
Interpretation of correlated neural variability from
models of feed-forward and recurrent circuits

S2 Appendix - Simple two-population model

Volker Pernice1,2, Rava Azeredo da Silveira 1,2,3*

1 Department of Physics, Ecole Normale Supérieure, 75005 Paris, France
2 Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University;
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1 Definitions and statement of the ‘macroscopic equa-
tions’ for population firing rates and covariances

References to equations and figures in the main text are preceded by the letter “M”.
In order to develop an intuitive understanding of the way in which correlations generated

in a recurrent network influence coding, we examine a highly simplified model. The recurrent
network consists of two excitatory sub-populations, labeled E and E′, each made up of N
neurons, see sketch in Fig. 1 A. We ask to what extent their activity discriminates two
stimuli when these elicit preferential responses in the two sub-populations, respectively.

The activity in the network is determined by Eqs. (M7) and (M12). For the sake of
simplicity, we can set the external variance to zero, such that the input to the network is
entirely defined by its mean input, rext. We assume some further simplifications, for the
sake of calculational ease: each neuron in sub-population L projects to a fixed number,
nKL, of neurons in sub-population K; all non-zero coupling weights are identical, Gij = gE .
Additionally, all neurons in the same population receive identical external input. Then, the
two-component vectors Rext(s1) = (1 + ∆, 1)T and Rext(s2) = (1, 1 + ∆)T define a pair of
stimuli. Each component denotes the input to each neuron in the corresponding population.

We reduce the dimensionality of the system by considering the population activity at a
macroscopic level. The average response of population K across trials is defined as

RK =
∑
k∈K

rk, (1)

and its trial-to-trial variability is described by the population covariance matrix, with
elements defined as

ΣKL =
∑

k∈K,l∈L

Ckl. (2)

It turns out that these macroscopic quantities depend only on the overall number of connec-
tions between populations, not on a specific network realization. For example, the sum of
the rates of neurons in one population depends only on the sum of the inputs to all neurons,
but not on how these inputs are distributed among the neurons. This is a consequence of
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Fig 1. Model of two coupled excitatory populations. A: Illustration of the network
architecture. Neurons are coupled with excitatory connections within and across two
populations. For each of two stimuli, one population receives stronger input. The network
can be described by macroscopic variables. B: Average responses to two stimuli (colored
dots on dotted red line) are amplified for stronger cross-coupling (brighter colors); response
fluctuations become more correlated. If internally generated noise does not increase with
rate, variability is smaller (dashed ellipses). C and D: Distribution of pairwise covariances
within (dark bars) and across populations (light bars); vertical lines indicate average. If
cross-coupling is weak (C), average covariance is larger within populations than across; if it
is strong (D), covariances between neurons of different populations are larger. E:
Dependence of stimulus discriminability, S, on Γc. Strong coupling implies smaller
discriminability and even more so for shuffled trials. F: Ellipses: Response distributions for
four stimuli in the recurrent network. Dotted/dashed lines: dimension of stimulus changes
for which correlations have positive/negative influence. G: Trace of linear Fisher information
matrix as a combined measure of coding of high-dimensional stimulus. Information decreases
with average of population coupling. See supplement S1 for numerical values of parameters.

the linearity of the dynamics and the assumption that each neuron has a fixed number of
output connections [1, 2], as we show in detail in Sec. 2.

More precisely, we define the coupling within each population, Γs = nEEgE = nE′E′gE ,
and across populations, Γc = nEE′gE = nE′EgE , which make up a population coupling
matrix

Γ =

(
Γs Γc

Γc Γs

)
. (3)

Applying the definition in Eqs. (1) and (2), we can rewrite the microscopic Eqs. (M7) and
(M12) as the population equations

R(s) = (I− Γ)−1NRext(s) (4)

and
Σ(s) = (I− Γ)−1D[R(s)](I− Γ)−1. (5)
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Up to a factor N , these equations are equivalent to the microscopic equations in the restricted
context of the two-population model.

