
Supplementary Method for “patteRNA:

transcriptome-wide search for functional RNA

elements via structural data signatures”

Mirko Ledda and Sharon Aviran

Department of Biomedical Engineering and Genome Center,
University of California at Davis, USA.

Introduction

Table 1: Glossary of symbols
Symbol Definition (dimensions)

N Number of possible hidden states in the HMM
T Length of the RNA
Q Number of RNAs in the dataset
K Number of Gaussian components in the mixture PDF
θ Complete set of parameters
ω Hidden states in the HMM (N × T)
y Observed reactivities (T × 1)
π Initial state probabilities (N × 1)
a Transition probabilities (N ×N)
b Emission probabilities (N × T)
w Mixture coefficients (N ×K)
µ Means (N ×K)
σ2 Variances (N ×K)
φ Emission probabilities for missing observations (N × 1)
υ Emission probabilities for observed zeros (N × 1)
α Forward probabilities (N × T)
β Backward probabilities (N × T)
γ State occupation probabilities (N ×K × T)
ξ Joint transition event probabilities (N ×N × T − 1)
L Likelihood

1

Model overview

The general objective of our framework is to infer the probability of a target
RNA structure motif across an entire dataset, given observed SP data. We first
consider a simplified example where we restrict search to a single motif and a
single transcript and assume knowledge of the transcript’s secondary structure.
The presence or absence of the motif can then be established by directly com-
paring it to the structure of the RNA. Simply put, we can encode both the
target motif and the transcript’s structure in terms of numerical base pairing
states, say 1 for paired and 0 for unpaired, and scan the transcript for the motif.
In practice, a transcript’s structure is unknown and not directly observable, in
other words, the base pairing states are hidden. What we observe instead is
a range of continuous values y = {y1, y2, . . . , yT } emitted from an underlying
sequence of hidden pairing states ω = {ω1, ω2, . . . , ωT }, with T the transcript’s
length. It is trivial to see that if we were given perfect data, for instance an hy-
pothetical experiment generating 0/1 for unpaired/paired nucleotides, we could
have determined each hidden state perfectly from this data. In summary, our
goal is to infer the sequence of hidden pairing states that is most likely to have
generated the observed data. Moreover, we want to make inferences for each nu-
cleotide in its structural context, or in other words, taking into consideration (i.e.
remembering) its neighbors’ pairing states. This type of problem is typically
approached using Hidden Markov Models (HMMs), a probabilistic framework
to estimate a sequence of hidden states while simultaneously introducing finite
memory in the system.
To infer the probability of a sequence of hidden states ω we need to know
two fundamental quantities: transition and emission probabilities. A transition
probability is the probability that a nucleotide t + 1 is in pairing state j given
that the preceding nucleotide t is in state i. Assuming this probability remains
constant across the entire dataset, we denote it as

ai,j = Pr(ωt+1 = j|ωt = i), (1)

where for each i, transitions sum to 1 over states j, s.t.
∑
j ai,j = 1 ∀i.

An emission probability is the likelihood of observing a value yt given that
nucleotide t is in pairing state ωt = i which we write as

bi,t = Pr(yt|ωt = i). (2)

We wish to infer the posterior probabilities of the hidden states given the ob-
served data y, however at this stage our model parameters - a and b - are
unknown and we must first train them. What we need is parameters, denoted
by θ, that best explain the data we observed. In other words, we want to find the
maximum a posteriori (MAP) estimates of our parameters given the observed
data which we write as

arg max
θ

Pr(θ|y) =
Pr(y|θ) Pr(θ)

Pr(y)
. (3)

2

We impose no prior beliefs on model parameters θ and thus we assume that
they are uniformly distributed implying that Pr(θ) are constants. Additionally,
the probability of the data Pr(y) is not dependent on θ in which case we can
simplify the posteriors of our model parameters to

Pr(θ|y) ∝ Pr(y|θ). (4)

