"How the formation of amyloid plaques and neurofibrillary tangles may be related – A mathematical modeling study"

Proceedings of the Royal Society A

I. A. Kuznetsov^{(a), (b)} and A. V. Kuznetsov^(c)

^(a)Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

^(b)Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

^(c)Dept. of Mechanical and Aerospace Engineering, North Carolina State University,

Raleigh, NC 27695-7910, USA; e-mail: avkuznet@ncsu.edu

Supplementary material

Symbol	Definition	Units
n _a *	Concentration of on-track tau moving along MTs anterogradely, propelled by molecular motors	μm ⁻¹
<i>n</i> [*] _r	Concentration of on-track tau moving along MTs retrogradely, propelled by molecular motors	μm ⁻¹
n_{a0}^*	Concentration of pausing on-track tau that is still associated with molecular motors and can resume its anterograde motion	μm ⁻¹
n_{r0}^{*}	Concentration of pausing on-track tau that is still associated with molecular motors and can resume its retrograde motion	μm ⁻¹
n [*] _{free}	Concentration of free (off-track) tau in the cytosol	μm ⁻¹
n_{st}^*	Concentration of stationary tau bound to MTs, no association with motors	μm ⁻¹
n_{dif}^*	Concentration of tau diffusing along MTs, no association with motors	μm ⁻¹
n_{mis}^*	Concentration of misfolded tau, no mobility	μm^{-1}

Table S1. Dependent variables in the model of tau transport.

Table S2. Independent variables in the models of tau and APP transport.

Symbol	Definition	Units
<i>x</i> *	Cartesian coordinate along the axon	μm
<i>t</i> *	Time	S

Table S3. Parameters characterizing transport of tau protein and their estimated values. Utilizing Least Squares Regression (LSR), in ref. [30] we determined values of 18 of these parameters that give best-fit with published experimental data.

Symbol	Definition	Units	Estimated value	Reference or estimation method
A	Coefficient in Eq. (2.15)		5.079×10 ⁻²	LSR
D_{free}^{*}	Diffusivity of tau protein in the cytosolic state	$\mu m^2/s$	3	[25]
D_{mt}^*	Diffusivity of tau protein along MTs	$\mu m^2/s$	0.153	[28]
$j_{tot,tau,x=0}$ a	Dimensionless total flux of tau into the axon		3.753×10 ⁻³	LSR
k ₁ *	Rate constant for the first pseudoelementary step of F-W model (nucleation) describing $n_{free}^* \rightarrow n_{mis}^*$ transition	s ⁻¹	3.011×10 ⁻⁸	See the discussion leading to Eq. (3.5)
$k_2^* n_{tot,x=0}^*$	Rescaled rate constant for the second pseudoelementary step of F-W model (autocatalytic growth) describing $n_{free}^* \rightarrow n_{mis}^*$ transition	S ⁻¹	2.727×10 ⁻⁸	See the discussion leading to Eq. (3.5)
L*	Length of the axon	μm	600	[31]
$n_{free,x=0}$ b	Dimensionless concentration of free (cytosolic) tau at the		1.616×10 ⁻⁶	LSR

	axon hillock			
n _{dif,x=0} c	Dimensionless concentration of MT- bound tau protein capable of diffusing along MTs at the axon hillock		7.849×10 ⁻¹	LSR
$T^*_{1/2free}$ d	Half-life of free monomeric tau protein	S	2.16×10 ⁵	[41]
$T_{1/2,mis}^*$ e	Half-life of misfolded (aggregated) tau protein	S	2.16×10 ⁵	See footnote "e" after Table S3
v_a^*, v_r^*	Velocities of rapid motions of tau on MTs propelled by kinesin and dynein motors, respectively	μm/s	0.5, 0.5	[25]
γ_{10}^*	Kinetic constant describing the rate of transitions $n_a^* \rightarrow n_{a0}^*$ and $n_r^* \rightarrow n_{r0}^*$	s ⁻¹	1.710×10 ⁻¹	LSR
γ_{01}^*	Kinetic constant describing the rate of transitions $n_{a0}^* \rightarrow n_a^*$ and $n_{r0}^* \rightarrow n_r^*$	s ⁻¹	5.403×10 ⁻³	LSR
γ [*] _{ar}	Kinetic constant describing the rate of transition $n_{a0}^* \rightarrow n_{r0}^*$	s ⁻¹	7.904×10 ⁻⁷	LSR
γ [*] _{ra}	Kinetic constant describing the rate of transition $n_{r0}^* \rightarrow n_{a0}^*$	s ⁻¹	5.988×10 ⁻⁵	LSR
$\gamma^*_{on,a}$	Kinetic constant describing the rate of transition $n_{free}^* \rightarrow n_{a0}^*$	s ⁻¹	1.072×10 ⁻²	LSR
$\gamma^*_{on,r}$	Kinetic constant describing the rate of transition $n_{free}^* \rightarrow n_{r0}^*$	s ⁻¹	9.985×10 ⁻⁶	LSR
$\gamma^*_{off,a}$	Kinetic constant describing the rate of transition $n_{a0}^* \rightarrow n_{free}^*$	s ⁻¹	7.996×10 ⁻⁷	LSR