2 Derivation of the macroscopic equations

Here, we derive the macroscopic Eqs. (4) and (5). The homogeneity of each of the two
sub-populations implies that, for neuron l in population L, the sum

∑
k∈K Gkl is independent

of l, so that we can define the population coupling matrix, Γ, through its elements,

ΓKL ≡
∑
k∈K

Gkl =
1

N

∑
k∈K,l∈L

Gkl = nKLgKL, (6)

where gKL is the weight of a microscopic connection between a neuron in population K
and a neuron in population L. We would like to to express R and Σ in terms of Γ. At
the microscopic level, the rates, r, and the covariances, C, depend on the transfer matrix,
B = (I −G)−1. We define an analogous, population transfer matrix, P , that depends only
on Γ, and we show that R and Σ can be written in terms of P .

Let

P ≡ (I− Γ)−1 = I + Γ + Γ2 + · · · =
∞∑

m=0

Γm. (7)

In order to relate the matrix P to the microscopic quantities, r and C, we use the fact that
the identities

PKL =
1

N

∑
k∈K,l∈L

Bkl =
∑
k∈K

Bkl′ (8)

hold for any neurons l′ in population L. These identities can be proven by considering each
term in the infinite sum defining the matrix P , and noting that

[Γm]KL =
1

N

∑
k∈K,l∈L

[Gm]kl. (9)

As an illustration of this identity, we consider the case m = 2; we have∑
k∈K,l∈L

[G2]kl =
∑

l∈L,k∈K,i∈I,I

GkiGil =
∑

l∈L,i∈I,I

ΓKIGil = N
∑
I

ΓKIΓIL = [Γ2]KLN. (10)

To express the firing rate of population I, RI , we then use Eq. (8) to show that

RI ≡
∑
i∈I

ri =
∑
i∈I

∑
K

∑
k∈K

Bikrext,k =
∑
K

∑
i∈I,k∈K

Bikrext,k =
∑
K

PIKNRext,K , (11)

since rext,k = Rext,K for any k ∈ K. In vector form, this can be rewritten as the identity

R = PNRext = (I− Γ)−1NRext, (12)

which matches Eq. (4). We can apply a similar manipulation to derive the covariances of the
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population responses, Σ, as

ΣKL ≡
∑

k∈K,l∈L

Ckl

=
∑
I

∑
k∈K,l∈L,i∈I

BkiBliri

=
∑
l∈L

∑
I

∑
i∈I

PKIBliri

=
∑
I,i∈I

PKIPRIri

=
∑
I

PKIPRIRI , (13)

which matches Eq. (5). (In Eq. (5), D[R] is the diagonal matrix with D[R]IJ = δIJRI .)

3 Macroscopic signal and noise correlations as functions
of connection strengths

We now evaluate signal and noise correlations in the population activity, as functions of the
network couplings. The strength of the cross-coupling between populations, Γc, determines
the population rates and covariances via the ‘effective cross-coupling’, Pc, in the population
transfer matrix:

P = (I− Γ)−1 =
1

(1− Γs)2 − Γ2
c

(
1− Γs Γc

Γc 1− Γs

)
≡
(
Ps Pc

Pc Ps

)
. (14)

The network is unstable if the eigenvalues of Γ are larger than unity; in other words, stability
requires Γs + Γc < 1, or Pc < Ps.

In a heterogeneous model with random coupling strengths, the signal and noise covariances
were traced back to the mean and variance of the elements of the effective couple matrix.
Similarly, here in a two-population model, the population behavior is ruled by the mean
and variance of the elements of the matrix P , or, stated more simply, the two quantities
Ps + Pc and Ps − Pc. To make this statement more precise, we consider an ensemble of

two-component input vectors, Rext(s) =
(
rext(s), rext′(s)

)T
, with the random external inputs,

rext and rext′ , as elements and chosen from a normal distribution with with mean µrext and
variance σ2

rext independently across a set of stimuli, s. The average population response,
R = PRext, then yields signal covariances, ΣS

ij = cov(Ri, Rj), across the stimulus ensemble,
given by

ΣS = σ2
rext

(
P 2
s + P 2

c 2PsPc

2PsPc P 2
s + P 2

c

)
. (15)

And the average signal correlation for the population activity is calculated as

4



〈cS〉 =
1

4

∑
ij

ΣS
ij√

ΣS
iiΣ

S
jj

= 1 +
2PsPc

P 2
s + P 2

c

=
(Ps + Pc)

2

(Ps + Pc)2 + (Ps − Pc)2

=
〈P 〉2

〈P 〉2 + var(P )

=
1

1 + var(P )/〈P 〉2
, (16)

where we have used the notation

〈P 〉 ≡ Ps + Pc

2
(17)

and

var(P ) ≡ 1

2

[(
Ps −

Ps + Pc

2

)2

+

(
Pc −

Ps + Pc

2

)2
]

=

(
Ps − Pc

2

)2

. (18)

From Eq. (16), the normalized variance of the elements of P determines the strength of
signal correlations. It is small if the network is strongly connected, that is, if Γc is large.

