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Runtime benchmarks

To assess computational requirements for mining motifs in transcriptome-wide datasets, we simulated datasets of
varying sizes featuring diverse transcript lengths. Transcripts’ sequences were simulated using a uniform nucleotide
model (p=0.25 for A/C/G/U). SHAPE profiles were simulated in a two-stage process. First, we generated a
sequence of pairing states using an HMM with parameters learned by patteRNA from the Weeks set. We then
randomly sampled SHAPE values as described in [1] by using density functions proposed in [2] and fitting them
to the Weeks set. Datasets consisting of various numbers of transcripts were simulated in a similar manner, with
transcripts’ lengths sampled without replacement from lengths observed in the PARS dataset [3]. Note that we
restricted transcripts’ lengths to be ≤ 5000 nt as we observed large variances in runtimes between repeated datasets
with NNTM methods when very large transcripts were present.
We compared patteRNA to MFE and ensemble-sampling methods. For MFE, we used RNAfold (ViennaRNA pack-
age [4, 5]) and Fold-smp (RNAstructure package [6]). For ensemble-sampling, we sampled 1000 structures using
GTfold [7], RNAsubopt (ViennaRNA package) and partition-smp/stochastic-smp (RNAstructure package). Note
that as data-directed ensemble sampling is not currently implemented in the ViennaRNA package, we used predic-
tions based on sequence alone with RNAsubopt. Executed commands are reported in Table S4. All benchmarks
were run on a server (Ubuntu 14.04.1) and each session was allocated 16 CPUs and 16GB of RAM. We performed
5 repeats for each method and each dataset when varying RNA lengths (Figure S3A-B). Average wall times are
reported and data were fitted using the following exponential growth function with x denoting a single transcript
length:

estimated runtime = axb + c, a > 0, b > 0, c > 0 (1)

Fitted parameters are available in Table S5. For simulated datasets containing varying number of transcripts,
we performed 2 repeats for each method and each dataset and plotted predicted runtimes (Figure S3C-D). These
predictions (marked by crosses in panel C) were obtained by computing the runtime required for each transcript
individually using equation (1) and the parameters listed in Table S5. We then obtained a predicted runtime for an
entire dataset by summing over all transcripts. We further applied the same approach to estimate runtime for the
PARS dataset and two human GRCh38 (hg19) examples (see Table S7). The composition of these transcriptome-
wide datasets are available in Table S6.
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Figure S1: patteRNA trained on multiple datasets. Gaussian Mixture Models (black line) learned by
patteRNA using SHAPE data from the Weeks set (A-C), log-transformed SHAPE data from the fluoride riboswitch
set (D) and PARS data from father (E), mother (F) and child datasets (G). Grey histograms represent the
distribution of the data. For the Weeks set (A), reactivities were subsequently broken down into each pairing
state using reference structures to assess patteRNA’s state-dependent models accuracy at unpaired (B) and paired
(C) nucleotides. (D-G) Pairing-state-dependent distributions are shown (solid colored lines). Individual Gaussian
components are highlighted by dashed black/colored lines.
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Figure S2: patteRNA is robust to parameters choice and initialization on SHAPE data. To assess the
robustness of patteRNA, we varied the number of Gaussian kernels used per pairing states from 1 to 25 components
(K). For each K, we randomly initialized the components and performed 100 training repetitions. We used each
trained model to compute pairing state probabilities and subsequently, prediction accuracy relative to known
reference structures. We tested both log-transformed and raw SHAPE input data. (A) Each semi-transparent
(alpha=0.1) data point represent the accuracy obtained in an individual training repeat. Blue line corresponds
to the median across repeats for each K. (B) Horizontal histogram highlights the frequency of accuracy values
obtained across Gaussian components and repeats.
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D Transcripts’	lengths
# Transcripts Rep Median Min Max

10 1 2362.5 229 5000
10 2 986 99 3012
100 1 1321 63 5000
100 2 1827 67 5000
200 1 1470 28 5000
200 2 1396 56 5000
300 1 1332 64 5000
300 2 1345 61 5000
400 1 1237 50 5000
400 2 1203.5 30 5000
500 1 1491 57 5000
500 2 1682 58 5000