It should now be clear that by maximizing the likelihood function L = Pr(y|θ)
we are in effect maximizing the posterior probabilities Pr(θ|y). The maximiza-
tion of the likelihood function L for HMMs has been solved decades ago [1, 2]
and makes use of an expectation-maximization (EM) algorithm. EM is an iter-
ative hill-climbing algorithm that is especially suited for maximizing likelihood
functions for models that involve hidden information of discrete nature and a
continuous parameter space. Each iteration comprises of two steps: E-step,
where hidden states are being imputed under the θ estimates at that iteration,
and M-step, where model parameters are updated by maximizing a likelihood-
derived function. The EM-steps are repeated until convergence of the model
likelihood L.

Model parameters

Before describing the specifics of our model’s training, we must first define the
exact nature of the θ parameters. As mentioned earlier, transition probabilities
a are part of the θ parameters but so far we did not mention the special case
occurring when we begin a new sequence. At the initial nucleotide t = 1, no
prior transition could have possibly happened and therefore we must start in
some hidden state i based on some initial probability derived from the observed
data that we denote πi and define as

πi = Pr(ω1 = i|y1), with 1 ≤ i ≤ N. (5)

We next need to estimate emission probabilities but because profiling exper-
iments generate continuous data, we have no means to produce b in a direct
manner. What we need instead is a model that fits the observed data and
from which we can generate an emission probability Pr(yt|ωt) for each observed
data point. For transcripts with known secondary structures, Pr(yt|ωt) is ob-
tained by categorizing the observed data based on nucleotide’s pairing states,
the hidden states ω in our HMM, and by fitting each resulting data distribu-
tion independently [3, 4]. For each state, we can now find a probability density
function (PDF) that appropriately fits the distribution. In practice, however,
we do not know the structure of the transcript nor the PDFs associated with
each hidden state and we therefore demand a dynamic model that can fit the
data adaptively.
One such class of models is called a Mixture Model (MM) and makes use of
multiple PDF functions derived from a common kernel function that, when
aggregated, can fit the shape of any distributions. The most widely studied

3

MM uses a Gaussian kernel, denoted N , and is known as the Gaussian Mixture
Model (GMM). Moreover, the integration of a GMM within an HMM, known as
a GMM-HMM, is a very well studied subject and proved to be very successful,
most notably for speech and hand-writing recognition. The basic idea behind
a GMM is that we can approximate a data distribution by a finite sum of K
Gaussian distributions weighted using mixture coefficients w. A single Gaussian
distribution is parametrized by a mean µ and a variance σ2. For the entire GMM
model we have K ×N Gaussian functions, one for each mixture component K
and each hidden state N , and therefore we need to estimate K × N sets of
parameters {µ, σ2, w}. Formally, we write a GMM as

bi,t = Pr(yt|ωt = i) =
K∑
k=1

wi,k N (yt;µi,k, σ
2
i,k) , 1 ≤ k ≤ K, 1 ≤ t ≤ T

with the constraints

K∑
k=1

wi,k = 1

wi,k ≥ 0 , 1 ≤ k ≤ K

∫ ∞
−∞

bi,ydy = 1

with 1 ≤ i ≤ N
(6)

Using equation (6) we can compute emission probabilities for any continuous
observation. However, missing reactivities are common in sequencing-based pro-
filing experiments and rejecting an entire profile because of missing observations,
denoted ∅, would result in significant data loss. Similarly, zero reactivities are
often encountered either naturally for PARS experiments or when negative re-
activities are set to 0, as is often the case for SHAPE, DMS, or similar chemical
modification experiments. A multitude of zeros yields a large discrete spike in
the PDF and therefore, they are better interpreted independently.
Moreover, reactivities can be log-transformed prior to training the model or
computing target motif scores, as this has been previously shown to induce
Gaussianity [4]. Missing values and zero reactivities are accommodated by in-
troducing new vectors [5], denoted φ for missing values and υ for zero reactiv-
ities. Since emissions are modeled as state-dependent, we classify these special
values for each state as