A similar relation holds for the average noise correlations, if we average first over
stimuli, then over neurons: the average of the noise covariance matrix over stimuli is
〈Σ(s)〉s = 〈PR(s)PT 〉 = P 〈R〉PT . Because the external input to both populations is
identical, 〈rext〉 = 〈r′ext〉, the average rates of both populations are identical, and the average
over population pairs can be evaluated just as in the case of the signal correlations. From

〈Σ(s)〉s = 〈rext〉
(
P 2
s + P 2

c 2PsPc

2PsPc P 2
s + P 2

c

)
, (19)

it follows that

〈cN 〉 =
1

4

∑
ij

〈Σ〉ij√
〈Σ〉ii〈Σ〉jj

=
1

1 + var(P )/〈P 〉2
. (20)

4 Condition on circuit parameters for the emergence of
beneficial correlations

In the context of the two-population model, we can show that, depending on the cross-
coupling, noise correlations can be beneficial for stimulus discrimination. This is meant
in a comparison to the case of independent neurons, obtained by shuffling trials. As an
illustration, consider a situation in which the population responses to two stimuli, s1 and
s2, are R(s1) = (R0 + ∆R,R0) and R(s2) = (R0, R0 + ∆R), respectively. For the sake of
simplicity, we assume that the population covariance matrix is stimulus-independent,

Σ(s1) = Σ(s2) =

(
ΣEE ΣE′E

ΣE′E ΣE′E′

)
, (21)

and ΣEE = ΣE′E′ Here, the most discriminant direction (see Eq. (M21), w, here is an
eigenvector of Σ, (1,−1), and the variance along this direction corresponds to the smaller of
the two eigenvalues of the matrix Σ, namely

σ2
w = ΣEE − ΣE′E =

∑
i∈E

Cii +
∑

i6=j∈E

Cij −
∑

i∈E,k∈E′

Cik. (22)
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If this quantity is smaller than the population variance in a two-population model with
independent neurons, namely σ2

indep =
∑

i∈E Cii, then noise correlation are beneficial to
stimulus discrimination. See Fig. 1 B-E for an illustration from a numerical calculation.
From Eq. (22), this condition is equivalent to requiring that the summed covariances across
the two populations, Ccross =

∑
i∈E,k∈E′ Cik, be larger than the summed covariances within

a population, Cwithin =
∑

i 6=j∈E Cij .
We can now translate this condition on the values of covariances to a condition on the

values of circuit couplings in our dynamical model. For the sake of simplicity, we consider
the situation in which Rext = Rext′ ≡ R; then

Σ =

(
ΣEE ΣE′E

ΣE′E ΣE′E′

)
= R

(
P 2
s + P 2

c 2PsPc

2PsPc P 2
s + P 2

c

)
. (23)

The average pairwise population cross-covariance is calculated as Ccross = ΣE′E/N
2. Ap-

proximately, the average neuron variance differs from the average within-covariance only by
the contribution of the rate to the variance: 〈Cii〉 ≈ R/N + Cwithin(this can be seen from
a series expansion of the equation for the covariances, C = BD[R]BT ). From this we get
for the population variance ΣEE = N〈Cii〉+N(N − 1)Cwithin ≈ R+N2Cwithin. With Eq.
(23), the condition on covariances, Ccross > Cwithin , translates into the following condition
on circuit parameters:

2PsPcR

N2
>
R(P 2

s + P 2
c )−R

N2
, (24)

or
2PsPc > (P 2

s + P 2
c )− 1, (25)

or
(Ps − Pc)

2
< 1. (26)

Since Ps > Pc, we obtain the simple inequality

Ps − Pc < 1. (27)

Using Eq. (14) for the elements of the matrix P , we obtain the condition

1− Γs − Γc

(1− Γs)2 − Γ2
c

< 1⇔ Γs(1− Γs) > Γc(1− Γc)., (28)

or
f (Γs) > f (Γc) , (29)

where the function f (x) = x (1− x) is a parabola that goes through the points (0, 0) and
(0, 1), and has its minimum at (1/2,−1/4). Since 1− Γs > Γc (see Eq. (14)), the condition
in Eq. (29) can be fulfilled if Γs < 1/2 and within-coupling is smaller than cross-coupling,
Γs < Γc.

