## **Supplementary Information**

## An Aqueous Inorganic Polymer Binder for High Performance Lithium-Sulfur Batteries with Flame-Retardant Properties

Guangmin Zhou,<sup>†,‡</sup> Kai Liu,<sup>†,‡</sup> Yanchen Fan,<sup>‡,§</sup> Mengqi Yuan,<sup>*n*</sup> Bofei Liu,<sup>†</sup> Wei Liu,<sup>†</sup> Feifei Shi,<sup>†</sup> Yayuan Liu,<sup>†</sup> Wei Chen,<sup>†</sup> Jeffrey Lopez,<sup>⊥</sup> Denys Zhuo,<sup>†</sup> Jie Zhao,<sup>†</sup> Yuchi Tsao,<sup>†</sup> Xuanyi Huang,<sup>†</sup> Qianfan Zhang,<sup>\*,§</sup> and Yi Cui<sup>\*,†,#</sup>

<sup>†</sup>Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States

<sup>§</sup>School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191, P. R. China

<sup>*d*</sup> State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China

<sup>1</sup>Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States

<sup>#</sup>Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States

\*Corresponding authors: <u>qianfan@buaa.edu.cn</u>, <u>yicui@stanford.edu</u>.

**Table S1.** The binding strength between different Li-S species and two kinds of polymers (unit: eV).

|      | $Li_2S$ | $Li_2S_2$ | $Li_2S_4$ | $Li_2S_6$ | $Li_2S_8$ |
|------|---------|-----------|-----------|-----------|-----------|
| APP  | 2.30    | 2.25      | 2.19      | 2.17      | 2.16      |
| PVDF | 0.72    | 0.74      | 0.61      | 0.58      | 0.59      |

**Table S2.** The Bader charge variances for the key atoms in two kinds of polymers. Here, the Bader charge variance  $\Delta e_B$  is expressed as the charge difference between the specified atom in the polymer and in an isolated state. "+" and "-" means the atom gains and loses electrons in the polymer, respectively.

|              | APP   |       |       |      | PVDF  |       |  |
|--------------|-------|-------|-------|------|-------|-------|--|
|              | Bond  | 0     | Р     | Bond | F     | С     |  |
| $\Delta e_B$ | -O-P- | +1.40 | -3.47 | -C-F | +0.59 | -1.05 |  |

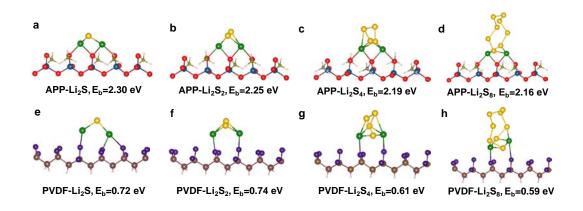



Figure S1. The adsorption conformations and binding strengths for (a-d) APP and

(e-h) PVDF binders with Li-S species.

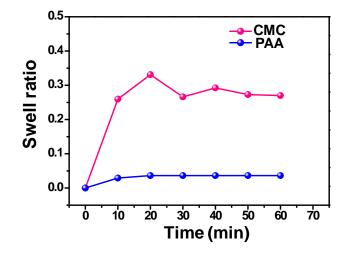
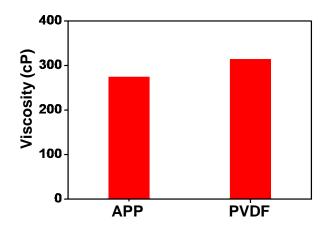
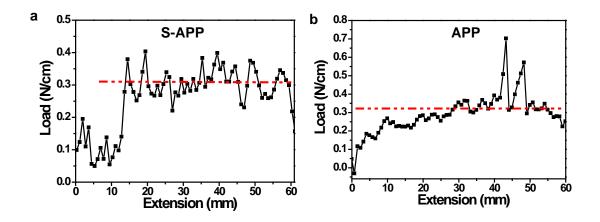
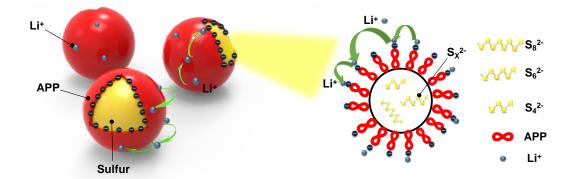
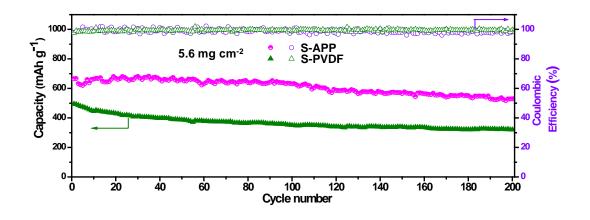



Figure S2. Swelling ratios of the CMC and PAA binders.



Figure S3. Viscosity of the 5 wt% APP and PVDF binder solutions.



**Figure S4.** Adhesion strength of the (a) S-APP electrode and (b) APP to the current collector. The dotted line showing the average adhesion strength for S-APP and APP to the current collector.



**Figure S5.** Schematic illustration of the functions of the APP binder in facilitating lithium ion transport due to the negatively charged side chain of APP.



**Figure S6.** Long-term cycling stability and Coulombic efficiency of the S-APP and S-PVDF electrodes with a sulfur mass loading of 5.6 mg cm<sup>-2</sup> at 0.5C for 200 cycles.

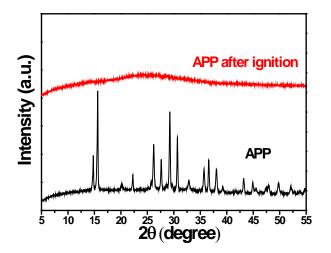
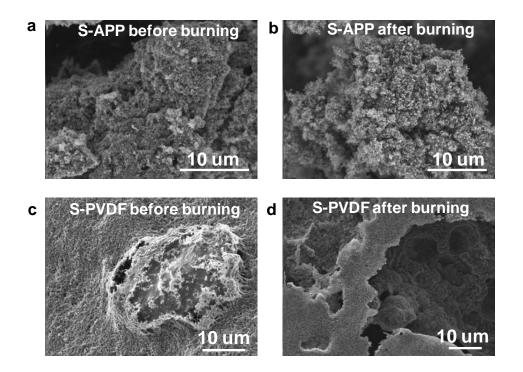




Figure S7. XRD patterns of the APP and its ignition product.



**Figure S8.** SEM images of the S-APP electrode (**a**) before and (**b**) after burning. SEM images of the S-PVDF electrode (**c**) before and (**d**) after burning.