4

φi = Pr(yt = ∅, ωt = i)

υi = Pr(yt = 0, ωt = i)
(7)

We now have three possible options to compute emission probabilities but by
definition, those must sum to 1 across the set of all possible observations. This
directly implies that the area under the PDF,

∫∞
−∞ bi,ydy, must be smaller than

1 if either φi > 0 or υi > 0. We can therefore generalize equation (6) to
accommodate these new discrete probability vectors by scaling the area under
the PDF and write our entire GMM model as

bi,k,t =

φi wk , if yt = ∅
υi wk , if yt = 0
(1− φi − υi) wk N (yt;µi,k, σ

2
i,k) , otherwise

bi,t =

K∑
k=1

bi,k,t

for 1 ≤ i ≤ N,
1 ≤ t ≤ T,
1 ≤ k ≤ K

(8)
To simplify and improve the fitting of emission PDFs with the mixture function,
reactivities can be log-transformed prior to training the model or computing
target motif scores, as this has been previously shown to induce Gaussianity
[4]. However, zero reactivities, which are highly prevalent in structure profiling
datasets, cannot be log-transformed. To properly account for these, they are
not discarded but rather modeled using the υ vector as described in equation
(8), such that υ models zeros observed in pre-transformed input profiles.
To summarize, we need to train the initial state probabilities π, the transition
probabilities a, the parameters of our GMM {µ, σ2, w} and the emission prob-
abilities for missing and zero observations {φ, υ}. We can therefore write the
entire set of parameters of our GMM-HMM model as

θ = {a, π, µ, σ2, w, φ, υ}

Model training using Expectation-Maximization

To train our GMM-HMM model, we need to find the set of parameters θ that
best explain the observed data as described in equation (3). These parameters
are found using a conventional Expectation-Maximization (EM) algorithm that
uses the forward-backward algorithm, an approach most commonly referred to

5

as the Baum-Welch algorithm [1]. Briefly, the model is trained iteratively. At
each iteration, probabilities of hidden states are computed for each nucleotide,
given current θ parameter values, in what is called the E-step. These probabil-
ities are subsequently used to update the model parameters, in what is called
the M-step. Updated parameter values are those that maximize a function that
derives from the model’s likelihood function L. E and M steps are then repeated
until convergence of the model’s likelihood within a defined tolerance threshold.

E Step

During the E step, we need to infer, for each nucleotide, the posterior marginals
of the hidden states given current θ parameter estimates and the entire sequence
of observed data, which we denote

γi,t = Pr(ωt = i|θ, y).

We also wish to infer the joint probability that nucleotide t is in state i and that
its adjacent nucleotide t+ 1 is in state j, which we write

ξi,j,t = Pr(ωt = i, ωt+1 = j|θ, y).

These probabilities are obtained in two passes using a dynamic programming
framework called the forward-backward algorithm. During the forward-pass,
we compute the probability of ending in state i at nucleotide t given the first
t observed data points, or αi,t = Pr(ωt = i|θ, y1:t). In the backward-pass, we
use ωt = i as the starting point and compute the probability of the remaining
observed data, or βi,t = Pr(yt+1:T |θ, ωt = i). We write the forward-backward
recursions as follows

ct =
1∑N

i=1 αi,t
, 1 ≤ t ≤ T

α̂i,1 = c1πibi,1

α̂j,t+1 = ct+1bj,t+1

N∑
i=1

α̂i,tai,j , 2 ≤ t ≤ T − 1

α̂i,T = cT αi,T

β̂i,t = ct

N∑
j=1

ai,jbj,t+1β̂j,t+1 , t = [T − 1, T − 2, . . . , 1]

β̂i,T = cT

(9)