$\gamma^*_{off,r}$	Kinetic constant describing the rate of transition $n_{r0}^* \rightarrow n_{free}^*$	s ⁻¹	2.833×10 ⁻⁹	LSR
$\gamma^*_{free \rightarrow st}$	Kinetic constant describing the rate of transition $n_{free}^* \rightarrow n_{st}^*$	s ⁻¹	9.978×10 ⁻⁶	LSR
$\gamma^*_{st \to free}$	Kinetic constant describing the rate of transition $n_{st}^* \rightarrow n_{free}^*$	s ⁻¹	1.651×10 ⁻⁵	LSR
$\gamma^*_{\textit{free} \rightarrow \textit{dif}}$	Kinetic constant describing the rate of transition $n_{free}^* \rightarrow n_{dif}^*$	s ⁻¹	4.395×10 ⁻⁶	LSR
$\gamma^*_{dif \to free}$	Kinetic constant describing the rate of transition $n_{dif}^* \rightarrow n_{free}^*$	s ⁻¹	2.167×10 ⁻³	LSR
$\gamma^*_{dif \to st}$	Kinetic constant describing the rate of transition $n_{dif}^* \rightarrow n_{st}^*$	s ⁻¹	7.924×10 ⁻⁷	LSR
$\gamma^*_{st \to dif}$	Kinetic constant describing the rate of transition $n_{st}^* \rightarrow n_{dif}^*$	s ⁻¹	8.586×10 ⁻⁶	LSR

^a
$$j_{tot,tau,x=0} = \frac{j_{tot,tau,x=0}^{*}}{n_{tot,x=0}^{*}v_{a}^{*}}$$
.

^b
$$n_{free,x=0} = \frac{n_{free,x=0}^{*}}{n_{tot,x=0}^{*}}$$
.

^c
$$n_{dif,x=0} = \frac{n_{dif,x=0}^*}{n_{tot,x=0}^*}$$
.

^d Because proteins transported by slow axonal transport (such as tau) on average move anterogradely, they cannot be returned to the soma for degradation. Their concentration depends on their half-lives, in the axon and in the synapse, which are not necessarily the same [79].

^e In the F-W model, misfolded tau represents many different fibril sizes, which may have different half-lives. Due to a lack of published experimental data, as a first approximation we assigned $T_{1/2,mis}^*$ the same value as to the half-life of free monomeric tau. This assumption may

need to be critically reevaluated later, in particular because misfolded tau aggregates may disrupt proteasome function [19] resulting in a longer half-life of tau aggregates.

Symbol	Definition	Units
C ₊ *	Concentration of anterogradely transported APP	μm ⁻¹
<i>C</i>	Concentration of retrogradely transported APP	μm ⁻¹
c_{0}^{*}	Concentration of free APP (not actively transported by motors on MTs)	μm ⁻¹

Table S4. Dependent variables in the model of APP transport.

Table S5. Parameters characterizing APP transport and their estimated values.

Symbol	Definition	Units	Estimated value	Reference or estimation method
с, <i>x=L</i> а	Ratio of retrogradely running APP at the end of the axon to anterogradely running APP at the beginning of the axon		$0.4 \frac{v_{+}^{*}}{v_{-}^{*}}$	See the analysis leading to Eq. (2.28)
v ₊ * ^b	Anterograde velocity of APP-transporting vesicles propelled by kinesin motors	μm/s	1.74	[60]
v_ [*] ^b	Retrograde velocity of APP-transporting vesicles propelled by dynein motors	μm/s	1.51	[60]
α_{+}^{*c}	Kinetic constant describing the rate of transition $c_0^* \rightarrow c_+^*$	s ⁻¹	1	[57]
α_* [°]	Kinetic constant describing the rate of transition $c_0^* \rightarrow c^*$	s ⁻¹	1	[57]
α' ^{* c}	Kinetic constant describing the rate of transition $c_{+}^{*} \rightarrow c_{0}^{*}$	s ⁻¹	0.4609	[57]

α′ ^{** c}	Kinetic constant describing the rate of transition $c_{-}^{*} \rightarrow c_{0}^{*}$	s ⁻¹	1	[57]
β	A parameter in Eq. (3.2) that characterizes how quickly $\alpha_{+}^{\prime*}$ increases when misfolded tau is produced		8×10 ³	The value 8×10^3 was found by performing numerical experiments so that the maximum value that α'^*_+ takes at steady-state equals twice the value that α'^*_+ takes at the initial time, when $n_{mis} = 0$ (see Fig. 5b)

^a
$$c_{-,x=L} = \frac{c_{-,x=L}^{*}}{c_{+,x=L}^{*}}$$

^b Although parameters v_a^* and v_+^* characterize cargo velocities propelled by kinesin motors, they are not necessarily the same because they describe motion of different cargos; v_a^* characterizes tau transport and v_+^* characterizes APP transport. A similar statement applies to v_r^* and v_-^* .

^c Since there is no published data that allow us to estimate values of kinetic constants for APP transport, we relied on [57] and assumed that kinetic constants are of order 1 s⁻¹. We used a value of 1 s⁻¹ for α_{-}^{*} , α_{+}^{*} , and $\alpha_{-}^{\prime*}$ and we set $\alpha_{+}^{\prime*} = 0.4 \frac{v_{+}^{*}}{v_{-}^{*}} = 0.4609 \text{ s}^{-1}$.

Measuring the distance between distributions computed with and without tau agglomeration in Figs. 3 and 4

The dimensionless distance between distributions of various observables computed with and without tau agglomeration (Figs. 3a,b and 4a,b) was evaluated by using the L^2 distance [73]. For example, for the total dimensionless tau concentration (Fig. 3a) this distance is defined as:

$$d\left(n_{tot,no\ aggl}, n_{tot,with\ aggl}\right) = \frac{1}{L^*} \sqrt{\int_0^{L^*} \left[n_{tot,no\ aggl}\left(x^*\right) - n_{tot,with\ aggl}\left(x^*\right)\right]^2} dx^* \ .$$
(S1)