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1 Numerical simulations: details and parameters

References to equations and figures in the main text are preceded by the letter “M” and
references to supplement S2 by “S2” in this supplement.

In Fig. M2, covariances were calculated for recurrent networks from Eq. (M12), with
the addition of a rate offset a = 4, so that C = (I −G)−1

(
D[r] + a + D[Vext]

)
(I −GT )−1.

The stimulus ensemble consisted of 200 input vectors rext of size N = 60, with entries
independently chosen from a normal distribution with mean 0.2 and standard deviation 1.
Rates r were calculated as in Eq. (M7), and we assumed Poisson input with Vext = |rext|. For
the networks, four connectivity matrices G of size N = 60 were generated. Their entries were
chosen from a normal distribution with standard deviation 1.5/N and mean 0.8/N − 0.9/N ,
respectively. For the analytic predictions from Eqs. (M24)-(M27), the mean and variance of
the transfer matrix B = (I−G)−1 were calculated numerically.

In Fig. M2, covariances were calculated for recurrent networks from Eq. (M12). For the
networks, four connectivity matrices G of size N = 60 were generated. Their entries were
chosen from a normal distribution with standard deviation 1.5/N and mean 0.8/N − 0.9/N ,
respectively. For the input ensemble for the recurrent network, elements of 200 random input
vectors rext of length N = 60 were chosen from a normal distribution with mean 0.4 and
variance 2. Rates r were calculated as in Eq. (M7), and we assumed Poisson input with
Vext = |rext|. For rates and covariances of the feed-forward scenario, we used Eqs. (M16) and
(M17). We set F = 10 ·B, and scaled the input vectors by a factor 1/10 to obtain rates and
correlations of comparable size as in the recurrent network. Negative output rates were set
to zero. For the gain fluctuation model, responses of the network with ρ = 1.4 were used as
the ensemble of stimulus responses. From these, covariances were calculated, see Eq. (M19),
for which the variance of external fluctuations Vext was varied. For this figure, no rate offset
was used, a = 0. For the analytic predictions from Eqs. (M24)-(M27), the mean and variance
of the transfer matrix B = (I−G)−1 were calculated numerically.

The networks in Fig. M3C were identical to the ones used above. 50 stimuli rext with
random entries were generated with mean 0.2 and standard deviation 1.5. Inputs for different
neurons were correlated with correlation coefficient cin = 0.05 across stimuli. Rate offset was
4.
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In Fig. M4, networks and stimulus parameters were the same as in Fig. M3, but there
were no input signal correlations, cin = 0.

In Fig. S2 1, the network connects two populations of 100 neurons each. In a first pair
of stimuli (Fig. S2 1B), neurons in the population that was more strongly excited received
an input of 1 + ∆, with ∆ = 0.2, and the other neurons received an input of 1. For a
second pair of stimuli (Fig. S2 1F), the two populations received inputs of 1 + ∆ and 1−∆,
respectively. Each neuron had a fixed number of nEE postsynaptic partners within the same
populations. Coupling strength between connected neurons was set to g = 0.01. We chose a
population coupling within populations of Γs = 0.2, and the number of connections between
neurons within populations such that Γs = nEEg. Connections across populations were
chosen accordingly to realize across coupling values Γc = 0, . . . , 0.4. To visualize the effect of
the increase in internally generated noise due to increased rates (panel B), we compared the
covariances Σ = BpD[R](Bp)T for increasing Γc to the ones where in D[R] the rates of a
network with Γc = 0 were used.

In Fig. S2 1E, we calculated Soriginal by inserting the population covariances and responses
in Eq. (M22) for the two stimuli, in the correlated case. For the shuffled case, the full matrix
covariance matrix C was generated and the off-diagonal elements set to 0, such that

Σshuffled =

(∑
i∈E Cii 0

0
∑
i∈E′ Cii

)
. (1)

In Fig. S2 1F, Γc = 0.4 and Γs = 0.2. In Fig. S2 1G, we fixed, in the population transfer
matrix, P , the ratio ρ = var(P )/〈P 〉2, to the value ρ = 1. Then, 〈P 〉 was varied between 0.1
and 5, with var(P ) fixed. From 〈P 〉 and var(P ), we calculated Ps and Pc (see Supplement
S2).

