals communicate predominantly with a sub-
set of individuals which we call a community. By organising the network such that
individuals’ communication maximises the communication within communities, we
can describe the network as a collection of communities. Such communities, it has
been shown, tend to have distinct word frequencies (Bryden et al. 2013). Let the
set ck contain all the members of the kth community, and that there are g such
communities. The rate with individual i receives messages from members of ck
is r̂ki =

∑
j∈ck rij . In the messages that i receives from community ck the word

frequency of word m in the communication received is hkim =
∑
h∈ck

rhi

r̂ki
fim. The

total word frequency received can now be partitioned as follows:

him =

g∑
k=1

r̂ki
r̂i
hkim.

The word frequency that a speaker will converge to in constant world is the weighted
word frequency of all the communities that (s)he converses with.

If there is a dominant group in an individual’s environment, and typically this
would be the group that the focal individual is a member of, the word frequency
of the dominant community will have most influence on the individual. This is
compatible with the observations in Bryden et al. (2013), where it was found that
91% of Twitter conversation was within a community, and that the word frequencies
of atypical words is shared within communities. It also is commensurate with
the results of Tamburrini et al. (2015) where it is shown that outgoing messages
from a community are more similar to the receivers, in terms of word frequencies
than internal ones: if some members within a community communicate more with
the outside world than others, those individuals will adjust their language more
to the outside world then others. These individuals will be overrepresented in
the outgoing communication. Outgoing messages from a group should therefore
have word frequencies that are more like those of external groups than messages
exchanged within the community.

There is one further aspect that this model can show. The word frequencies of
an individual will change if the individual changes its environment, for instance,
if it changes community. If that is the case there will be a change in the word
frequencies received. Say that the new frequency of the word m that i receives is
him. Let the word frequency of word m at the beginning of this process be equal to
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fim(0) which is likely to be different from him because the individual was exposed
to a different environment before. We will now describe how far the word frequency
is removed from its final value.

The difference between the current word frequency, and the one that will be
finally attained is ∆fim(t) = him − fim(t) = ∆fim(0)e−αr̂it. This leads to the
observation that the relative convergence towards the frequency of the received
messages is given by

∆fim(t)

∆fim(0)
= e−αr̂it.

What is remarkable is that the right hand side for this equation is independent of
m: the relative convergence is the same for all words.

3. Two individuals converge over time, the more they communicate
with one another

What if two individuals communicate? They will both change, yet also be subject
to the environment that they are embedded in. If the word frequency coming from
the environment is assumed to be constant, we have a system of two equations for
the word frequencies of word m. At this point we will make our life easy and assume
that r̂1 = r̂2 = r̂, and r21 = r21 = r, for no other reason than that it simplifies
the maths and makes the derivation easier to follow. It is not hard to relax this
assumption and derive equivalent results. The frequencies of word m change over
time as:

df1m

dt
= α ((r̂ − r)h′1m − r̂f1m + rf2m)

df2m

dt
= α ((r̂ − r)h′2m − r̂f2m + rf1m) ,

where h′im =
∑n
h=3

rih
r̂i−ri1−ri2 fhm, that is the word frequency of word m received

by i from all individuals but individuals 1 and 2. It is further helpful to note that∑w
m=1 h

′
im = 1. This follows from the fact that

∑w
m=1 fim = 1, which, in turn,

follows from the fact that
∑w
m=1 x

′
im = s.

To analyse this, we define w1m = (f1m − f2m)/2 and w2m = (f1m + f2m)/2.
The equation for w2m expresses how the overall frequency in the group community
consisting if individuals 1 and 2 behaves. The w1m equation shows how the two
individuals converge towards each other. In these new variables the system changes
as

dw1m

dt
= α

(
(r̂ − r)h

′
1m − h′2m

2
− (r̂ + r)w1m

)
dw2m

dt
= α

(
(r̂ − r)h

′
1m + h′2m

2
− (r̂ − r)w2m

)
Now w2m has an equilibrium at (h′1m + h′2m)/2, which is simply the average of

the frequencies received, and w1m has an equilibrium at (r̂−r)
r̂+r (h′1m − h′2m)/2. The

solutions to these differential equations are:

r̂ − r
r̂ + r

h′1m − h′2m
2

− w1m(t) =

(
r̂ − r
r̂ + r

h′1m − h′2m
2

− w1m(0)

)
e−α(r̂+r)t

h′1m + h′2m
2

− w2m(t) =

(
h′1m + h′2m

2
− w2m(0)

)
e−α(r̂−r)t
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We can now reconstruct the solutions by using f1m = w2m +w1m en f2m = w2m −
w1m. The equilibria are for f1m : ( r̂

r̂+rh
′
1m + r

r̂+rh
′
2m) and for f2m : ( r

r̂+rh
′
1m +

r̂
r̂+rh

′
2m).

