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Table 1: Percentage of successfully decoding of latent representation after 1000 attempts for
1000 molecules from the traning set, 1000 validation molecules randomly chosen from ZINC
and a 1000 validation molecules randomly chosen from eMolecules. Both VAEs perform
very well for training data, and they are well transferable within molecules of the same class
outside the training data, as evidence by the good validation performance of the ZINC VAE
and the underperformance of the QM9 VAE against real-life small molecules.

Dataset ZINC QM
Training set 92.1 99.6
Test set 90.7 99.4
ZINC 91.0 1.4

eMolecules 83.8 8.8

Table 2: Percentage of 5000 randomly-selected latent points that decode to valid molecules
after 1000 attempts

Dataset ZINC QM
Decoding probability 73.9 79.3

Table 3: Variational autoencoder performance over different sizes of datasets. Training and
tests were performed using randomly selected molecules from the ZINC dataset, the values
reported here are the scores from the validation set. The categorical accuracy reflects the
percentage of characters in the output SMILES that were accurately reconstructed. Mean
Absolute Errors (MAE) are reported for QED and logP properties. Performance significantly
decreases if only 105 molecules are used for training.

Training set size Categorical Accuracy logP MAE QED MAE
225,000 99.3% 0.15 0.054
175,000 99.0% 0.18 0.076
125,000 98.5% 0.15 0.076
25,000 91.6% 0.23 0.079
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Figure 1: Distribution and statistics of (a) the mean of latent space coordinates (b) standard
deviation of latent space coordinates (c) norm of latent space coordinates of the encoded
representation of randomly selected molecules from the ZINC validation set. (d) Distribution
of Euclidean distances between random pairs of validation molecules in the ZINC VAE

Figure 2: Histograms and KDE plots of the distribution of properties utilized in the jointly
trained autoencoder (LogP, SAS, QED). Used to further showcase results from Table 2. For
each property we compare the distribution of the source data (ZINC), a generatic algorithm
and the VAE.

Figure 3: Comparison of between linear and spherical interpolation paths between two
randomly selected FDA approved drugs. A constant step size was used.
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Figure 4: Molecules decoded from randomly-sampled points in the latent space of the ZINC
VAE.
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