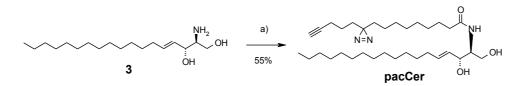

SUPPLEMENTAL INFORMATION

A search for ceramide binding proteins using bifunctional lipid analogs yields CERT-related protein StarD7

Svenja Bockelmann, John G. M. Mina, Sergei Korneev, Dina G. Hassan, Dagmar Müller, Angelika Hilderink, Hedwich C. Vlieg, Reinout Raijmakers, Albert J. R. Heck, Per Haberkant, Joost C.M. Holthuis

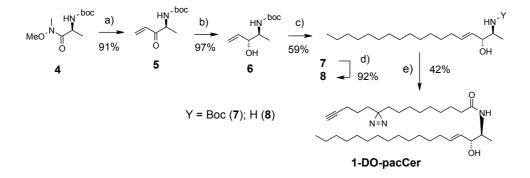
Synthesis of bifunctional lipid analogs

General aspects - Starting compounds and solvents were purchased from the indicated suppliers and used as obtained. Unstabilized solvents CH₂Cl₂ (SeccoSolv, Merck), Et₂O (SeccoSolv, Merck), MeOH (Fisher), DMF (Roth) and THF (Sigma) were dry grade. Reactions were carried out under Ar in dry Schlenk flasks with protection from light, where necessary. Column chromatography (CC): silica gel 60 (SiO₂; Merck, Germany). TLC: aluminum plates, SiO₂ 60 F₂₅₄, 0.2-mm layer (Merck, Germany). NMR spectra were obtained using an AMX-500 spectrometer (Bruker, DHelvetica Rheinstetten). ¹H: 500.14; ¹³C: 125.76; ³¹P: 101.3 MHz; δ in ppm relative to the signals of the residual protons of CHCl₃ $(\delta = 7.26 \text{ ppm})$ in CDCl₃ carbons of CDCl₃ ($\delta = 77.00 \text{ ppm}$) and external 85% H₃PO₄ for ³¹P; J in Hz. ESI-MS analysis was performed using a Bruker Daltronics Esquire HCT instrument (Bruker Daltronics, D-Leipzig); ionization was performed with a 2% aq. HCOOH solution. Elemental analyses (C, H, N) were performed on a VarioMICRO instrument (Fa. Elementar, D-Hanau). Abbreviations of DMAP commonly used reagents: (4-(dimethylamino)-pyridin), DCC (N,N'-(1-ethyl-3-(3dicyclohexylcarbodiimide), HOBT (1-hydroxybenzotriazol), EDCI dimethylaminopropyl)carbodiimide), HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluroniumhexafluorophosphat), Boc₂O (di-tert-butyldicarbonat).



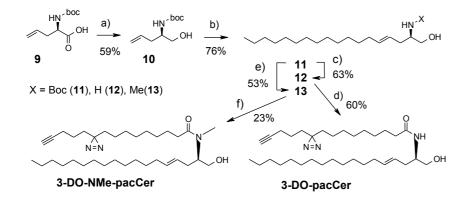
Scheme 1. Synthesis of pacFA. *Reaction conditions*: a) 1. Mg, THF; 2. ClCO(CH₂)₈COOMe, THF; b) KOH, MeOH; c) 1. NH₃, H₂NOSO₃H, -60°C, 6h; 2. Et₃N, I₂, MeOH, rt, 30 min.

9-(3-[Pent-4-ynyl]-3H-diazirin-3-yl)-nonanoic acid / pacFA – A solution of hydroxylamine-Osulfonic acid (93 mg, 0.82 mmol) in MeOH (0.5 ml) was added to a pre-cooled (-60°C) suspension of 10-oxo-pentadec-14-ynoic acid **2b** (101 mg, 0.4 mmol, prepared in 2 steps from 1-chloro-5-(trimethylsilyl)-4-pentyne **1** (Alfa Aesar) and 9-methoxycarbonylnonanoyl chloride according to [1]) in liquid ammonia (8 ml) and the resulting mixture was stirred at this temperature over 6 h. Cooling bath (acetone-CO₂) was removed and the reaction mixture was allowed to warm to room temperature overnight (Attention: work in a hood. Strong ammonia evaporation). Light beige powdery residue was suspended in MeOH (5 ml) and the precipitate of (NH₄)₂SO₄ was separated, washed with MeOH (4 x 1 ml) and the filtrate was alkalized with Et₃N (0.5 ml).


The solution obtained was protected from light and a solution of iodine (102 mg, 0.4 mmol) in MeOH (4 ml) was added dropwise until iodine stain no longer disappeared. The reaction mixture was

concentrated in vacuum, the residue was taken into AcOEt (15 ml) and washed with H₂O, dried (Na₂SO₄) and concentrated. **pacFA** was isolated from apricot residue by chromatography on silica gel, eluted with a mixture pentane:Et₂O:AcOH 75:24:1 v/v/v, to give 45.2 mg (43%) of colorless oil. TLC (pentane:Et₂O:AcOH 50:50:1 v/v/v): Rf 0.60. ¹H NMR (CDCl₃): 2.36 (2H, t, *J* 7.5, H₂CCO), 2.17 (2H, dt, *J* 7.1, 2.5, H₂CC=), 1.96 (1H, t, *J* 2.5, HC=), 1.64 (2H, q, *J* 7.1, H₂CCC=), 1.52-1.49 (2H, m, H₂CCN₂), 1.40-1.25 (12H, m), 1.13-1.07 (2H, m). ¹³C NMR (CDCl₃): 179.95 (C=O), 83.42 (-C=), 68.82 (HC=), 53.37 (CN₂), 33.97 (<u>CC</u>=O), 32.83 (<u>CCN₂</u>), 31.83 (<u>CCN₂</u>), 29.09, 29.06, 28.99, 28.92, 24.58, 23.73, 22.73, 17.93 (<u>CC</u>=). Spectral data are in good agreement with those reported [1]. ESI MS (positive mood): 237.2 [M-28+1]⁺, 265.2 [M+1]⁺, 287.2 [M+23]⁺, 529.3 [2M+1]⁺.

Scheme 2. Synthesis of pacCer. *Reaction conditions*: a) pacFA, EDCI*HCl, HOBT, CH₂Cl₂, 0°C, 15 h.