Figure S3: patteRNA run time is linear with respect to RNA length. (A-B) Runtimes to process small
datasets of 10 RNAs of increasing lengths. Datapoints represent average wall times over 5 repeats. An exponential
model (see section “Runtime benchmarks”) was fitted to the data and is represented by the dashed line. Note
that only processes finishing within 2h were considered. (B) Zoomed-in view of panel A for short RNAs (≤ 2500)
(C) Runtimes for simulated datasets composed of varying numbers of transcripts of different lengths, with length
capped at 5000 nt. Datapoints represent average wall times over 2 repeats. Crosses represent estimated runtimes
using an exponential model (see section “Runtime benchmarks”) with parameters listed in Table S5. A linear
model was fitted to the data and is represented by dashed lines. Note that only processes finishing within 5h
were considered. For instance, while RNAsubopt was tested it is not shown as the process took over 5h for the
smallest set of 10 RNAs. (D) Summary of dataset compositions in terms of transcripts’ lengths plotted in panel
C. Commands used with each method are reported in Table S4.
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Figure S4: Motif detection in a bi-stable fluoride riboswitch. (A) The accepted structure of the terminated
fold, associated with “transcription off” state, features three hairpins: P1, P3 and CT (complete terminator). (B)
The accepted structure of the anti-terminated fold, associated with “transcription on” state, features a pseudoknot
domain (PK) and a partial terminator (PT) hairpin. Pseudo-hairpins of loop-size 4 (C-D) and 6 (F-G), and
variable stem-size were scored across all possible starting nucleotides of the full-length transcript (100 nt) and
with no sequence constraints (hence the term pseudo-hairpin). X-axis indicates the position of the motif’s center.
Y-axis corresponds to hairpins with stems of variable lengths. Reds indicate higher scores. (E-H) Differential
scores between fluoride conditions for pseudo-hairpins of loop-size (E) 4 and (H) 6. A red color indicates that the
data better supports the presence of pseudo-hairpins in the presence of fluoride, and inversely, blue in the absence
of fluoride.
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Figure S5: Transcriptome-wide search for the MRPS21 riboSNitch motif in PARS data. Secondary
structure models proposed in Wan et al. [3] for allele variants 291A (A) and 291C (B) of the MRPS21 riboSNitch.
Red circles highlight the single nucleotide polymorphism and N’s indicate nucleotides that were added to maintain
the same sequence range between the two allelic variants but were not used when scoring motifs as they are
described in Wan et al.. Search results obtained for the father (homozygote A) (C), mother (homozygote C) (D)
and child (heterozygote) (E) datasets. For each riboSNitch variant, PARS traces at both the target location, i.e.,
the location where the riboSNitch was first reported, and the best scoring location across tested transcripts are
shown. Blue regions indicate helices, i.e. paired nucleotides where positive PARS values are expected; and inversely
for orange regions. The inset reports both the score and rank of the scored region relative to all scored regions,
where a smaller rank indicates a region is among the best scored ones, with 0% indicating the top scored region.
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Figure S6: Overview of valid motifs and limitations of patteRNA. (A) Because of combinatorial limi-
tations, patteRNA cannot score non self-contained motifs. For instance, the region highlighted by the red dashed
box is a valid target motif as its entire path (P=paired / U=unpaired nucleotides) does not contain any gap of
unknown length. Inversely, the double-stranded bulge motif is invalid as it entails a gap in its pairing state path.
(B) Illustration of a single state-path that could be produced from three distinct structural motifs. The red dashed
boxes highlight example regions that would generate this path. Note that loops are 3 nt long and not drawn to
scale.
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Figure S7: Optimal cutoff for a SHAPE-based classifier informed by reference structures. For each
tested cutoff value, reactivities greater than the threshold were deemed unpaired and inversely for paired nucleotides.
Predictions were then compared to reference structures to compute the `1-norm. Threshold optimization was
performed on log-transformed (from -8 to 2 by 0.001) (A) and raw (from -1 to 2 by 0.001) SHAPE data from
the Weeks set (B). The optimal cutoff (vertical dashed line) was selected at the SHAPE value that minimizes the
`1-norm.
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Table S1: List of SHAPE profiles included in the Weeks set.