2 Common framework for the analysis of noise correla-
tions

Here we formulate the three model scenarios described in Methods as special cases of the
interacting point processes framework defined in Eq. (M6). The derivation is similar as
in [1,2]. We consider an extended network of two populations which receive only constant
input rfull(t) ≡ rfull. Neurons are divided into an observed population O and an unobserved
external population U . The external population projects to the observed population, but
does not receive feedback. The coupling matrix of integrated kernels of the full system is a
block matrix of the shape

Gfull =

(
E 0
F G

)
. (2)

The coupling between nodes within the external network is described by the matrix E. If
E = 0, external inputs are independent Poisson processes. The feed-forward weights to the
observed network are defined by F , and by G the recurrent connections within the observed
population. The input vector to the system is rfull = (r0, 0). The components of the vector
r0 together with E determine the firing rates of the input nodes. The 0 represents a vector
of zeros, so that there is no constant input directly to the observed population.

The time dependent firing rates of neurons k ∈ U in the external input population are
determined by

r̃k(t) =
∑
l∈U

∫ ∞
0

ẽkl(τ)s̃l(t− τ)dτ + r0,k (3)

and the rates of neurons i ∈ O in the observed population by

r̃i(t) =
∑
j∈O

∫ ∞
0

g̃ij(τ)s̃j(t− τ)dτ +
∑
k∈U

∫ ∞
0

f̃ik(τ)s̃k(t− τ)dτ. (4)

2



The transfer matrix of the full system is

Bfull = (I−Gfull)
−1 =

(
(I− E)−1 0

(I−G)−1F (I− E)−1 (I−G)−1

)
≡
(

BE 0
BFBE B.

)
(5)

The average rates of the system are, from applying Eq. (M7) to the full system,

(I−Gfull)
−1rfull = Bfullrfull = (BEr0, BFBEr0)T ≡ (rext, r)

T , (6)

where rext = BEr0 are the rates of the input neurons and r = BFBEr0 = BFrext corre-
spondingly, the rates of the observed neurons. From Eq. (M12), the covariance matrix is
given by

Cfull =

(
BED[rext]B

T
E BED[rext]B

T
EF

TBT

BFBED[rext]B
T
E B

(
D[r] + FBED[rext]B

T
EF

T
)
BT

)
. (7)

The block CE ≡ BED[rext]B
T
E at the upper left describes the covariances of the external

population. The block at the lower right,

C ≡ B(D[r] + FCEF
T )BT (8)

describes how covariances in the observed network depend on the properties of the unobserved
input neurons.

The recurrent network scenario is obtained for an input population and an output
population of equal size N , with F = I and any diagonal E. In this case, CE is diagonal, and
we can identify the elements on the diagonal of CE with Vext. For the feed-forward scenario
set G = 0 and again identify the diagonal elements of CE with Vext. The gain fluctuation
model is obtained for G = 0, and if the input population consists of a single neuron. The
matrix F then corresponds to a single column vector, and C = D[Frext] + FCEF

T . With
r = Frext and setting Vext = CE/r

2
ext (rext is a number in this case), C = D[r] + rrTVext.

3 Population response statistics in the three network
models

3.1 Recurrent network model

The response distributions in the recurrent network are characterized by the average and
covariances of responses given in Eqs. (M7) and (M12),

r = Brext (9)

and
C = BD[reff ]B, (10)

with reff = r + a + Vext, including an offset a. We compare this model to the alternative
scenarios described in the following sections with respect to the relation between average
(co)variances and the projected variances and r, as well as signal and noise correlations.

We first derive Eqs. (M23) and (M24). The average covariance is

〈Cij〉i 6=j =
1

N(N − 1)

∑
i 6=j,k

BikBjkreff,k ≈ N〈BikBjk〉ijk〈reff,k〉k. (11)

We assume that N is sufficiently large and that the external input characterized by Vext, rext
does not depend on the recurrent network. In that case reff,k is approximately uncor-
related to Bik (including the contribution of rk, because 〈Bijrk〉 = 〈Bij

∑
lBklrext,l〉 ≈
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〈Bij〉〈
∑
lBklrext,l〉). The term 〈reff〉 = 〈r〉+ a+ 〈Vext〉 is linear in 〈r〉, with an uncorrelated

contribution 〈Vext〉, see the following section. If the elements of B are pairwise independent,

〈Cij〉i6=j = N〈B〉2(〈r〉+ a+ 〈Vext〉). (12)

Under the same assumptions, the sum of variances is

σ2
all =

∑
i,k

B2
ikreff,k =

∑
ik

B2
ik(Vext,k + rk + a)

≈ N〈B2〉
∑
k

(Vext,k + rk + a) = N2〈B2〉(〈r〉+ a+ 〈Vext〉).
(13)

Again, the term N2〈B2〉〈Vext〉 only contributes with an offset to the relation between 〈r〉
and 〈Cii〉i = σall/N .