N-9-(3-[Pent-4-ynyl]-3H-diazirin-3-yl)-nonanoyl-D-erythro-sphingosine / pacCer - A solution of EDCI*HCl (5.74 mg, 0.03 mmol) in CH₂Cl₂ (0.25 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) solution of pacFA (7.23 mg, 0.027 mmol), D-erythro-Sphingosine 3 (7.8 mg, 0.26 mmol, Enzo Biochem Inc.) and HOBT (4.0 mg, 0.03 mmol) in CH₂Cl₂ (0.5 ml) and the resulting mixture was stirred overnight. The reaction mixture was concentrated in vacuum and the resulting **pacCer** was isolated by chromatography on silica gel, eluted with CH_2Cl_2 -AcOEt, 1:2 v/v mixture to give 7.7 mg (55%) of colorless oil. TLC (AcOEt): $R_f 0.68$. ¹H NMR (CDCl₃): 6.27 (1H, d, J 7.3, NH), 5,83-5.77 (1H, m, HC=), 5.54 (1H, dd, J 15.5, 6.5, HC=), 4.34-4.33 (1H, m, HCOH), 3.98-3.95 (1H, dd, J 11.2, 3.8, HCH-O), 3.94-3.91 (1H, m, HCN), 3.72 (1H, dd, J 11.2, 3.2, HCH-O), 2.24 (2H, t, *J* 7.5, H₂CCO), 2.17 (2H, dt, *J* 6.9, 2.5, H₂CC≡), 2.09-2.05 (2H, m, H₂CCO), 1.96 (1H, t, *J* 2.5, HC=), 1.64 (2H, q, J 7.3, H₂CCC=), 1.52-1.49 (2H, m, H₂CCN₂), 1.40-1.25 (12H, m), 1.12-1.08 (2H, m, CH₂), 0.90 (3H, t, J 7.0, CH₃). ¹³C NMR (CDCl₃): 173.79 (C=O), 134.24 (C=), 128.85 (C=), 83.44 (-C=), 74.65 (HCOH), 68.87 (HC=), 62.49 (H₂COH), 60.37 (CN₂), 54.52 (CN), 36.78 (CC=O), 32.84 (CC=), 32.28, 31.92 (CCN₂), 31.85 (CCN₂), 29.68, 29.49, 29.34, 29.20, 29.18, 29.16, 28.40, 25.67, 23.77 (CCH₃), 22.75, 22.68, 17.93 (CC=), 14.09 (CH₃). ESI MS (positive mood): 683.6 $[M-28+1]^+$, 711.6 [M+1]⁺, 733.6 [M+23]⁺, 1423.2 [2M+1]⁺.

Scheme 3. Synthesis of 1-DO-pacCer. *Reaction conditions*: a) 1. $H_2C=CHMgBr$, THF, -45°C, 1.5h; 2. HCl, 0°C; b) 1. LiAlH(OtBu)₃, EtOH, -60°C, 4h; 2. HCl, -60°C; c) $C_{13}H_{27}$ -CH=CH₂, Grubbs (II) cat, CH₂Cl₂, 65°C, 5h; d) HCl, EtOH, 65°C, 1h; e) pacFA, EDCI, HBTU, *i*Pr₂NEt, CH₂Cl₂, rt, 15 h.

(2*S*,3*R*,4*E*)-2-Aminooctadec-4-en-3-ol / reaction product (8) – Diluted HCl (5M, 0.1 ml) was added dropwise to pre-cooled (ice-bath) solution of *N*-[(1*S*,2*R*,3*E*)-2-hydroxy-1-methyl-3-heptadecen-1-yl]-carbamic acid *tert*-butyl ester 7 (42 mg, 0.11 mmol, prepared in 3 steps from *N*-(*tert*-butoxycarbonyl)-L-alanin-*N*⁻methoxy-*N*⁻methylamid (4), Acros Organics, according to [2]) in EtOH (0.1 ml) and the resulting mixture was stirred at 65°C during 1h. It was diluted with CH₂Cl₂ (4 ml), cooled on an ice-bath and carefully neutralized with NaHCO₃ aq. Organic phase was separated, the water phase was extracted with CH₂Cl₂ (2 x 4 ml), combined extracts were washed with brine, dried (Na₂SO₄) and concentrated to give aminoalcohol 8 (28 mg, 91%) as yellowish solid. TLC (CH₂Cl₂-NH₃/MeOH 20:1 v/v): R_f 0.17. ¹H NMR (CDCl₃): 5.77-5.71 (1H, m, =CH), 5.46 (1H, dd, *J* 15.4, 6.8 Hz, =CH), 3.94-3.92 (1H, m, HC-O), 3.01-2.99 (1H, m, HC-N), 2.07 (2H, q, *J* 7.2, CH₂C=), 1.85 (3H, br s, OH, NH2), 1.40-1.37 (2H, m), 1.28 (24H, br s), 1.08 (3H, d, *J* 6.8, CH₃CH), 0.90 (3H, t, *J* 7, CH₃CH₂). In good agreement with that reported [2]. ¹³C NMR (CDCl₃): 134.16 (C=), 128.63 (C=), 76.31 (C-O), 50.94 (C-N), 32.38 (<u>CC</u>=), 32.33, 31.88, 29.64, 29.63, 29.61, 29.58, 29.45, 29.31, 29.27, 29.17, 22.64, 18.50 (<u>C</u>H₃CH), 14.04 (<u>C</u>H₃CH₂).

N-[(1*S*,2*R*,3*E*)-2-hydroxy-1-methyl-3-heptadecen-1-yl]-octanamide / 1-DO-pacCer − A solution of HBTU (8.70 mg, 0.023 mmol) in CH₂Cl₂ (0.1 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) solution of pacFA (5.80 mg, 0.022 mmol), $(2S_3R_4E)$ -2-aminooctadec-4-en-3-ol **8** (5.61 mg, 0.20 mmol) and *i*Pr₂NEt (7.70 mg, 0.06 mmol) in CH₂Cl₂ (0.2 ml) and the resulting mixture was stirred at room temperature over 15h. The reaction mixture was concentrated in vacuum and the resulting **1-DO-pacCer** was isolated by chromatography on silica gel, eluted with CH₂Cl₂-AcOEt 9:1 v/v mixture to give 4.4 mg (42%) of colorless paste. TLC (CH₂Cl₂-AcOEt 9:1 v/v): R_f 0.38. ¹H NMR (CDCl₃): 5.77-5.71 (1H, m, =CH), 5.57 (1H, d, *J* 7, NH), 5.40 (1H, dd, *J* 16, 7, =CH), 4.14-4.10 (2H, m; CH-O, CH-N), 2.18 (2H, q, *J* 7), 2.17 (2H, q, *J* 7), 2.07 (2H, q, *J* 7, CH₂COO), 1.96 (1H, t, *J* 2.2, ≡CH), 1.63 (2H, qt, *J* 7, CH₂C=), 1.52-1.49 (2H, m), 1.40-1.25 (42H; m), 1.13 (3H, d, *J* 6.7, CH₃), 0.90 (3H, t, *J* 7, CH₃). ¹³C NMR (CDCl₃): 173.56 (C=O), 134.08 (C=), 128.23 (C=), 83.42 (C=), 75.63 (C-O), 68.83 (≡CH), 50.01 (C-N), 36.78 (<u>C</u>C=O), 32.84 (<u>C</u>C=), 32.33, 31.89 (<u>C</u>CN₂), 31.85 (<u>C</u>CN₂), 29.65, 29.63, 29.60, 29.47, 29.32, 29.18, 29.16, 29.13, 29.09, 28.36, 25.68, 23.74, 22.74, 22.65, 17.95 (<u>C</u>C=), 15.22 (<u>C</u>H₃CH), 14.06 (<u>C</u>H₃CH₂). ESI MS (positive mood): 484.43 [M-18-28+1]⁺, 512.44 [M-18+1]⁺, 530.43 [M+1]⁺, 552.44 [M+23]⁺, 1059.76 [2M+1]⁺.

