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Supplementary Note 1. Effective Hamiltonian from the tight-binding model
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Supplementary Figure 1. Top view of the structure under study and its Brillouin zones. (a) A

schematic representation of triangular lattice formed by hexamer clusters with inter- and intracell

tunneling amplitudes equal to J (black lines) and K (orange lines), respectively. αi, i = 1..6

represent Wannier functions. (b) First Brillouin zone of the lattice.

In this section, we develop a tight binding description of the system under study (Sup. Fig. 1)

assuming coupling only between the neighboring resonators. We deduce an effective 4× 4 Hamil-

tonian and evaluate the topological invariant for the system partially reproducing the results of

Refs. 1, 2.

In the chosen coordinate frame, the translation vectors of the lattice are equal to a1 = a (1, 0)

and a2 = a
(
1/2,
√

3/2
)

[Sup. Fig. 1(a)], where a is the lattice period. Reciprocal vectors are

b1 = G
(√

3/2,−1/2
)
, b2 = G (0, 1), where G = 4π/(

√
3 a). The first Brillouin zone of the

lattice is a hexagon with the area three times larger than that of a simple honeycomb lattice, Sup.
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Fig. 1(b). Under tight binding approximation the equations describing the system are as follows:

Ĥ |ψ〉 = ε |ψ〉 , (1)

where the six-component wave function is written in Wannier basis and reads

|ψ〉 = (α1, α2, α3, α4, α5, α6)T , (2)

and the Hamiltonian is equal to

Ĥ =



0 −K 0 −J e−ika1 0 −K

−K 0 −K 0 −J eik(a2−a1) 0

0 −K 0 −K 0 −J eika2

−J eika1 0 −K 0 −K 0

0 −J eik(a1−a2) 0 −K 0 −K

−K 0 −J e−ika2 0 −K 0


(3)

Eigenvalue equation Sup. Eq. (1) defines the dispersion law for the excitations propagating in

the lattice. The dispersion of the structure six eigenmodes for different ratios of the tunneling

amplitudes J/K and kx = 0 is illustrated in Sup. Fig. 2. It is seen that for J = K there is a

fourfold degeneracy point in the spectrum (Dirac point). The difference between J and K partially

lifts the degeneracy and leads to the opening of bandgap. In the general case, the energy spectrum

contains two singlet states and four doublet states. Doublet states have pairwise degeneracy at Γ

point. The degeneracy is lifted for nonzero values of k.

Our goal is to deduce the effective Hamiltonian describing the doublet bands of the system

in the vicinity of Γ point. Singlet states should be excluded from the consideration while their

interaction with the doublet states should be properly incorporated into the effective Hamiltonian.

Quite naturally, the form of the effective Hamiltonian depends on the choice of the basis in

Hilbert space. We choose the basis formed by the eigenmodes of the isolated unit cell composed of
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six identical resonators. These eigenmodes can be found as eigenvectors of the Hamiltonian from

Sup. Eq. (3) with J = 0.
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Supplementary Figure 2. Dispersion of excitations in the system under study for kx = 0. (a)

J = 1, K = 3; (b) J = 2, K = 2; (c) J = 3, K = 1: a bandgap closing and reopening in the vicinity

of Γ point is observed.

|u1〉 = 1/
√

6 (−1, 1,−1, 1,−1, 1)T , (4)

|u2〉 = 1/
√

6 (1, 1, 1, 1, 1, 1)T , (5)

|u3〉 = 1/
√

6
(
1, eiπ/3, e2iπ/3,−1, e−2iπ/3, e−iπ/3

)T
, (6)

|u4〉 = 1/
√

6
(
1, e2iπ/3, e−2iπ/3, 1, e2iπ/3, e−2iπ/3

)T
, (7)

|u5〉 = 1/
√

6
(
1, e−iπ/3, e−2iπ/3,−1, e2iπ/3, eiπ/3

)T
, (8)

|u6〉 = 1/
√

6
(
1, e−2iπ/3, e2iπ/3, 1, e−2iπ/3, e2iπ/3

)T
. (9)

The obtained eigenmodes can be classified by their behavior with respect to the symmetry transfor-

mation of the cluster, i.e. π/3 rotation of the hexamer around z axis perpendicular to its plane. Un-
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der such symmetry transformation vectors u1,2 multiply by ∓1, vectors |u3,5〉 transfrom as x∓ iy,

|u4,6〉 transform as (x∓ iy)2. Thus, vectors |u1,2〉 describe singlet states, |u3,5〉 describe dipole |p∓〉

modes, and |u4,6〉 correspond to quadrupole |d∓〉 modes.