Next, we show that the projected variances in this scenario have a similar dependence on
〈r〉 as the ones in the feed-forward model. The projected variance on the diagonal is

σ2
d =

1

N

∑
ij,k

BikBjkreff,k ≈ N2〈B〉2(〈r〉+ a+ 〈Vext〉). (14)

Consequently, in the ratio σ2
d/σ

2
all the dependence on 〈r〉 is canceled out.

The projection along the mean response direction,

σ2
µ =

∑
ij,k

BikBjk

(
rk + a+ Vext,k

)
r̄ir̄j ≈ N3 〈r〉2

|r|2
〈B〉2(〈r〉+ a+ 〈Vext〉), (15)

depends strongly on 〈r〉. Because cos(d, r) = 0 implies 〈r〉 = 0, σ2
µ/σ

2
all = 0 in this case, and

for cos(d, r) = 1, with |r|2 = N〈r〉2 one gets σ2
µ/σ

2
all = 〈B〉2/〈B2〉.

Apart from the raw covariances, we are interested in the average noise correlation
coefficient (across stimuli and neuron pairs),

cN = 〈 Cij(s)√
Cii(s)Cjj(s)

〉s,i6=j . (16)

For a given stimulus, we assume that the Cij are approximately independent, so that we can
write

〈 Cij(s)√
Cii(s)Cjj(s)

〉i 6=j ≈
〈Cij(s)〉i 6=j
〈Cii(s)〉i

. (17)

From Eqs. (12) and (13),

cN =
N〈B〉2(〈r〉+ a+ 〈Vext〉)
N〈B2〉(〈r〉+ a+ 〈Vext〉)

=
〈B〉2

〈B2〉
, (18)

and because 〈B2〉 = var(B) + 〈B〉2 we can rewrite cN as

cN =
1

1 + var(B)/〈B〉2
=

1

1 + ρ
. (19)

We see that the correlation coefficient depends on the relative variability of the network
elements. The variances, resulting from the variances of the input channels, are determined
by the mean of the square elements of the network. By contrast, the covariances depend
on the effective weights of inputs to the neuron pairs, and hence on the square of the mean
weight. Correspondingly, we consider the signal covariances CSij(s) = cov(ri(s), rj(s))s,

CSij = cov(
∑
kl

Bikrext,k(s), Bjlrext,l(s))s =
∑
kl

cov(Bikrext,k(s), Bjlrext,l(s))s. (20)
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For i 6= j, one gets

CSij =
∑
kl

BikBjkcov(rext,k(s), rext,l(s))s

=
∑
k

BikBjkvar(rext,k(s))s +
∑
k 6=l

BikBjkcov(rext,k(s), rext,l(s))s.
(21)

Averaged across neurons

〈CSij〉i 6=j = N〈B〉2var(rext) +N(N − 1)〈B〉2cinvar(rext). (22)

For the signal variances, i = j, which correspond to the variance of the rates across stimuli,

〈CSii(s)〉s =
∑
k

var(Bikrext,k) +
∑
k 6=l

cov(Bikrext,k, Bilrext,l)

=
∑
k

B2
ikvar(rext,k) +

∑
k 6=l

cov(rext,k, rext,l)BikBil.
(23)

Averaged across neurons, with 〈B2〉 = 〈B〉2 + var(B):

〈CSii(s)〉s,i = Nvar(rext)(〈B〉2 + var(B)) +N(N − 1)〈B〉2var(rext)cin. (24)

Their ratio is

〈Cij〉
〈Cii〉

=
N〈B〉2var(rext)(1 + (N − 1)cin)

Nvar(rext)(〈B〉2 + var(B)) +N(N − 1)〈B〉2var(rext)cin

=
1 + (N − 1)cin

1 + var(B)/〈B〉2 + (N − 1)cin
.