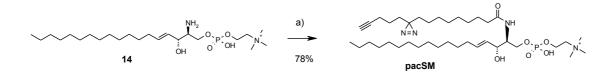
Scheme 4. Synthesis of 3-DO-pacCer and 3-DO-NMe-pacCer. *Reaction conditions*: a) 1.ClCO*i*Bu, 4-Me-morpholine, THF, rt, 5h; 2. NaBH₄, THF-H₂O, rt, 13h; b) $C_{13}H_{27}$ -CH=CH₂, Grubbs (II) cat, CH₂Cl₂, 75°C, 5h; c) CF₃COOH, CH₂Cl₂, rt, 1h; d) pacFA, EDCI*HCl, HOBT, CH₂Cl₂, rt, 25h; e) LiAlH₄, THF, refl. 3h; f) pacFA, EDCI*HCl, HOBT, CH₂Cl₂, rt, 3 d.

tert-Butyl ((2R)-1-hydroxypent-4-en-2-yl)carbamate / reaction product (10) - A solution of isobutyl chloroformate (221 mg, 1.62 mmol) in THF (1 ml) was added dropwise to a pre-cooled (icebath) mixture of (R)-N-Boc-allylglycin (9) (322 mg, 1.5 mmol, Acros Organics, 95%, 98% ee) and 4methylmorpholine (163 mg, 1.62 mmol) in THF (5 ml), after 15 min cooling bath was removed and stirring off-white suspension was continued at room temperature for 5 hours. Abundant white precipitate was separated, washed with THF (10 ml), filtrate was cooled (ice-bath) and fine crystals of NaBH₄ (113 mg, 3 mmol) followed by H₂O (0.3 ml) were added successively. Intensive gas evolution completed in 5 min, cooling bath was removed and the mixing was stirred at room temperature overnight. The reaction mixture was diluted with AcOEt (10 ml), washed with NaHCO₃ aq, organic layer was separated, water phase extracted with AcOEt (4 ml), extracts were washed with brine, dried (Na₂SO₄) and concentrated in vacuum. The residue was separated on silica gel, eluted with gradient mixture CH₂Cl₂-AcOEt (100:1 - 3:1), resulted in isolation of Boc-amine 10 (176 mg, 59%) as colorless liquid. TLC (CH₂Cl₂-AcOEt 4:1 v/v): $R_f 0.32$. ¹H NMR (CDCl₃): 5.83-5.75 (1H, m, =CH), 5.15-5.10 (2H, m, =CH₂), 4.66 (1H, br s, NH), 3.69-3.58 (3H, m, CH₂O, CHN), 2.34-2.21 (2H, m, CH₂C=), 2.14 (1H, br s, OH), 1.44 (9H, s, Boc). ¹³C NMR (CDCl₃): 156.36 (OC=O), 134.12 (=CH), 118.06 (H₂C=), 79.75 (CCH₃), 65.45 (COH), 52.27 (CN), 35.98 (CC=), 28.17 (CH₃).

tert-Butyl ((2*R*,4*E*) -1-hydroxyoctadec-4-en-2-yl)carbamate / reaction product (11) – Powder of Grubbs (II) catalyst (27 mg, 0.032 mmol, Sigma-Aldrich) was added to a degassed solution of Bocamine 10 (83 mg, 0.41 mmol) and pentadecene (871 mg, 4.1 mmol) in CH₂Cl₂ (0.5 ml) at room temperature. Argon was bubbled through the solution during 10 min and the reaction mixture was stirred at 75°C over 5 h under argon atmosphere. The brown solution was cooled to room temperature, concentrated and the resulting Boc-aminoalcohol was isolated by chromatography on silica gel, eluted with a gradient mixture CH₂Cl₂-AcOEt (100:0 – 10:1 v/v) to give 120 mg (76%) of 11 as colorless oil. TLC (CH₂Cl₂-AcOEt 4:1 v/v): R_f 0.43. ¹H NMR (CDCl₃): 5.57-5.51 (1H, m, =CH), 5.41-5.35 (1H, m, =CH), 4.65 (1H, br s, NH), 3.71-3.67 (2H, m, HCN, HCO), 3.63-3.59 (1H, m, HCO), 2.30-2.15 (2H, m, CH₂CN), 2.04-1.99 (2H, m, CH₂C=), 1.51 (9H, s, Boc), 1.37-1.27 (22H, m), 0.90 (3H, t, *J* 7.1, CH₃). ¹³C NMR (CDCl₃): 156.50 (C=O), 134.62 (=C), 125.07 (=C), 79.68 (<u>C</u>CH₃), 65.71 (COH), 52.68 (CN), 32.54 (<u>C</u>CN), 31.89, 29.65, 29.62, 29.59, 29.37, 29.32, 29.14, 29.10, 28.36 (CH₃), 22.65 (<u>C</u>CH₃), 14.05 (CH₃).