6

Note the introduction of a scaling constant ct after each nucleotide t to compute
scaled forward α̂ and backward β̂ probabilities [2, 6]. This scaling is necessary as
otherwise unscaled α and β would become very small as recursions progress and
would result in numerical overflow. Moreover, the scaling constant c normalizes
the likelihood contributed by a single nucleotide t, or Pr(yt|θ) = 1/ct. It there-
fore follows that multiplying Pr(yt|θ) across all nucleotides ∈ T will provide us
the likelihood L of the entire model [2] which we write in the log domain as

logL = log[Pr(y|θ)] ∝ log
[1∏T

t=1 ct

]
= −

T∑
t=1

log ct (10)

We can now combine α̂ and β̂ to estimate posterior state probabilities γ and the
joint state event probabilities ξ. However, we wish to do so for all transcripts
in the dataset simultaneously and we therefore need to take into consideration
each transcript’s likelihood. Denoting the number of transcripts in the dataset
by Q, we have for a transcript q a sequence of observed data y(q). We can now
compute ξ for each transcript as follow

ξ
(q)
i,j,t = α̂

(q)
i,t ai,jb

(q)
j,t+1β̂

(q)
j,t+1 , 1 ≤ t ≤ T − 1

(11)

For γ, we need to account for both transcript’s likelihood and individual con-
tributions from Gaussian mixture components. As denoted in (10), the scaling
constants c represent the contribution of each nucleotide to a transcript’s likeli-
hood and we can therefore use this property to scale γ. On the other hand, the
contribution of a Gaussian mixture component to the emission probability b is
the proportion of the probability emitted from that component compared to all
components combined, or

b
(q)
i,k,t∑K

p=1 b
(q)
i,p,t

Using these two properties we can write γ as

γ
(q)
i,k,t =

1

c
(q)
t

[
α̂
(q)
i,t β̂

(q)
i,t+1

][b
(q)
i,k,t∑K

p=1 b
(q)
i,p,t

]
, 1 ≤ t ≤ T − 1

γ
(q)
i,k,T = α̂

(q)
i,T

[b
(q)
i,k,T∑K

p=1 b
(q)
i,p,T

]

with 1 ≤ i ≤ N, 1 ≤ j ≤ N,
1 ≤ k ≤ K, 1 ≤ q ≤ Q

(12)

7

The likelihood of the GMM-HMM model for multiple transcripts is simply the
product of the likelihood of each individual transcipt’s model. In the log domain
this is computed as

logL =

Q∑
q=1

logL(q) (13)

M Step

During the M-step, we want to update the model parameters θ = {a, π, µ, σ2, w, φ, υ}
to maximize a likelihood-derived function, or in other words, find updated pa-
rameters that best explain the data we imputed. For our model, this maximiza-
tion is performed by re-evaluating each parameter using the expected values of
the pairing state probabilities of each nucleotide and the transition probabilities,
γ and ξ, obtained during the E-step. Intuitively, γ and ξ are simply our current
best guesses regarding the hidden states of our model and it naturally follows
that we want to use these to update our model parameters. Moreover, because
we generated scaled ξ and γ in equations (11) and (12), these can be thought
as pseudo-counts of our hidden states and can be used directly to obtain event
frequencies. For example, let us consider πi, the probability that hidden state i
generated the observed value at nucleotide t = 1. This probability is obtained
by counting the number of times we were in state i at nucleotide t = 1, across
transcripts and Gaussian mixture components, and dividing by the number of
times we encountered nucleotide t = 1. In other words, we are calculating the
expected frequency of state i at nucleotide t = 1 across the entire dataset. Also,
as this frequency is not dependent on any particular Gaussian component K ,
we can first simplify γ as

�
γ
(q)

i,t =

K∑
k=1

γ
(q)
i,k,t

with 1 ≤ i ≤ N, 1 ≤ t ≤ T, 1 ≤ q ≤ Q

(14)