(25)

This results in an approximate expression for the average signal correlation coefficient,

cS = 〈
CSij√
CSiiC

S
jj

〉i,j ≈
〈CSij〉
〈CSii〉

=
1 + (N − 1)cin

1 + var(B)/〈B〉2 + (N − 1)cin
. (26)

3.2 Feed-forward network model with shared inputs

Here we derive characteristic relations for the response statistics resulting in a feed-forward
network. They illustrate qualitative differences between the predictions of different models
and will be used to extract model parameters from the data. In the feed-forward model the
mean responses and covariances are, from Eqs. (M16) and (M17) and allowing an offset in
observed rates,

r = Frext, (27)

Cij = δij(ri + a) +
∑
k

FikFjkVext,k. (28)

In contrast to the recurrent network model (see above), the average covariance is not
correlated to the population averaged rate 〈r〉 across stimuli, Eq. (M26). This follows after
taking the average across neurons:

〈Cij〉i6=j =
1

N(N − 1)

∑
i 6=j,k

FikFjkVext,k ≈ N〈Fik〉ik〈Fjk〉jk〈Vext,k〉k = N〈F 〉2〈Vext〉. (29)

Input variances Vext are assumed to be independent of the network structure and Fik
independent of Fjk, which means that the strengths of connection of an external neuron to
different internal neurons are independent.
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If 〈Cij〉i6=j is to be uncorrelated to 〈r〉 across stimuli, the average input variance 〈Vext〉
needs to be approximately uncorrelated to 〈r〉. This holds in our model even though
rk =

∑
i Fikrext,k and in each input channel the variance equals the strength of the input,

Vext,k = |rext,k|, if either the distribution of inputs across neurons is approximately symmetric
around 0, or the distribution of column sums

∑
i Fik of the feed-forward matrix (across

columns) is symmetric around 0. The first case can be realized in a feed-forward network
with a similar number of excitatory and inhibitory input channels. Intuitively, inhibitory
inputs decrease the average output, but contribute positively to the average variance, and
thus decorrelate the two quantities.

Formally, one compares the random variable
∑
k rk =

∑
ik Fikrext,k =

∑
k rext,k

∑
i Fik to

the variable
∑
k Vext,k =

∑
k |rext,k|. A random variable x is uncorrelated to its absolute value

|x| if its distribution is symmetric around 0. Here, the relevant variables are the elements of the
input vector rext, and their distribution is approximately symmetric around 0, if the variance
var(rext) is much larger than their squared mean, 〈rext〉, that is if ρext = var(rext)/〈rext〉2 � 1.
Consequently, if the variance of external inputs across stimuli is high, the population averaged
covariances in a feed-forward network are uncorrelated to the population response.

In the following, we motivate that the stimulus dependence of the variances projected
along different directions in the feed-forward model is different from the one in the gain
fluctuation model. The sum of the variances is

σ2
all = N(〈r〉+ a) +

∑
i,k

F 2
ikVext,k ≈ N

(
〈r〉+ a

)
+N2〈Vext〉〈F 2〉. (30)

Due to the Poisson spike generation, there is a linear contribution in 〈r〉 to the average
variance, 〈Cii〉i = σ2

all/N . This variability does not contribute to covariances, because spikes
are generated independently across neurons, in contrast to the recurrent model, where the
spiking or not spiking of a neuron directly influences post-synaptic firing rates.

The variance projected onto the diagonal direction is

σ2
d = 〈r〉+ a+

1

N

∑
ijk

FikFjkVext,k ≈ 〈r〉+ a+N2〈Vext〉〈F 〉2. (31)

Consequently, the ratio σ2
d/σ

2
all depends only weakly on 〈r〉 if the term N〈Vext〉〈F 〉2 is large

against 〈r〉+ a, that is if the sum of covariances is larger than the sum of variances. This
is the case, if correlation coefficients are larger than of the order O(1/N). The variance
projected onto the direction of the mean response is

σ2
µ =

∑
i

(ri + a)r̄2i +
∑
ijk

FikFjkVext,kr̄ir̄j ≈ a+

∑
i r

3
i

|r|2
+
〈r〉2

|r|2
N3〈F 〉2〈Vext〉. (32)

To see that the ratio σ2
µ/σ

2
all strongly depends on the population response, in contrast to

σ2
d/σ

2
all, assume again that the sum across variances in the first term a+

∑
i r

3
i

|r|2 is not too

large against the sum across covariances in the second term. The second term depends
strongly on 〈r〉: it is 0 for cos(r, d) = 0. For cos(r, d) = 1 it becomes N2〈F 〉2〈Vext〉. In this
case, σ2