5 Continuous stimuli changing in arbitrary directions

Above, we used the signal-to-noise ratio, S, to measure how well discrete pairs of stimuli in
a given ensemble can be discriminated. In a model network, we have access to all possible
input dimensions, and we can use an alternative measure that combines these possible
stimulus dimensions. If a high-dimensional stimulus varies continuously, the information in
the response distribution about the stimulus can be measured by the Fisher information
matrix [3]. An approximation, the ‘linear Fisher information’, is obtained by assuming
Gaussian noise and by neglecting the information pertaining to the stimulus dependence of
the covariance matrix; the elements of the linear Fisher Information matrix are defined as

Imn = ∂mR
T Σ−1∂nR, (30)
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for the population covariance matrix, Σ, and population response, R. Here, ∂mR is the
derivative of the response vector with respect to stimulus coordinate m. Our stimulus
dimensions are the coordinates of the input vector, Rext, and the mean output vector, in a
network model, is R = PNRext. It is easy to see that ∂mR is given by the mth column of
P , and, hence,

I = PT Σ−1P. (31)

As the covariance matrix in a recurrent network is given by Σ = PD[R]PT , the corresponding
linear Fisher Information matrix reads

I = D[R]−1. (32)

According to Eq. 32, the linear Fisher information scales as the inverse of the strength
of connections in the network. This is a special case of the more general result considered
in [4]. This obtains because recurrent connections enhance noise, as compared to the
firing rates. Generally, if the input depends linearly on a one-dimensional stimulus s,
Rext(s) = Rext,0 + s∆Rext, the information about changes in this direction is ∆RT

extI∆Rext.
As a measure of the information about stimulus changes in all possible directions, we use the
trace of I, Tr(I) =

∑
i Iii.

6 Impact of circuit properties on stimulus coding: in-
tuition from the two-population model

We now exploit the various observations summarized above to investigate in greater detail
the effect of the circuit parameters on the accuracy of population coding, in the context of
our simple, two-population model. We start by examining how the cross-coupling between
the two populations influences the statistics of the responses to two stimuli. Upon increasing
the cross-coupling, Γc, the response distributions evoked by the two stimuli change in a
specific manner (Fig. 1): the average population responses are enhanced, but also more
similar, i.e., the difference in the population responses to the two stimuli, |R(s1)−R(s2)|, is
suppressed. At the same time, the noise correlation between the two population responses is
enhanced, so that the two response distributions become ‘more elongated’, Fig. 1 B.

To examine the combined impact of these changes on stimulus coding, we compare this
situation to that of a population of independent neurons with matched average responses
and variances; the latter can be obtained simply by shuffling the data from the correlated
population among trials. As we showed in the sections above, a condition for correlations
that are beneficial to stimulus coding, from this angle, is that correlations between neurons
in different populations be stronger than pairwise correlations within the same population.
This condition is realized for strong coupling between the two populations (Fig. 1 C,D).
Considering the dependence of the signal-to-noise ratio, S (the difference in means divided
by the variance, see Eq. (M22) in the main text), on the cross-coupling, we observe that
increasing the cross-coupling between the two populations decreases the signal-to-noise ratio,
in both the ‘native’ and the shuffled cases (Fig. 1 E); but this suppression is stronger in the
shuffled case. The suppression can be traced back to the noise produced in spike generation:
under amplification through a matrix, P , firing rates, R = PNRext, scale linearly with P ,
while the covariances, Σ = PD(R)PT , scale with a higher power of P . In our model, this
cubic dependence on P comes from the combination of rate fluctuations (resulting from
recurrent inputs from Poisson neurons and yielding a quadratic contribution) and the Poisson
spike generation. Because of the cubic dependence of the variances, as compared to the linear
dependence of the rates, the signal-to-noise ratio decreases as a function of the strength of
the recurrent connections, P .

Independent of this effect, larger cross-coupling reshapes both external and internally
generated noise to relegate it along a direction that is irrelevant for discrimination. This

7



mechanism would compensate for the decrease in the difference of the average responses, if
no internal noise were generated. This gain is reduced when correlations are shuffled, such
that more information is lost in this case.