This summation of γ over Gaussian components K allows us to simplify the
expression of π as

π̄i =

∑Q
q=1

�
γ
(q)

i,1∑N
i=1

∑Q
q=1

�
γ
(q)

i,1

, 1 ≤ i ≤ N (15)

Similarly, we can update the transition probabilities a by counting the number
of transitions from state i to state j, which is given by ξ, and divide by the
expected number of times we were in state i, which we write

8

āi,j =

∑Q
q=1

∑T (q)−1
t=1 ξ

(q)
i,j,t∑Q

q=1

∑T (q)−1
t=1

�
γ
(q)

i,t

with 1 ≤ i ≤ N, 1 ≤ j ≤ N

(16)

To estimate φ, we need to know the probability of observing a missing value
given we are in state i. We can get this probability by counting the number of
times we were in state i when nucleotide t emitted a missing value divided by
the total occurrences of all possible states, or

φ̄i =

∑Q
q=1

∑T
t=1

∗
γ
(q)

i,t∑N
i=1

∑Q
q=1

∑T
t=1

�
γ
(q)

i,t

with

∗
γ
(q)

i,t =

{
�
γ
(q)

i,t , if y
(q)
t = ∅

0 , if y
(q)
t 6= ∅

1 ≤ i ≤ N, 1 ≤ t ≤ T

(17)

In the same fashion, we can write the update formula for υ, the probability of
a zero observation, as

ῡi =

∑Q
q=1

∑T
t=1

∗
γ
(q)

i,t∑N
i=1

∑Q
q=1

∑T
t=1

�
γ
(q)

i,t

with

∗
γ
(q)

i,t =

{
�
γ
(q)

i,t , if y
(q)
t = 0

0 , if y
(q)
t 6= 0

1 ≤ i ≤ N, 1 ≤ t ≤ T

(18)

Lastly, we need to update the parameters of our GMM {µ, σ2, w}. We can use
the same strategy we applied so far, i.e. using expected pseudo-counts, but this
time we need to consider only nucleotides that did not emit a missing or zero
observation as those are accounted for in φ and υ. We write the update formula
as (note that Gaussian component specific γ are used)

9

with

∗
γ
(q)

i,k,t =

{
γ
(q)
i,k,t , if y

(q)
t /∈ {0,∅}

0 , if y
(q)
t ∈ {0,∅}

1 ≤ i ≤ N, 1 ≤ k ≤ K
we get

µ̄i,k =

∑Q
q=1

∑T
t=1

∗
γ
(q)

i,k,ty
(q)
t∑Q

q=1

∑T
t=1

∗
γ
(q)

i,k,t

σ̄i,k =

∑Q
q=1

∑T
t=1

∗
γ
(q)

i,k,t(y
(q)
t − µ

(q)
i,k)2∑Q

q=1

∑T
t=1

∗
γ
(q)

i,k,t

w̄i,k =

∑Q
q=1

∑T
t=1

∗
γ
(q)

i,k,t∑Q
q=1

∑K
k=1

∑T
t=1

∗
γ
(q)

i,k,t

(19)

Convergence criterion

The GMM-HMM model is fitted iteratively to the data using the EM algorithm
until the difference between two consecutive model’s log likelihoods become
smaller than a user-defined tolerance, we call epsilon. We write the convergence
criterion as

logLi − logLi−1 ≥ |ε logLi| ,∀i ≥ 5 (20)

Note that at least 5 iterations are performed before we check for convergence of
the model.

Parameters initialization and input arguments

Our algorithm is parametrized by a set of immutable user-defined input ar-
guments and θ parameters for the GMM-HMM model. The default values of
relevant user-defined arguments are

• Number of Gaussian components per states (K): 10

• Convergence criterion (ε): 10−4

• Maximum number of EM iterations: 100

• The initial value of the parameters before training are listed below for
N = 2 states denoted by [unpaired, paired] and 1 Gaussian component
per state:

10

• Transition probabilities (a): [
0.5 0.5
0.5 0.5

]
• Initial probability (π): [0.5, 0.5]

• Gaussian means (µ):

• Gaussian means are initialized using a random value drawn from a uniform
distribution U parameterized by the min,max or median value of ỹ, where
y is all input training observations.