µ/σ
2
all is not too small, if (〈r〉+ a)/(NVext) is not much larger than 1 (assuming that

〈F 2〉/〈F 〉2 is of order one).
As for the recurrent network, we approximate cN as

cN ≈
〈Cij〉s,i6=j
〈Cii(s)〉s,i

. (33)

Then, from Eqs. (29) and (30),

cN =
N〈F 〉2〈Vext〉

〈r〉+ a+N〈Vext〉〈F 2〉
. (34)

Signal correlations can be calculated analogously as for the recurrent model.
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3.3 Feed-forward network model with common gain fluctuation

We derive relations between covariances and average response in the gain fluctuation model,
in particular the scaling of average covariances with average rates and the orientation of the
response distribution measured by the projections of the variances in different directions.
From Eq. (M19), pairwise covariances are directly related to average responses,

Cij = δijri + rirjVext. (35)

The relation between average covariance and the population averaged response, Eq. (M27),
follows from

〈Cij〉i 6=j =
1

N(N − 1)

∑
i6=j

rirjVext ≈
Vext
N2

(∑
i

ri

)(∑
j

rj

)
= Vext〈r〉2, (36)

where the terms r2i can be neglected if N is large.
To measure changes of the response distribution across stimuli, we use the variance

projected in the direction of mean response and diagonal direction, σ2
µ and σ2

d, respectively.
In the following, we give an argument that in this model σ2

µ does not strongly depend on the
stimulus, while σ2

d does.
Both quantities are normalized by the sum of the variances

σ2
all =

∑
i

Cii =
∑
i

(r2i Vext + ri) = |r|2Vext +N〈r〉. (37)

The variance projected in the diagonal direction d̄ = (1, . . . , 1)T /
√
N is

σ2
d =

∑
ij

Cij(s)d̄id̄j =
∑
ij

(
rirjVext + δijri

)
/N = NVext〈r〉2 + 〈r〉. (38)

To see that there is a strong dependence of σ2
d/σ

2
all on stimulus direction, note that

cos(d, r) = d̄r̄T =

N∑
i=1

1√
N

ri
|r|

=
√
N〈r〉/|r|. (39)

For non-vanishing r, it follows from cos(d, r) = 0 that 〈r〉 = 0 and in this case σ2
d/σ

2
all = 0.

If cos(d, r) = 1, r ∝ d and |r|2 = N〈r〉2, and so σ2
d/σ

2
all = NVext〈r〉2+〈r〉

NVext〈r〉2+N〈r〉 . This value

is of the order of one, if the ratio of Vext〈r〉2 and 〈r〉, which is of the order of the average
noise correlation coefficient, is not very small (in comparison to one). Consequently, if noise
correlations are not too small, the normalized variance projected on the diagonal direction
strongly depends on the direction of the response vector.

The variance projected on the mean direction is

σ2
µ =

∑
ij

r̄ir̄jCij =
∑
ij

r̄ir̄j(rirjVext + δijri) > Vext
∑
ij

r2i r
2
j/|r|2 = Vext|r|2. (40)

Hence, σ2
µ/σ

2
all >

Vext|r|2
|r|2Vext+N〈r〉 , which depends only weakly on 〈r〉, if N〈r〉 is not much

bigger than Vext|r|2 ≥ VextN〈r〉2, that is, once again, if noise correlations are not too small.

4 Comparisons between data and models

4.1 Estimating network model parameters

We extract parameters of the recurrent and feed-forward network models from the data, both
to test the consistency of the models with the data and to interpret the observed variability.
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Because rates and covariance matrices were measured for many different stimuli and thus
provide a large number of constraints, one approach would be to infer as much information
as possible about the full connectivity matrices B or F from the data. However, due to the
relatively small number of trials for each stimulus, we use a model with few parameters.
The set of parameters consists of the network parameters 〈B〉 and var(B) (〈F 〉 and var(F ),
respectively) as well as the parameters of the input ensemble, 〈rext〉, var(rext) and cin.