RNA Length Source
Pre-Q1 riboswitch, B. subtilis 34 [8]
Fluoride riboswitch, P. syringae 66 [8]
Adenine riboswitch, V. vulnificus 71 [8]
tRNA(asp), yeast 75 [9]
tRNA(phe), E. coli 76 [8]
TPP riboswitch, E. coli 79 [8]
cyclic-di-GMP riboswitch, V. cholerae 97 [8]
SAM I riboswitch, T. tengcongensis 118 [8]
5S rRNA, E. coli 120 [8]
M-Box riboswitch, B. subtilis 154 [8]
P546 domain, bI3 group I intron 155 [9]
Lysine riboswitch, T. maritima 174 [8]
Group I intron, Azoarcus sp. 214 [8]
Hepatitis C virus IRES domain 336 [8]
Group II intron, O. iheyensis 412 [8]
Group I Intron, T. thermophila 425 [8]
5′ domain of 23S rRNA, E. coli 511 [8]
16S rRNA, H. volcanii 1474 [10]
16S rRNA, C. difficile 1503 [10]
16S rRNA, E. coli 1542 [9]
23S rRNA, E. coli 2904 [9]

Table S2: Search results in the child dataset spiked with the MRPS21 motif harboring “perfect” PARS informa-
tion.

Spiked Searched Rank Total p
A A 0 1805472 0
A C 378717 1798458 0.211
C A 377228 1805472 0.209
C C 0 1798458 0
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Table S5: Parameters of the exponential model used to fit method’s runtimes

Parameters
Method a b c

training (patteRNA) 7.98e-03 0.67 0.91
scoring (patteRNA) 6.46e-06 1.55 0.20
MFE (ViennaRNA) 7.02e-09 2.64 0.23
MFE (RNAstructure) 1.59e-08 2.87 0.44
Ensemble (GTfold) 6.32e-09 3.00 1.00e-10
Ensemble (ViennaRNA) 7.18e-12 4.02 0.12
Ensemble (RNAstructure) 5.96e-08 2.89 1.26

Table S6: Number of transcripts and lengths in example transcriptome-wide SP dataset

Dataset # Transcripts Median length Min Max Source
PARS 74210 1427 8 109223 [3]
PARS (high cov)* 2511 1537 54 12495 [3]
GRCh38 cDNAs 180868 886 8 109224 Ensembla

GRCh38 ncDNAs 37296 554 5 205012 Ensemblb

* High coverage refers to the 2012 transcripts from the child dataset that passed quality control
filtering (see section “Motif searches in transcriptome-wide PARS data” in Methods).

a ftp://ftp.ensembl.org/pub/release-90/fasta/homo sapiens/cdna/Homo sapiens.GRCh38.cdna.all.fa.gz

b ftp://ftp.ensembl.org/pub/release-90/fasta/homo sapiens/ncrna/Homo sapiens.GRCh38.ncrna.fa.gz

Table S7: Approximate runtimes for various transcriptome-wide datasets.

Dataset
Method PARS PARS (high cov) GRCh38 cDNAs GRCh38 ncRNAs

training (patteRNA) 43 h 1.5 h 4 days 16 h
scoring (patteRNA) 30 h 46 min 53 h 6 h
MFE (ViennaRNA)* 3 weeks 5.5 h 1 month 12 days
MFE (RNAstructure)* >1 year 90 h >1 year >1 year
Ensemble (GTfold)* >1 year 4 days >1 year >1 year
Ensemble (ViennaRNA)* >1 year 1 month >1 year >1 year
Ensemble (RNAstructure)* >1 year 2 weeks >1 year >1 year

* Note that these runtimes are only to generate structure predictions and do not include the search for a motif.
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