– PARS ∼
[
U{min(y), ỹ}, U{ỹ,max(y)}

]
– SHAPE ∼

[
U{ỹ,max(y)}, U{min(y), ỹ}

]
• Gaussian variances (σ2):

[
V̂ar(y), V̂ar(y)

]
• Gaussian weights (w):

[
1
K ,

1
K

]
• NaN observations (φ): [0.5, 0.5]

• Zero observations (υ): [0.5, 0.5]

The same GMM parameters {µ, σ2, w} are repeated for larger number of Gaus-
sian components K.

Motif scoring

To score a motif we consider the joint probability of the observations y and
the target state-sequence (i.e. the motif’s path) given the trained model. For
example, consider a hairpin of stem size 4 and loop size 3, starting at nucleotide
m and of length n = 4 + 3 + 4 = 11. Such motif will produce the following
state path z = {1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}, with 0 and 1 representing unpaired
and paired nucleotides, respectively. We can write the joint probability of the
data and z, denoted Pr(y, z|θ), as:

Pr(y, z|θ) = Pr(y1, . . . , ym−1|θ)·
Pr(ym, ωm = zm|θ)·
Pr(ym+1, . . . , ym+n|ωm+1 = zm+1, . . . , ωm+n = zm+n, θ)·
Pr(ωm = zm, . . . , ωm+n = zm+n|θ)·
Pr(ym+n+1, . . . , yt|ωm+n = zm+n, θ)

(21)

While this expression seems complex at first glance, it is simply a breakdown of
probabilistic components involved in the joint probability calculation. In words,

11

this amounts to calculating the joint probability of: 1-2) all observations from
the beginning of the transcript up to the beginning of the path, given that the
path starts in state zm; 3) the probability of the observations between m and
m+n given the path; 4) the probability of the path itself; and 5) the probability
of the observations from m + n + 1 up to the end of the transcript, given that
the path ends in state zm+n. Replacing the terms in the above equation with
variables gives us the expression:

Pr(y, z|θ) =
[m−1∏
t=1

ct

]
·αzm,m ·

[m+n∏
t=m+1

bzt,t

]
·
[m+n∏
t=m+1

azt−1,zt

]
·βzm+n,m+n (22)

We could normalize the joint probability with respect to all possible paths in
the interval m to m+ n, which is given by

∏m+n
t=m ct. However this would result

in two biases. First, many paths are not feasible structures, effectively resulting
in hyper-inflation of the joint probability with respect to path z. Second, path
z will be penalized if alternative paths exist, which are significantly more likely
given the data. As we are interested in identifying the putative location of a spe-
cific path, and specifically because we are not asking what the most likely path
within the interval is (which is obtained using either the Viterbi algorithm or by
maximum a posteriori estimation), we would like to normalize the joint proba-
bility of the observation and path z in a more appropriate manner. We can use
the fact that our model is binary in terms of hidden states, implying that, with
respect to a single path z, there exists only a single opposite path. We denote
the opposite path by z′. In our hairpin example, z′ = {0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0}.
The joint probability of the data and path z′, Pr(y, z′|θ), can be expressed simi-
larly to equation (22). If we take the log-ratio between these joint probabilities,
we obtain a score that we denote:

score(z) = log
Pr(y, z|θ)
Pr(y, z′|θ)

,

which is expressed as

Pr(y, z|θ)
Pr(y, z′|θ)

=[∏m−1
t=1 ct

]
· αzm,m ·

[∏m+n
t=m+1 bzt,t

]
·
[∏m+n

t=m+1 azt−1,zt

]
· βzm+n,m+n[∏m−1

t=1 ct

]
· αz′m,m ·

[∏m+n
t=m+1 bz′t,t

]
·
[∏m+n

t=m+1 az′t−1,z
′
t

]
· βz′m+n,m+n

=
αzm,m
αz′m,m

·
βzm+n,m+n

βz′m+n,m+n
·
m+n∏
t=m+1

azt−1,ztbzt,t

az′t−1,z
′
t
bz′t,t

.