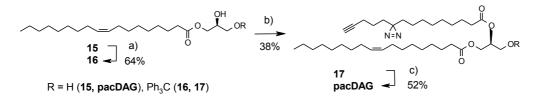
(2*R*, 4*E*)-2-Aminooctadec-4-en-1-ol (12) / reaction product (12) – A solution of CF₃COOH (36 mg, 0.3 mmol) in CH₂Cl₂ (0.1 ml) was added dropwise to a pre-cooled (ice-bath) solution of Boc-aminoalcohol 11 (114.4 mg, 0.3 mmol) in CH₂Cl₂ (0.1 ml). The resulting mixture was stirred at room temperature over 20 h till signal of the Boc-group in the NMR spectrum disappeared completely. The reaction mixture was concentrated in vacuum and crimson residue was separated by chromatography on silica gel, eluted with CH₂Cl₂-MeOH-NH₃/MeOH 95:5:1 v/v/v mixture to give 53.1 mg (63%) of deprotected aminoalcohol 12 as colorless oil. TLC (CH₂Cl₂-MeOH-NH₃/MeOH 95:5:1 v/v/v): R_f 0.25. ¹H NMR (CDCl₃): 5.55-5.50 (1H, m, =CH), 5.42-5.34 (1H, m, =CH), 3.60 (1H, dd, *J* 11.0, 4.0, <u>H</u>CH-O), 3.32 (1H, dd, *J* 10.5, 7.6, <u>H</u>CH-O), 2.91-2.86 (1H, m, HCN), 2.19-2.14 (1H, m, <u>H</u>CH-C=), 2.08-1.96 (3H, m, <u>H</u>CH-C=, H₂CC=), 1.77 (3H, br s, NH₂, OH), 1.36-1.28 (22H, m), 0.90 (3H, t, *J* 7.1, CH₃). ¹H NMR is in good agreement with that reported [3]. ¹³C NMR (CDCl₃): 134.17 (=C), 125.90 (=C), 66.64 (COH), 52.46 (CN), 37.92 (<u>C</u>CN), 32.60, 31.89, 29.65, 29.62, 29.60, 29.52, 29.48, 29.47, 29.32, 29.17, 22.65 (<u>C</u>CH₃), 14.05 (CH₃). ESI MS (*m*/*z*, positive mood): 284.27 [M+1]⁺.

N-[(1*S*,3*E*)-1--(Hydroxymethyl)-3-heptadecen-1-yl]-9-[3-(pent-4-ynyl)-3*H*-diazirin-3-yl]-


nonanamide / **3-DO-pacCer** – A solution of EDCI*HCl (5.70 mg, 0.03 mmol) in CH_2Cl_2 (0.2 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) solution of pacFA (6.60

mg, 0.025 mmol), aminoalcohol **12** (7.1 mg, 0.025 mmol) and HOBT (4.0 mg, 0.03 mmol) in CH₂Cl₂ (0.2 ml), cooling bath was removed and the resulting mixture was stirred at room temperature over 25 h (after 30 min a loose precipitate formed). The reaction mixture was concentrated and the resulting **3-DO-pacCer** was isolated by chromatography on silica gel, eluted with CH₂Cl₂-AcOEt-AcOH 20:20:1 v/v/v mixture to give 7.9 mg (60%) of colorless oil. TLC (CH₂Cl₂-AcOEt-AcOH 20:20:1 v/v/v): R_f 0.4. ¹H NMR (CDCl₃): 5.60-5.52 (2H, m, NH, =CH), 5.40-5.34 (1H, m, =CH), 3.98-3.92 (1H, m, CH-N), 3.71-3.60 (2H, oct.AB, H_A – 3.69, *J* 11.0, 3.2, H_B – 3.61, *J* 11.0, 6.0, CH₂-O), 2.31-2.26 (1H, m, <u>H</u>CH-CN), 2.22-2.16 (4H, m, CH₂C=, CH₂C=O), 2.04-2.00 (2H, m, CH₂C=), 1.96 (1H, t, *J* 2.6, =CH), 1.65-1.57 (2H, m), 1.52-1.49 (1H, m), 1.40-1.25 (34H, m), 1.10 (2H, q, *J* 7.1), 0.90 (3H, t, *J* 7, CH₃). ¹³C NMR (CDCl₃): 174.15 (C=O), 134.86 (=C), 125.08 (=C), 83.42 (=C), 68.83 (=CH), 65.90 (COH), 51.81 (HCN), 36.76 (<u>CC</u>=O), 34.43 (<u>CCN</u>), 32.84, 32.52, 31.90 (<u>CCN</u>₂), 31.85 (<u>CCN</u>₂), 29.66, 29.63, 29.49, 29.43, 29.32, 29.19, 29.16, 29.12, 29.09, 28.34, 25.66, 23.75 (<u>CCH</u>₃), 22.74, 22.65, 17.94 (<u>CC</u>=), 14.06 (CH₃).

(2R, 4E)-2-Methylaminooctadec-4-en-1-ol / reaction product (13) – Powder of LiAlH₄ (13 mg, 0.35 mmol, Sigma, 95%) was added in portions to a pre-cooled (ice-bath) solution of tert-butyl ((2R,4E)-1-hydroxyoctadec-4-en-2-yl)carbamate 11 (26 mg, 0.068 mmol) in THF (0.1 ml), after 15 min cooling bath was removed and the reaction mixture was stirred under reflux over 3h. It was cooled down in ice-bath, diluted with Et₂O (4 ml), water (2 ml) was carefully added and the reaction mixture was stirred until gas evolution ceased. Organic layer was separated, water phase was extracted with Et₂O (4 ml), extracts were washed with bine, dried (Na₂SO₄) and concentrated. The residue was separated on silica gel, eluted with a mixture CH₂Cl₂-MeOH-NH₃/MeOH 95:5:0.5 v/v/v resulting in isolation of methyl-aminoalcohol 13 (10.6 mg, 53%) as colorless scurf. TLC (CH₂Cl₂-MeOH-NH₃/MeOH 95:5:0.5 v/v/v): R_f 0.1. ¹H NMR (CDCl₃): 5.55-5.49 (1H, m, =CH), 5.38-5.31 (1H, m, =CH), 3.65 (1H, dd, J 10.7, 4.0, CH-O), 3.35 (1H, dd, J 10.7, 6.0, CH₂-O), 2.59-2.54 (1H, m, CH-N), 2.44 (3H, s, NCH₃), 2.23-2.15 (2H, m, CH₂CN), 2.09 (2H, br s, NH, OH), 2.05-1.99 (2H, m, CH₂C=), 1.37-1.33 (2H, m), 1.28 (20H, br s), 0.90 (3H, t, J 7, CH₃). ¹³C NMR (CDCl₃): 134.23 (=C), 125.77 (=C), 62.47 (COH), 60.29 (HCN), 34.36 (CCN), 33.47 (NCH₃), 32.58, 31.89 (CH₂C=), 29.65, 29.62, 29.61, 29.46, 29.43, 29.32, 29.15, 22.65 (CCH₃), 14.05 (CH₃). ESI MS (*m/z*, positive mood): 298.29 $[M+1]^+$.