The absolute convergence of the speakers is given by:

w1m(t)− w1m(0) =

(
(r̂ − r)
r̂ + r

h′1m − h′2m
2

− w1m(0)

)(
1− e−α(r̂+r)t

)
The right hand side depends r: the bigger the r the faster you converge, but also the
further you have to travel. So the result combines two components: the fact that
the convergence is faster, and the fact that the end points are much closer together.
Note that the right hand side also depends on m: this measure is different for
different words.

One way of quantify how much two users differ in their language is through the
use of appropriate measures. A widely used measure to assess similarity is the
Bray-Curtis similarity measure. The Bray-Curtis similarity, for two identical sized
bag of words is the sum over the lowest frequency frequency found in the bags. We
can calculate this as
w∑

m=1

min(f1m, f2m) =

n∑
m=1

f1m + f2m − |f1m − f2m|
2

=

n∑
m=1

w2m−|w1m| = 1−
n∑

m=1

|w1m|.

The last step used
∑n
m=1 w2m =

∑n
m=1

f1m+f2m
2 = 1. The increase in the similarity

measure over a period t is given by
∑w
m=1−(|w1m(t)| − |w1m(0)|), which is

w∑
m=1

|w1m(0)| − |w1m(t)| =

w∑
m=1

|w1m(0)| −
w∑

m=1

∣∣∣∣w1m(0)e−α(r̂+r)t +
(r̂ − r)
r̂ + r

h′1m − h′2m
2

(
1− e−α(r̂+r)t

)∣∣∣∣ .
To proceed we next assume that the sum of all words received, r̂, exceeds the
words received from the conversation partner. If r̂ � r then the above expression
simplifies to

w∑
m=1

|w1m(0)| −
w∑

m=1

∣∣∣∣w1m(0)e−α(r̂+r)t +
h′1m − h′2m

2

(
1− e−α(r̂+r)t

)∣∣∣∣ .
If we now define c2 as the derivative of the above expression with respect to e−αrt:

c2 = −e−αr̂t
w∑

m=1

(
w1m(0)− h′1m − h′2m

2

)
sign

(
w1m(0)e−α(r̂+r)t +

h′1m − h′2m
2

(
1− e−α(r̂+r)t

))
.

If w1,j(0) and m′1j−m′2j have the same sign this is a constant that does not depend
on r. If the difference within most pairs is not too far from the point to which they
will be eventually converge, then we can assume c2 to be approximately constant.
By defining

c1 =

w∑
m=1

|w1m(0)| − |h
′
1m − h′2m

2
|

we now approximate the change in the Bray-Curtis similarity by

(S1)

w∑
m=1

|w1m(0)| − |w1m(t)| ≈ c1 + c2e
−αrt.
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4. Stochastic process for measuring incorporation rate

In our formalisation, we model each person as having an internal collection of
words which are updated through communication with other people. The model
is a Moran process where, with probability α, an encountered word (from another
person) replaces a random word already in the internal collection. On Twitter we
have data over a period of time of which words are received by a focal user and which
words they broadcast. Consequently, we should be able to infer the incoporation
rate α by modelling this internal collection as a hidden variable.

4.1. Method. The user’s internal collection is defined as a collection of size s
words. Many words are in the collection more than once with many repetitions of
the more common words. For a word, we maintain a probability distribution p(i)
(0 < p < 1) that an individual has i representations of the word within their inter-
nal collection. Over time, we update the internal distribution according to words
messaged to the Focal User from a second Incoming User and a proposed value
of α. Following the logic of the Numerically Integrated State Space method (NISS
- de Valpine and Hastings 2002), we use a procedure that generates a likelihood
of the internal distribution given the outgoing messages of a user (see Fig. S1).
Consequently, this method is able to calculate the extent to which the word usage
of the Incoming User has influenced the word usage of the Focal User.

t

p(...) = ...

p(4) = ...

p(3) = ...

p(2) = ...

p(1) = ...

p(0) = ...

Incoming 
user

Focal 
user

(i)

(ii)
(iii)

p(...) = ...

p(4) = ...

p(3) = ...

p(2) = ...

p(1) = ...

p(0) = ...

Incoming 
user

Focal 
user

t+1

Figure S1. Diagram outlining our method for measuring the in-
corporation rate. A probability distribution is maintained for a
Focal User’s usage frequency of a word. (i) The distribution is
updated according to input from an Incoming User’s usage. (ii) A
likelihood is calculated using the probability distribution and the
output of the user. (iii) The probability distribution is updated
according to the likelihood as specified by NISS.