(23)

It should be noted that this definition of the score has the property of being
equal to 0 when paths z and z′ are equally likely within the considered region,

12

i.e. log Pr(y,z|θ)
Pr(y,z′|θ) = log 1 = 0. A positive score indicates that z is more likely

than its inverse path z′, while a negative score indicates the opposite. Note that
we score motifs at each possible starting nucleotide and for each transcripts in
the dataset unless sequence constraints are applied (see below).

Sequence constraints

Without sequence constraints, we score a motif starting at any possible nu-
cleotide along a transcript, and this for all transcripts in the dataset. However,
if the motif is self-contained, i.e. all base-pairings occur within a contiguous
region, we can restrict the search space to only regions where sequences would
allow for the motif to fold. We enforce such constraint by simply rejecting any
regions where the transcript sequence does not permit the formation of Watson-
Crick or Wobble base pairs between partners.

Viterbi path

The sequence of states that maximizes the likelihood of the data, L, is found
using the Viterbi algorithm and is thereby referred as the Viterbi path, V [2].
Briefly, the Viterbi path is determined by first filling a trellis matrix δ and a back
pointer matrix ψ, followed by a backtracking of the optimal path as described
below:

13

Initialization:

δi,1 = log(πi) + log(bi,1)

ωi,1 = 0

Recursion:

δj,t = max
1≤i≤N

[
δi,t−1 + log(ai,j)

]
+ log(bj,t) , 2 ≤ t ≤ T

ψj,t = arg max
1≤i≤N

[
δi,t−1 + log(ai,j)

]
, 2 ≤ t ≤ T

Termination and backtracking:

VT = arg max
1≤i≤N

[ωi,T]

Vt = ψt+1(Vt+1) , t = [T − 1, T − 2, . . . , 1]

with 1 ≤ i ≤ N
(24)

Note that recursion values are log-transformed to avoid numerical overflow.

Pairing-state posterior probabilities

The posterior probability of state i at nucleotide t, denoted γi,t is obtained
by first computing emission probabilities as described in (8) using trained θ
parameters. Using these emission we can then perform the forward-backward
algorithm as described in (9). Finally, we can use equation (12) and sum over
Gaussian components as described in (14) to obtain γi,t.

References

[1] Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique
occurring in the statistical analysis of probabilistic functions of markov
chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970).
doi:10.1214/aoms/1177697196

[2] Rabiner, L.R.: A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989).
doi:10.1109/5.18626

14

[3] Sükösd, Z., Swenson, M.S., Kjems, J., Heitsch, C.E.: Evaluating the ac-
curacy of SHAPE-directed RNA secondary structure predictions. Nucleic
Acids Research 41(5), 2807–2816 (2013). doi:10.1093/nar/gks1283

[4] Deng, F., Ledda, M., Vaziri, S., Aviran, S.: Data-directed RNA secondary
structure prediction using probabilistic modeling. RNA 22(8), 1109–1119
(2016). doi:10.1261/rna.055756.115

[5] Yu, S.-Z., Kobayashi, H.: A hidden semi-markov model with missing data
and multiple observation sequences for mobility tracking. Signal Processing
83(2), 235–250 (2003). doi:10.1016/s0165-1684(02)00378-x

[6] Rahimi, A.: An Erratum for “A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition”.
http://alumni.media.mit.edu/˜rahimi/rabiner/rabiner-errata/rabiner-
errata.html (2010)

15