N-[(1*S*,3*E*)-1-(Hydroxymethyl)-3-heptadecen-1-yl]-*N*-methyl-9-[3-(pent-4-ynyl)-3*H*-diazirin-3-

yl]-nonanamide / 3-DO-NMe-pacCer – A solution of EDCI*HCl (6.80 mg, 0.036 mmol) in CH₂Cl₂ (0.2 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) suspension of pacFA (8.30 mg, 0.031 mmol), methyl-aminoalcohol 13 (10.6 mg, 0.036 mmol) and HOBT (4.90 mg, 0.036 mmol) in CH₂Cl₂ (0.2 ml), cooling bath was removed and the resulting mixture was stirred at room temperature over 3 d. Clear reaction mixture was concentrated and the resulting 3-DO-NMepacCer was isolated by chromatography on silica gel, eluted with CH₂Cl₂-AcOEt-AcOH 20:20:1 v/v/v mixture to give 3.95 mg (23%) of colorless oil. TLC (CH₂Cl₂-AcOEt-AcOH 20:20:1 v/v/v): R_f 0.4. ¹H NMR (CDCl₃): 5.55-5.47 (1H, m, =CH), 5.34-5.28 (1H, m, =CH), 4.48 (1H, br s, HCN), 3.74-3.60 (2H, m, CH2-O), 2.90 (3H, s, NCH3), 2.34-2.23 (?H, m, HCH-CN), 2.22-2.16 (4H, m, CH₂C=, CH₂C=O), 1.96-1.94 (2H, m, CH₂C=), 1.96 (1H, t, J 2.6, =CH), 1.65-1.57 (2H, m), 1.52-1.49 (1H, m), 1.40-1.25 (34H, m), 1.10 (2H, q, J 7.1), 0.90 (3H, t, J 7, CH₃). ¹³C NMR (CDCl₃): 175.35 (C=O), 133.58 (=C), 125.58 (=C), 83.42 (=C), 68.83 (=CH), 63.44 (COH), 53.35 (HCN), 34.22 (CCN), 32.84, 32.52, 31.90 (CCN₂), 31.85 (CCN₂), 29.66, 29.63, 29.49, 29.43, 29.32, 29.26, 29.22, 29.16, 29.12, 29.09, 25.10, 23.77 (CCH₃), 22.74, 22.66, 17.94 (CC=), 14.06 (CH₃). ESI MS (m/z, positive mood): 516.47 [M-28+1]⁺, 526.46 [M-18+1]⁺, 544.49 [M+1]⁺, 566.44 [M+23]⁺, 1087.44 $[2M+1]^+$.

Scheme 5. Synthesis of pacSM. Reaction conditions: a) pacFA, EDCI, HOBT, THF, rt, 2 d.

N-9-(3-[Pent-4-ynyl]-3H-diazirin-3-yl)-nonanoylsphingomyelin / pacSM - A solution of EDCI (4.05 mg, 0.026 mmol) in THF (0.25 ml) was added dropwise and with protection from light to a precooled (ice-bath) suspension of pacFA (6.30 mg, 0.024 mmol), D-erythro-Sphingosylphosphocholine (14) (10.6 mg, 0.23 mmol, Avanti-Polar Lipids Inc.) and HOBT (3.52 mg, 0.026 mmol) in THF (0.5 ml) and the resulting mixture was stirred at room temperature over 2d. The mixture was concentrated in vacuum and the resulting pacSM was isolated by chromatography on silica gel, eluted with MeOH-AcOH, 100:1 v/v mixture to give 12.6 mg (78%) of colorless paste. TLC (AcOEt): R_f 0.32. ¹H NMR (CD₃OD): 5.75-5.70 (1H, m, =CH), 5.50-5.45 (1H, m, =CH), 4.30 (2H, br s, H₂COP), 4.14-4.06 (2H, m; CH-O, CH-N), 4.01-3.95 (2H, m, CH₂OP), 3.66-3.64 (2H, m, CH₂N), 3.24 (9H, s, N(CH₃)₃), 2.22-2.15 (5H, m, H₂CCO, H₂CC=), 2.04 (2H, q, J 7, CH₂COO), 1.96 (1H, t, J 2.2, =CH), 1.91-1.85 (1H, m, H₂CC=), 1.63-1.58 (2H, m, H₂CCC=), 1.52-1.49 (2H, m, H₂CCN₂), 1.40-1.37 (4H, m), 1.31 (30H; br s), 1.13-1.10 (2H, m, CH₂), 0.92 (3H, t, J7, CH₃). ¹³C NMR (CD₃OD): 174.47 (C=O), 133.65 (C=), 129.81 (C=), 82.73 (C=), 71.23 (C-OH), 68.83 (=CH), 66.16 (d, ${}^{1-2}J_{CP}$ 6, COP), 64.43 (d, ${}^{1-3}J_{CP}$ 6, CN), 59.02 (d, ¹⁻³*J*_{CP} 6, COP), 55.16, 53.94 (d, ¹⁻⁴*J*_{CP} 8, HCCO), 53.38 (NCH₃), 53.35 (NCH₃), 53.32 (NCH₃), 35.94 (CC=O), 32.45 (CC=), 32.02, 31.65 (CCN₂), 31.42 (CCN₂), 29.41, 29.38, 29.35, 29.30, 29.04, 28.99, 28.88, 27.79, 25.67, 23.46, 22.59, 22.30, 17.17 (CC=), 13.01 (CH₃CH₂). ³¹P NMR (CDCl₃): 0.03 ppm (br s, O₂POOH). ESI MS (positive mood): 683.6 [M-28+1]⁺, 711.6 [M+1]⁺, 733.6 $[M+23]^+$, 1423.2 $[2M+1]^+$.

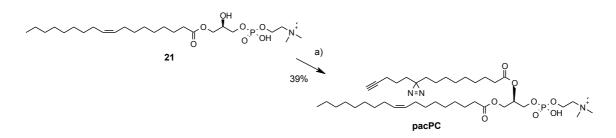
Scheme 6. Synthesis of pacDAG. *Reaction conditions*: a) TrCl, PyH, rt, 2d; b) pacFA, EDCI, DMAP, CH₂Cl₂.rt; c) CF₃COOH, CH₂Cl₂, rt, 1 h.

1-Oleoyl-3-trityl-*sn***-glycerol** / **reaction product** (**16**) – A solution of trityl chloride (155 mg, 0.55 mmol) in CH₂Cl₂ (0.5 ml) was added to a pre-cooled (ice-bath) solution of 1-oleoyl-*sn*-glycerol (15) (178 mg, 0.5 mmol, Santa Cruz Biotech Inc.) in pyridine (1 ml), cooling bath was removed and the reaction mixture was stirred at room temperature over 2 days. Clear orange solution was concentrated in vacuum and purified on silica gel, eluted with a mixture pentane-CH₂Cl₂-Et₃N 200:40:1 v/v/v, resulted in isolation of trityl glycerol **16** (191 mg, 64%) as colorless solid. TLC (pentane-CH₂Cl₂-Et₃N 200:100:1 v/v/v): R_f 0.33. ¹H NMR (CDCl₃): 7.45-7.43 (6H, m), 7.34-7.31 (6H, m), 7.27-7.25 (3H, m), 5.38-5.35 (2H, m, HC=CH), 4.24-4.16 (2H, m, CH₂OCO), 4.03-3.97 (1H, m, <u>H</u>COH), 3.26-3.21 (2H, m, H₂CO), 2.38 (1H, d, *J* 5, OH), 2.29 (2H, t, *J* 7.5, H₂CC=O), 2.05-2.01 (4H, m, H₂CC=CCH₂), 1.62-1.57 (2H, m), 1.36-1.28 (20H, m), 0.90 (3H, t, *J* 6.9, CH₃). ¹³C NMR (CDCl₃): 173.88 (C=O), 143.64 (C_{Ph}), 130.02 (C=), 129.72 (C=), 128.64 (C_{Ph}), 127.88 (C_{Ph}), 127.16 (C_{Ph}), 86.89 (C-O), 69.36 (COH), 65.66 (C-O), 64.27 (C-O), 34.14 (<u>C</u>C=O), 31.89, 29.76, 29.69, 29.50, 29.31, 29.29, 29.14,