The internal model is updated using incoming language through counting the
number of mentions of the word (k) in the total number of N words in tweets
directed at the user from the Incoming User. Because these words are batched
together, and a sampled of the input to the incoming user, we assume the focal
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individual internalises the words at rate αk. Consquently, the probability of n
copies of the target word being internalised by the user is Poiss(n, αk), where
Poiss is the Poisson probability density function1. For each word internalised, we
update the internal distribution by setting p(i+1) = p(i)(1− i/s) for 0 < i < s−1.
We subtract i/s because this is the probability that we have replaced the same

word. The frequency of the first word internalised
(∑

n≥1 Poiss(n, αk)
)

, and, in

general, of the mth word internalised
(∑

n≥m Poiss(n, αk)
)

. Put together, for

each word internalised, we update the internal distribution as follows,

∀i ∈ Z, 0 < i < s

∀m ∈ Z, 1 < m < s

p(i) =p(i) +
∑
n≥m

Poiss(n, αk)p(i− 1)(1− (i− 1)/s)

−
∑
n≥m

Poiss(n, αk)p(i)(1− i/s) ,

taking p(−1) = 0 to resolve the boundary. It is computationally too expensive to
go through every different possibility of the order in which the N words could be
incorporated, so we incorporate the target words first and then the N−k non-target
words. If anything, this would penalise α. We use a similar procedure to update
the internal model for these non-target words. This time the probability of hitting
a non-target word is (1− i/s) so we set p(i) = p(i+ 1)((i+ 1)/s) for 0 ≤ i < s.

∀i ∈ Z, 0 ≤ i < s(S2)

∀m ∈ Z,m < i < s

p(i) =p(i) +
∑
n≥m

Poiss(m,αk)p(i+ 1)(i+ 1)/s

−
∑
n≥m

Poiss(m,αk)p(i)i/s .

Given the internal model of a user’s propensity to use a word, we are able to
generate the probability of the language they generate at a point in time t. For
a user who has used k mentions of a specific word in N words, we calculate the
probability of the internal model for the word as,

(S3) Prt(k,N) =
∑
i

pt(i)B(k;N, i/s),

where B is the binomial probability density function. According to the NISS
mathod, the internal model can now be updated to reflect this new information
for the next time point.

(S4) ∀i, pt+1(i) =
pt(i)B(k;N, i/s)∑
i pt(i)B(k;N, i/s)

.

1An alternative to this is that the words are internalised with a Binomial distribution
Binom(n;N,αk). Tests with this distribution found it gave similar results.
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We can now calculate the likelihood of the model and parameters (H) given the
data (D) using Equation (S3) as,

(S5) L(H|D) =
∏
t

Prt(k,N) .

4.2. Tests. The method was tested by randomly generating pairs of two users,
each member of the pair assigned with different internal frequencies of a specific
word. At each time segment, both users output a random number of words with
the frequency of the specific word picked from a binomial distribution according
to their internal frequency of the word. One of the users is the focal user, who
receives languague from the other, and updates their internal model according to a
predefined value of α, dubbed αin. We then run the method against the language
generated by the two users to find the value of α (dubbed αout) with a maximum
likelihood (Eq. S5) and compare that against the predefined value - see Fig. S2.

Figure S2. Four different values of s were tested. At low s, and
higher levels of α, the focal user quickly adopted the other’s usage.
At the highest level of s = 10, 000, the value of α was over esti-
mated.

4.3. Implementation. We looked at pairs of users, a target user for whom we
maintain an internal collection, and an incoming user from whom we monitor their
incoming tweets. To some extent, two users will mirror one another in conversation,
and so we would expect to see some transitory usage of the same words. We can
account for this by ignoring tweets where a focal user sent messages directed back
to the incoming user. We then looked at time segments where both the outgoing
and the incoming user posted. We used a time segment of one month.

The initial condition of the internal collection was set at a binomial distribution,
the mean of which is calculated by the relative frequency for the specific word over
the first half of the time segments (multiplyed by s). There was then a burn in
period for half the time segments where α was set to 0.0. At this point the internal
frequency should reflect that of the usage of the target user. We then introduce
update of the internal model from incoming language (Eq. S2). A control was
generated where the outgoing tweets of the focal user were randomly shuffled so
that the time signal was lost.
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We focussed on 1,000 words randomly sampled from all the word instances (so
including copies of words) we had in our complete sample of Twitter. We looked at
10,000 pairs of users, where both the users had tweeted at least one tweet to each
other and at least 500 conversational tweets to all users. For a given value of α we
calculated the log-likelihood by summing the log-likelihoods for each pair of users.
For each word, we then used Nelder-Mead optimisation (Nelder and Mead 1965) to
find the value of α with the maximum likelihood.

We found, when running optimisations, that increasing the level of s in the
process increased the maximum-likelihood level of α. The reason for this is due to
the difference in ways in which we update the probability distribution according to
whether we update it from output from the focal user, or input from the incoming
user. When we update the internal model according to output from the focal user
(see Eq. S4), the amount of change is independent of the value of s. However, when
we update the internal model due to incoming language (Eq. S2), larger values of
s will mean the internal frequencies of words are updated more slowly. There is an
increase in the value of α needed to compensate for this effect. To compensate for
this, we generated a control by randomly shuffling the time signal of the incoming
user. This shuffling will remove the influence the incoming user’s language might
have over the focal user. Our final value of α was calculated by subtracting the
value of α generated for the shuffled control from the value of α generated with
the unshuffled time signal. From our test runs, and due to computational time
constraints, we settled on a value of s = 2, 000 for the optimisation runs presented
in the main manuscript.
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