If one simply excludes the first two columns and two rows of the obtained 6×6 Hamiltonian

matrix corresponding to singlet states, an effective Hamiltonian for p and d modes will only be

correct up to the terms linear in k. However, as it will be demonstrated below, terms proportional

to k2 are important for the correct evaluation of the topological invariant. Therefore, we take into

account the interaction of singlet states with p and d modes using degenerate perturbation theory

and calculate the effective 4× 4 Hamiltonian as follows 3:

H
(eff)
mm′ = Hmm′ − 1

2

∑
s

[
1

E0
s − E0

m

+
1

E0
s − E0

m′

]
H ′msH

′
sm′ , (10)

where the initial system Hamiltonian Ĥ is represented as a sum of diagonal part Ĥ0 [in our case

Ĥ(k = 0)] and perturbation Ĥ ′ [in our case Ĥ ′ contains terms proportional to k]. H ′ms thus repre-

sents the matrix elements between doublet states of interest labelled by indicesm and singlet states

excluded from the consideration and labelled by the indices s. We apply a unitary transformation

W = i

σz 0

0 σz

 , (11)

to the obtained 4×4 matrix and for notation simplicity redefine kx as ky and ky as kx. The effective

Hamiltonian incorporating terms proportional to k and k2 reads:

Ĥeff =



µ(k) v (kx − i ky) α (kx + i ky)
2 0

v (kx + i ky) −µ(k) 0 −α (kx − i ky)2

α (kx − i ky)2 0 µ(k) v (−kx − i ky)

0 −α (kx + i ky)
2 v (−kx + i ky) −µ(k)


, (12)
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where µ(k) = µ+ β k2,

v =
√

3 J/2 , (13)

µ = J −K , (14)

β = −3J (J +K)

4 (2J +K)
, (15)

α =
3 J K

8 (2J +K)
. (16)

Effective Hamiltonian Sup. Eq. (12) provides rather accurate description of the eigenmode disper-

sion in the vicinity of Γ point. Note that the term ∝ α associated with the coupling of left- and

right circularly polarized eigenmodes captures the effect of degeneracy lifting for doublet bands

for nonzero values of k. The comparison of the results obtained from the approximate Hamiltonian

Sup. Eq. (12) with those derived from the full lattice model Sup. Eq. (3) is provided in Sup. Fig. 3.
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Supplementary Figure 3. Validation of the approximate formulas for the effective Hamiltonian

for kx = 0. Solid lines show the results of the full lattice model, dashed lines (dot-dashed line) are

plotted by diagonalizing the effective Hamiltonian with (without) k2 terms. k2 terms are needed in

order to explain lifting of the degeneracy of doublet bands for nonzero k. (a) J = 1, K = 2; (b)
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J = K = 1; (c) J = 2, K = 1.

As a next step, we evaluate the topological invariant for the Hamiltonian Sup. Eq. (12). In

such calculation, the term ∝ α can be neglected 1 and as a result the Hamiltonian splits into two

decoupled blocks

Ĥ =

Ĥ− 0

0 Ĥ+

 , (17)

where 2× 2 blocks Ĥ± are given by the formula

Ĥ± =

 µ+ β k2 v (∓kx − i ky)

v (∓kx + i ky) −µ− β k2

 , (18)

and correspond to the two circular polarizations of eigenmodes. Two possible polarizations can be

associated with the pseudospin degree of freedom and thus spin Chern number C = (C− − C+) /2

can be introduced, where C± is Chern number for the individual block. Each of the blocks Sup.

Eq. (18) has the structure of the Dirac Hamiltonian and the calculation of Chern number is straight-

forward 4. Finally we obtain

C =
1

2
[sgnµ− sgn β] =

1

2
[sgn (J −K) + 1] . (19)

Thus, the tight binding approach predicts that shrunken structure with a/R > 3 and J < K is

trivial (C = 0), whereas expanded structure with a/R < 3 and J > K is topological (C = 1) in

accordance with Ref. 1. Supplementary Equation (19) suggests also that if β k2 correction to the

effective mass is neglected, one will not be able to distinguish topological and trivial regimes.
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Supplementary Note 2. Effective Hamiltonian from the plane wave expansion method

The results of Supplementary Note 1 were obtained in the limiting case when only nearest neighbor

coupling is essential and the field is predominantly localized inside the individual resonators.

In order to demonstrate generality of our results and to prove the applicability of the effective

Hamiltonian Sup. Eq. (12) to the experimental structure, we analyze an opposite limiting case

when there is no pronounced field localization in the individual resonator and the eigenmodes of the

system can be approximated by the plane waves. The structure consists of dielectric cylinders with

the permittivity that differs only slightly from the permittivity of the background medium. Under

such assumptions it is also possible to obtain analytical expressions for the effective Hamiltonian

using plane wave expansion method 5, 6. We consider a TM polarization of the wave with the wave

vector perpendicular to the axis of cylinder, Oz. Permittivity of all cylinders along their axes is

εzz ≡ εr. The equation for Ez component of electric field has a form

[
q2 ε(x, y) + ∂2

x + ∂2
y

]
Ez(x, y) = 0 , (20)

where q = ω/c, ε(x, y) = εr inside cylinder and ε(x, y) = 1 outside of the cylinder. Further we

expand the field Ez(x, y) and the permittivity ε(x, y) in Fourier series as follows:

Ez(r) =
∑
G

EG e
i(G+k)·r , (21)

ε(r) =
∑
G

εG e
iG·r , (22)

where G and G′ denote reciprocal lattice vectors. Combining Sup. Eqs. (21), (22) with Sup.