29.09, 27.22 (<u>C</u>C=), 27.17 (<u>C</u>C=), 24.87, 22.65 (<u>C</u>CH₃), 14.06 (CH₃). ESI MS (*m/z*, positive mood): 243.03 [Ph3C]⁺, 621.4 [M+23]⁺, 1219.73 [2M+23]⁺.

1-Oleoyl-2-(9-(3-[pent-4-ynyl]-3H-diazirin-3-yl)-nonanoyl)-3-trityl-sn-cglycerol / tri-pacDAG (17) - A solution of EDCI (5.6 mg, 0.035 mmol) in CH₂Cl₂ (0.3 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) solution of pacFA (7.20 mg, 0.027 mmol), trityl glycerol 16 (17.4 mg, 0.29 mmol) and DMAP (4.40 mg, 0.035 mmol) in CH₂Cl₂ (0.5 ml), cooling bath was removed and the resulting mixture was stirred at room temperature overnight. The reaction mixture was concentrated and the resulting tri-pacDAG 17 was isolated by chromatography on silica gel, eluted with pentane-Et₂O-CH₂Cl₂-Et₃N 400:100:100:1 v/v/v/v mixture to give 8.6 mg (38%) of a colorless paste followed by the starting trityl glycerol 16 (6.0 mg, 29%, TLC: $R_f 0.34$). TLC (pentane-Et₂O-CH₂Cl₂-Et₃N 400:100:100:1 v/v/v/v): R_f 0.8. ¹H NMR (CDCl₃): 7.48-7.43 (6H, m, CH_{Ph}), 7.36-7.23 (9H, m, CH_{Ph}), 5.40-5.35 (2H, m, HC=CH), 5.31-5.23 (1H, m, CHOH), 4.40-4.21 (2H, oct.AB, C_A - 4.37, J 11.8, 3.8, C_B - 4.25, J 11.8, 6.5, H₂COCO), 3.32-3.21 (2H, m, H₂CO), 2.36 (2H, t, J 7.5, H₂CC=O), 2.25 (2H, t, J 7.5, H₂CC=O), 2.18 (2H, dt, J 6.8, 2.8, H₂CC=), 2.07-2.01 (4H, m, H₂CC=CCH₂), 1.97 (1H, t, J 2.8, =CH), 1.70-1.47 (8H, m), 1.40-1.24 (30H, m), 1.08 (2H, q, J 7.1), 0.91 (3H, t, J 7, CH₃). ¹³C NMR (CDCl₃): 173.31 (C=O), 172.92 (C=O), 143.60 (C_{Ph}), 130.02 (=C), 129.72 (=C), 128.63 (C_{Ph}), 127.84 (C_{Ph}), 127.12 (C_{Ph}), 86.69 (CC_{Ph}), 83.43 (=C), 70.46 (HC-O), 68.83 (=CH), 62.82 (H₂CO), 62.24 (H₂CO), 34.35 (H₂CC=O), 34.09 (H₂CC=O), 32.86, 31.90 (CCN₂), 31.85 (CCN₂), 30.34, 29.77, 29.73, 29.52, 29.32, 29.17, 29.13, 29.12, 29.11, 28.36, 27.23 (CC=), 27.19 (CC=), 24.90, 24.83, 23.78 (CCH₃), 22.76 (CCCN₂), 22.67 (CCCN₂), 17.96 (CC=), 14.08 (CH₃). ESI MS (m/z, positive mood): 839.6 [M-28+23]⁺, 863.6 [M+18+1]⁺, 867.6 [M+23]⁺, 883.6 [M+39]⁺.

1-Oleoyl-2-(9-(3-[pent-4-vnyl]-3H-diazirin-3-yl)-nonanoyl)-sn-glycerol / pacDAG - A solution of CF₃COOH (12 mg, 0.1 mmol) in CH₂Cl₂ (0.1 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) solution of tri-pacDAG 17 (8.6 mg, 0.01 mmol) in CH₂Cl₂ (0.1 ml), cooling bath was removed and the resulting mixture was stirred at room temperature 1 h. The reaction mixture was concentrated in vacuum and colorless residue was separated by chromatography on silica gel, eluted with pentane-Et₂O-CH₂Cl₂ 3:1:1 v/v/v mixture to give 3.1 mg (52%) of pacDAG as colorless oil. TLC (pentane- Et₂O-CH₂Cl₂ 3:1:1 v/v/v): R_f 0.3. ¹H NMR (CDCl₃): 5.40-5.35 (2H, m, HC=CH), 4.21-4.13 (4H, m, 2x H₂C-O), 4.11-4.08 (2H, m, HC-O), 2.38 (4H, m, 2 x H₂CC=O), 2.18 (2H, dt, J 6.8, 2.8, H₂CC=), 2.05-2.02 (4H, m, H₂CC=CCH₂), 1.96 (1H, t, J 2.8, =CH), 1.68-1.63 (4H, m, 2 x H₂CCCN₂), 1.58-1.49 (4H, m), 1.390-1.24 (30H, m), 1.10 (2H, q, J 7.1), 0.90 (3H, t, J 7, CH₃). ¹³C NMR (CDCl₃): 173.81 (C=O), 173.78 (C=O), 130.01 (=C), 129.70 (=C), 83.42 (=C), 68.83 (=CH), 68.45 (HC-O), 65.05 (H₂C-O), 34.08 (CC=O), 34.04 (CC=O), 32.84, 31.88 (CCN₂), 31.85 (CCN₂), 30.32, 29.74, 29.66, 29.49, 29.30, 29.27, 29.12, 29.07, 29.01, 29.00, 28.34, 27.21 (<u>CC=</u>), 27.15 (<u>CC=</u>), 24.86, 24.81, 23.73 (CCH₃), 22.74 (CCCN₂), 22.64 (CCCN₂), 17.96 (CC=), 14.05 (CH₃). ESI MS (m/z, positive mood): 557.5 $[M-28-17+1]^+$, 575.5 $[M-28+1]^+$, 585.5 $[M-17+1]^+$, 603.5 $[M+1]^+$, 625.5 $[M+23]^+$.