Up to here, we considered the special case of two stimuli. For a larger set of stimuli, noise
correlations may be harmful for discriminating some of the stimulus pairs, while beneficial
for discriminating others (as compared to the case of independent neurons). In Fig. 1 F,
an example is sketched for each of the two cases: a pair of stimuli where both populations
receive an identical input in the case of each stimulus (connected by a dashed line), and a
pair of stimuli where in each case one population receives stronger input (connected by a
dotted line). For an ensemble of stimuli, the overall effect of recurrent amplification depends
on the distribution of favorable and unfavorable pairs. In order to quantify the effect of
recurrent amplification more generally, rather than averaging across a number of possible
stimulus pairs, we consider a measure that takes into account only local changes in the
stimulus, but in all possible directions. In the context of the scenario visualized in Fig. 1 F,
we consider a stimulus which can result in an average response at the position where the
dashed and the dotted lines cross. To measure the combined effects on information for the
case in which a change in stimulus results in a change of the response along any line in the
plane, we use the trace of the linear Fisher information matrix (see the previous section
for details). In Fig. 1 G, we show how the trace of the linear Fisher information matrix
decreases with the strength of recurrent amplification, which we measure by the average over
the elements of the matrix P .

7 Impact of circuit properties on stimulus coding in an
extended model with excitatory and inhibitory neu-
rons

The simple two-population model considered above comes with a limited set of parameters. It
is instructive to examine a slightly extended model, with four coupled neural sub-populations:
two excitatory sub-populations (E1 and E2) and two inhibitory sub-populations (I1 and
I2). In this model, we consider connections between neurons within each excitatory sub-
population (resulting in population coupling E1 ←→ E1 and E2 ←→ E2 equal in magnitude),
cross-connections between the neurons from the two excitatory sub-populations (E1 ←→ E2),
and connections between pairs of neurons from the excitatory and inhibitory sub-populations
(E1 ←→ I1 and E2 ←→ I2). (In our simulations, each of these sub-populations contains 100
neurons.)

As in the two-population model discussed above, this model can be described by effective
parameters which combine the size of sub-populations, synaptic strengths, and the proba-
bilities of forming synapses; two important parameters are the self-coupling within E1 and
E2, ΓS , and the cross-coupling between E1 and E2, ΓC . By appropriately choosing the
other parameters in the model, we can keep the firing rates in E1 and E2, as well as the
single-neuron variance averaged over E1, unchanged as we vary ΓS and ΓC . (It would be
possible to keep also the variance in E2 invariant, by extending the model further to include
an additional parameter, such as inhibitory self-connections. We do not follow this route,
here, for the sake of conciseness.)

In spite of its simplicity, the model with both excitatory and inhibitory neurons exhibits
an intriguing behavior in term of stimulus coding. We can examine the behavior of this model
using a framework similar to the one described above. Here, we present the corresponding
results, in terms of the signal-to-noise ratio for the discrimination between two stimuli
(defined as before). The signal-to-noise ratio, S, varies as a function of both ΓS and ΓC ; it
increases for smaller ΓS and larger ΓC (2 A). Furthermore, fixing the population-averaged
variance to a set of values (2 A, top) defines a set of curves in the (ΓS , ΓC)-plane (2 A,
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bottom). These demonstrate that, even in the presence of fixed variance, circuit parameters
can be varied in such a way as to modulate the signal-to-noise ratio appreciably. Interestingly,
a higher signal-to-noise ratio does not result from a reduced noise entropy: indeed, the
noise entropy of the correlated population in fact grows for larger signal-to-noise ratios, as
compared to the noise entropy in a matched independent population (2 B)

Fig 2. Effects of circuit parameters on stimulus coding in a simple recurrent
network. A: Signal-to-noise ratio as a function of the self-coupling, ΓS , and the
cross-coupling, ΓC , in two excitatory sub-populations (bottom). For a set of fixed
population-averaged variances (top), the allowed values of the parameters ΓS and ΓC

describe curves along which the signal-to-noise can vary appreciably (bottom). B: Ratio of
the noise entropy in a model of independent neurons with matched firing rates and
population-averaged variance and and the noise entropy in the recurrent model, as a
function of the parameters ΓS and ΓC .
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