In particular, we want to infer the ratios ρext = var(rext)/〈rext〉2 and ρ = var(B)/〈B〉2
(and correspondingly for F ). Based on these, we can generate surrogate data to test if
the observed scaling of average covariances with average rates is more consistent with the
recurrent or the feed-forward model, Eq. (M24) or (M26). The experimental data provides
constraints in the form of the population and stimulus averaged rates, their variances and
the noise and signal correlation coefficients. In the models, rates are given by Eqs. (M7) and
(M16), respectively. The population averaged mean response thus is

〈r〉 = N〈B〉〈rext〉 or 〈r〉 = N〈F 〉〈rext〉. (41)

The variance of rates across stimuli, see Eq. (24), is

var(r) = Nvar(rext)(〈B〉2 + var(B) + (N − 1)〈B〉2cin) (42)

such that the relative variance of rates

var(r)

〈r〉2
=

var(rext)

〈rext〉2
1 + ρ+ (N − 1)cin

N
(43)

depends on the input signal to noise ratio ρext = var(rext)
〈rext〉2 and the variability of the network

elements, ρ = var(B)
〈B〉2 , or ρ = var(F )

〈F 〉2 respectively.

The estimates for the remaining parameters ρ and cin are obtained from the measured
values of the ratio of covariances to variances, which correspond approximately to the average
coefficients of noise and signal correlations,

〈 〈Cij〉i 6=j
〈Cii〉i

〉s ≈ cN , (44)

and
〈cov(ri, rj)〉i 6=j
〈var(ri)〉i

≈ cS , (45)

using Eqs. (19) and (26). Together with Eq. (43), these relations provide the necessary
constraints for the network models. Strictly speaking, these equations are valid only for the
recurrent network, while for the feed-forward model, Eq. (34) is relevant. In this case ρ is
overestimated, which results in a lower bound for ρext, and thus a conservative estimate of
the input variability.

Under additional assumptions, we can also choose the absolute values of the parameters,
for example 〈rext〉 and 〈F 〉, such that mean rates and mean covariances correspond to
experimental ones. The mean rates (41) constrain the product of the two parameters

〈r〉 = N〈F 〉〈rext〉. (46)

From Eq. (29) it follows that

〈Cij〉i 6=j = N〈F 〉2〈Vext〉, (47)

and we assume that Vext = |rext| to relate mean input and input variance. The distribution
of Vext thus is a folded normal distribution, with

〈|rext|〉 =
√

var(rext)
√

2/πe−1/2ρx + 〈rext〉
(

1− 2Φ(−
√

1/ρx)
)

(48)
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(with the cumulative normal Φ ), and from this one finds

〈Cij〉 = 〈F 〉〈r〉
[√

ρxe
−1/2ρx + 1− 2Φ(−

√
1/ρx)

]
. (49)

To set the absolute values of input versus network strength we made assumptions regarding
the relation between input strength and input variance across trials. If we measure the
strength of the dependence between mean response and mean covariance, Eq. (29) by the
ratio intercept/slope of a linear fit, however, the result is independent of the absolute values
of 〈F 〉 and 〈rext〉, as well as a potential linear factor relating Vext and |rext|.

4.2 Taking a putative baseline firing rate into account in data fits

If rates are only measured up to an unknown offset a, the variance σ2
µ/σ

2
all, which is obtained

from a projection on the apparent average response r− a may not be constant across stimuli.
In this case, the variation of this quantity across stimuli is not a reliable indicator to exclude
a gain fluctuation model as the source of observed correlations. However, if a large part of
the covariances can be explained by a single component, it should be possible to reconstruct
the common origin from the stimulus dependent covariance matrices. From

C(s) =
(
r(s) + a

)T (
r(s) + a

)
Vext +D

(
r(s) + a

)
(50)

the vectors v(s) = r(s)+a can be obtained approximately by finding the eigenvector with the
largest eigenvalue of C, by neglecting the contribution of D

(
r(s) + a

)
. This approximation

can also be avoided by applying a factor analysis with a single latent component. Because
a is constant across stimuli, up to measurement errors of the estimated covariances, the
straight lines through the mean responses r+xv̄, for x ∈ IR and normalized directions v̄, will
intersect in the point −a. The best intersection point of multiple lines in the least square
sense is given by

− â =
(∑

s

I− v̄(s)v̄(s)T
)−1(∑

s

(I− v̄(s)v̄(s)T )r(s)
)

(51)

and can be used to correct the average responses to r′(s) = r(s) + â. We found that the
analysis of σ2

µ and σ2
d based on the corrected responses lead to no qualitative change in

the stimulus dependence, indicating that a potential shared component is too weak to be
identified based on the available data.
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