Scheme 7. Synthesis of pacPE. *Reaction conditions*: a) Boc₂O, Et₃N, CH₂Cl₂, rt; b) pacFA, EDCI, DMAP, rt, 5 d; c) CF₃COOH, CH₂Cl₂, rt.

1-Oleoyl-2-hydroxy-sn-glycero-3-(N-t-butyloxycarbonyl)phosphoethanolamine reaction / product (19) - A suspension of 1-oleoyl-2-hydroxyl-sn-glycero-3-phosphoethanolamine (18) (43.1 mg, 0.09 mmol, Avanti-Polar Lipids Inc.) in CH₂Cl₂ (1 ml) was treated with Et₃N (10.9 mg, 0.18 mmol) at room temperature, after 5 min a solution of Boc₂O (23.5 mg, 0.11 mmol) in CH₂Cl₂ (0.25 ml) was added and the resulting mixture was stirred overnight. Clear solution was concentrated in vacuum and purified on silica gel, eluted with a mixture CH₂Cl₂-MeOH, 3:1 v/v, resulted in isolation of Boc-phosphoethanolamine **19** (52 mg, 98%) as beige solid. TLC (CH₂Cl₂-MeOH 3:1 v/v): R_f 0.47. ¹H NMR (CDCl₃): 5.63 (1H, br s, NH), 5.41-5.35 (2H, m, HC=CH), 4.18-3.90 (7H, m, HCO, H₂C-O), 3.38 (2H, br s), 2.34 (2H, t, J 7,0 CH₂C=O), 2.08-1.99 (4H, m, CH₂C=CH₂), 1.70-1.58 (2H, m), 1.45 (9H, s, 3 x CH₃), 1.39-1.25 (18H, m), 0.90 (3H, t, J 7, CH₃). [4]. ¹³C NMR (CDCl₃): 173.71 (C=O), 156.10 (NC=O), 129.98 (=C), 129.74 (=C), 79.00 (OCCH₃), 69.48 (d, ¹⁻³J_{CP} 6, COP), 67.47 (d, ¹⁻⁴J_{CP} 8, CCOP), 64.90 (d, ¹⁻⁵*J*_{CP} 5, CN), 64.82 (d, ¹⁻³*J*_{CP} 6, COP), 34.42 (d, ¹⁻³*J*_{CP} 5, CCCOP), 34.15 (CC=O), 31.89, 29.76, 29.71, 29.50, 29.30, 29.20, 29.14, 28.44 (H₃CCO), 27.21 (CC=), 27.18 (CC=), 24.89 (CCC=O), 22.66 (CCH₃), 14.08 (CH₃). ³¹P NMR (CDCl₃): 1.93 ppm (br s, O₂POOH). ESI MS (*m/z*, positive mood): 602.4 [M+23]⁺, 1181.7 [2M+23]⁺.

1-Oleoyl-2-(9-(3-[pent-4-ynyl]-3H-diazirin-3-yl)-nonanoyl)-sn-glycero-3-(N-t-

butyloxycarbonyl)phosphoethanolamine / Boc-pacPE (20) – A solution of EDCI (4.59 mg, 0.030 mmol) in CH₂Cl₂ (0.25 ml) was added dropwise and with protection from light to a pre-cooled (icebath) solution of pacFA (7.50 mg, 0.028 mmol), Boc-phosphoethanolamine 19 (14.3 mg, 0.25 mmol) and DMAP (3.60 mg, 0.03 mmol) in CH₂Cl₂ (0.5 ml), cooling bath was removed and the resulting mixture was stirred at room temperature over 5 days. The resulting Boc-pacPE 20 was isolated by chromatography on silica gel, eluted with CH₂Cl₂-MeOH-AcOH 82:17:1 v/v/v mixture to give 8.2 mg (40%) of a colorless paste followed by the starting Boc-phosphoethanolamine 19 (7.8 mg, 54%, TLC: $R_f 0.47$). TLC (CH₂Cl₂-MeOH-AcOH 82:17:1 v/v/v): $R_f 0.76$. ¹H NMR (CDCl₃): 5.56 (1H, br s, NH), 5.40-5.32 (2H, m, HC=CH), 5.24 (1H, br s, HCO), 4.40-4.35 (1H, m, HCH-O), 4.20-4.14 (1H, m, HCH-O), 3.96-3.87 (3H, m, H₂CO), 3.79-3.75 (1H, m), 3.31-3.30 (2H, m, H₂CN), 2.33-2.29 (4H, m, 2 x CH₂C=O), 2.18-2.16 (2H, m, CH₂C=), 2.04-2.01 (4H, m, CH₂C=CCH₂), 1.96 (1H, t, J 2.6, =CH), 1.64-1.58 (4H, m), 1.52-1.49 (2H, m), 1.43 (9H, s, 3 x CH₃), 1.40-1.25 (32H, m), 1.01 (2H, br s), 0.90 (3H, t, J 7, CH₃). ¹³C NMR (CDCl₃): 173.50 (C=O), 173.38 (C=O), 156.34 (NC=O), 130.00 (=C), 129.68 (=C), 83.40 (=C), 79.00 (OCCH₃), 70.51 (HC-O), 68.84 (=CH), 65.50 (COP), 64.51 (COP), 62.51 (H₂CO), 35.35 (CH₂N), 34.19 (CC=O), 34.05 (CC=O), 32.85, 31.88 (CCN₂), 31.85 (CCN₂), 29.74, 29.50, 29.30, 29.28, 29.23, 29.14, 29.12, 29.05, 28.38 (3 x CH₃), 28.32, 27.21 (CC=), 27.19 (CC=), 24.82, 24.79, 23.78 (CH₂CH₃), 22.74, 22.64, 17.94 (CC=), 14.05 (CH₃). ³¹P NMR (CDCl₃): 1.66 ppm (br s, O_2POOH). ESI MS (*m*/*z*, positive mood): 848.6 [M+23]⁺.

1-Oleoyl-2-(9-(3-[pent-4-ynyl]-3H-diazirin-3-yl)-nonanoyl)-sn-glycero-3-phosphoethanolamine / pacPE – A solution of CF₃COOH (12 mg, 0.1 mmol) in CH₂Cl₂ (0.1 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) solution of Boc-pacPC 20 (8.20 mg, 0.01 mmol) in CH₂Cl₂ (0.1 ml), cooling bath was removed and the resulting mixture was stirred at room temperature overnight. The reaction mixture was concentrated in vacuum and the residue was separated by chromatography on silica gel, eluted with CH₂Cl₂-MeOH 4:1 v/v mixture to give 7.2 mg (97%) of pacPE as colorless oil. TLC (CH₂Cl₂-MeOH 4:1 v/v/v): $R_f 0.3$. ¹H NMR (CDCl₃): 7.88 (1H, br s, NH₂), 5.36 (1H, br s, OH), 5.32 (2H, br s, HC=CH), 5.11 (1H, br s, HCO), 4.38 (1H, br s, HCH-O), 4.12-3.98 (3H, m, H₂C-O, HC-O), 3.90 (1H, br s, HC-O), 3.76 (1H, br s), 3.12 (2H, br s, H₂CN), 2.30 (4H, br s, 2 x CH₂C=O), 2.17 (2H, br s, CH₂C=), 2.03 (4H, br s, CH₂C=CCH₂), 1.96 (1H, br s, =CH), 1.61-1.55 (4H, m), 1.52-1.49 (2H, m), 1.28 (29H, br s), 1.09 (2H, br s), 0.90 (3H, br s, CH₃). ¹³C NMR (CDCl₃): 174.61 (C=O), 174.43 (C=O), 129.97 (=C), 129.64 (=C), 83.40 (=C), 71.06 (HC-O), 68.85 (=CH), 67.20 (COP), 65.61 (COP), 61.91 (H₂CO), 34.46 (CH₂N), 34.12 (CC=O), 34.08 (CC=O), 32.84, 31.89 (CCN₂), 31.83 (CCN₂), 29.76, 29.67, 29.62, 29.52, 29.32, 29.28, 29.23, 29.14, 29.08, 29.05, 28.96, 28.32, 27.21 (CC=), 26.74, 24.67, 23.78 (CH₂CH₃), 22.74, 22.64, 17.94 (CC=), 14.05 (CH₃). ³¹P NMR (CDCl3): 0.75 (br s, O₂POOH). ESI MS (positive mood): 726.46 [M+1]⁺, 748.52 [M+23]⁺, 1452.52 [2M+1]⁺.

Scheme 8. Synthesis of pacPC. Reaction conditions: a) pacFA, DCC, DMAP, CH₂Cl₂, rt, 3d

1-Oleoyl-2-(9-(3-[pent-4-ynyl]-3H-diazirin-3-yl)-nonanoyl)-sn-glycero-3-phosphocholine / pacPC - A solution of DCC (5.80 mg, 0.028 mmol) in CH₂Cl₂ (0.25 ml) was added dropwise and with protection from light to a pre-cooled (ice-bath) solution of pacFA (6.30 mg, 0.024 mmol), 1-oleoyl-2hydroxyl-sn-glycero-3-phosphocholine (21) (12.4 mg, 0.24 mmol, Avanti-Polar Lipids Inc.) and DMAP (3.40 mg, 0.028 mmol) in CH₂Cl₂ (0.5 ml), cooling bath was removed and the resulting mixture was stirred at room temperature over 3 days. The mixture was separated from the precipitate of dicyclohexyl urea, concentrated in vacuum and the resulting **pacPC** was isolated by chromatography on silica gel, eluted with CH2Cl2-MeOH-AcOH-H2O 25:50:2:2 v/v/v/v mixture to give 7.23 mg (39%) of a colorless paste followed by the starting phosphocholine 21 (7.1 mg, 57%, TLC: Rf 0.15). TLC (CH₂Cl₂-MeOH-AcOH-H₂O 25:50:2:2 v/v/v/v): Rf 0.28. ¹H NMR (CDCl₃): 5.41-5.33 (2H, m, HC=CH), 5.24 (1H, br s, HCO), 4.55 (2H, br s), 4.37-4.34 (2H, m), 4.16-4.03 (4H, m) 3.44 (9H, br s, N(CH₃)₃), 2.31-2.28 (4H, m, 2 x CH₂C=O), 2.17 (2H, dd, *J* 7.1, 2.6, CH₂C=), 2.04-2.01 (4H, m, 2 x CH₂C=), 1.96 (1H, t, J 2.6, =CH), 1.64-1.58 (4H, m), 1.52-1.49 (2H, m), 1.40-1.25 (32H, m), 1.01 (2H, q, J 7.1), 0.90 (3H, t, J 7, CH₃). ¹³C NMR (CDCl₃): 173.51 (C=O), 173.14 (C=O), 130.02 (=C), 129.67 (=C), 83.40 (=C), 70.51 (d, ${}^{1-4}J_{CP}$ 8, HCO), 68.89 (=CH), 66.57 (d, ${}^{1-3}J_{CP}$ 6, COP), 64.61 (d, ¹⁻⁴J_{CP} 8, CN), 63.61 (d, ¹⁻³J_{CP} 6, COP), 62.92 (d, ¹⁻⁵J_{CP} 5, HCO), 54.65 (NCH₃), 34.26 (CC=O), 34.10 (CC=O), 32.83, 31.88 (CCN₂), 31.85 (CCN₂), 30.31, 29.74, 29.66, 29.49, 29.30, 29.28, 29.22, 29.20, 29.16, 29.12, 29.02, 28.35, 27.22 (CC=), 27.18 (CC=), 24.86, 23.77 (CCH₃), 22.74, 22.64, 17.94 (CC=), 14.06 (CH₃). ³¹P NMR (CDCl3): -1.20 (s, O₂POOH). ESI MS (positive mood): 768.58 [M+1]⁺, 790.56 [M+23]⁺.

REFERENCES

[1] Haberkant, P., R. Raijmakers, M. Wildwater, T. Sachsenheimer, B. Brügger, K. Maeda, M. Houweling, A.-C. Gavin, C. Schultz, G. van Meer, A. J. R. Heck, and J. C. M. Holthuis. 2013. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. *Angew. Chem. Int. Ed. Engl.* **52**: 4033–4038.

[2] Mina, J. G., J. A. Mosely, H. Z. Ali, P. W. Denny, and P. G. Steel. 2011. Exploring Leishmania major inositol phosphorylceramide synthase (LmjIPCS): Insights into the ceramide binding domain. *Org. Biomol. Chem.* **9**: 1823-1830.

[3] Kinsho, T., and K. Mori. 1989. Synthesis of 3-Deoxy Analogs of Sphingolipids. *Agricul. Biol. Chem.* **53**: 2785-2790.

[4] ¹H NMR spectrum in good agreement with that reported by: Srisiri, W., Y.-S. Lee, T. M. Sisson, B. Bondurant, and D. F. O'Brien. 1997. Polymerization of supramolecular assemblies: Comparison of lamellar and inverted hexagonal phases. *Tetrahedron* **53**: 15397-15414.