Eq. (20), we obtain:

q2
∑
G′

εG−G′ EG′ −
[
(Gx + kx)

2 + (Gy + ky)
2
]
EG = 0 . (23)
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Now we consider the system of equations in the vicinity of Γ point of the crystal first Brillouin

zone [see Sup. Fig. 1(b)]. We truncate the system leaving only the contributions from Γ0 and six

neighboring Γ points denoted by the indices 1-6 in Sup. Fig. 1(b). The length of all reciprocal

lattice vectors Gi is equal to G = 4π/(
√

3 a), where a = 2R + R′ is the lattice period, R is the

edge length for a hexagonal cluster, and R′ is the distance between the centers of the nearest rods

from the different clusters. The radius of the rod is denoted by r.

First we calculate the Fourier coefficients εG−G′ comprising the system Sup. Eqs. (23). By

definition,

εG =
1

S0

∫
S0

ε(x, y) e−iG·r d2~r , (24)

where S0 = a2
√

3/2 is the area of the structure unit cell. For instance, εG0 ≡ ε0 is defined by

ε0 = 1 +
6π (εr − 1) r2

S0

. (25)

Other coefficients comprising the truncated system Sup. Eqs. (23) are as follows: ε1 = εG1 =

εG2 = · · · = εG6 . The expression for ε1 reads:

ε1 = −4π2r2 (εr − 1)√
3S0

2 J1(Gr)

Gr

R−R′

a
≈ −4π2r2 (εr − 1)√

3S0

R−R′

a
≡ −u , (26)

where J1 is the Bessel function of the first kind and an assumption Gr � 1 is used. If εr is real,

the quantity ε1 is also purely real. ε3 = εG3−G6 = εG2−G5 = εG1−G4 . Under the assumption

Gr � 1 ε3 is given by the formula

ε3 = 2u . (27)

Quite importantly, the coefficient u vanishes in the case of a simple honeycomb lattice thus being

analogous to the parameter J −K in tight binding model. ε2 = εG3−G1 = εG5−G3 = εG1−G5 =
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εG4−G2 = εG6−G4 = εG2−G6 . This coefficient is also purely real:

ε2 = −3πr2 (εr − 1)

S0

2 J1(Gr
√

3)

Gr
√

3
≈ −3πr2 (εr − 1)

S0

, (28)

The truncated system (23) yields the set of the self-consistent equations with respect to the

amplitudes Ei ≡ EGi
:

[
ε0 − q−2 k2

]
E0 + ε1E1 + ε1E2 + ε1E3 + ε1E4 + ε1E5 + ε1E6 = 0 , (29)

ε1E0 +
[
ε0 − q−2

(
G2 + 2Gky + k2

)]
E1 + ε1E2 + ε2E3 + ε3E4 + ε2E5 + ε1E6 = 0 , (30)

ε1E0 + ε1E1 +
[
ε0 − q−2

(
G2 +G

√
3kx +Gky + k2

)]
E2 + ε1E3 + ε2E4 + ε3E5 + ε2E6 = 0 , (31)

ε1E0 + ε2E1 + ε1E2 +
[
ε0 − q−2

(
G2 +G

√
3kx −Gky + k2

)]
E3 + ε1E4 + ε2E5 + ε3E6 = 0 , (32)

ε1E0 + ε3E1 + ε2E2 + ε1E3 +
[
ε0 − q−2

(
G2 − 2Gky + k2

)]
E4 + ε1E5 + ε2E6 = 0 , (33)

ε1E0 + ε2E1 + ε3E2 + ε2E3 + ε1E4 +
[
ε0 − q−2

(
G2 −G

√
3 kx −Gky + k2

)]
E5 + ε1E6 = 0 (34)

ε1E0 + ε1E1 + ε2E2 + ε3E3 + ε2E4 + ε1E5 +
[
ε0 − q−2

(
G2 −G

√
3 kx +Gky + k2

)]
E6 = 0 , (35)

where k2 = k2
x +k2

y . The matrix of this system is Hermitian. To simplify the analysis, we perform

a unitary transformation of the system matrix as follows:

U =
1√
3



√
3 0 0 0 0 0 0

0 0 1 0 1 0 1

0 1 0 1 0 1 0

0 0 1 0 η2 0 η

0 0 1 0 η 0 η2

0 1 0 η2 0 η 0

0 1 0 η 0 η2 0



, (36)

where η = e2π i/3. After the transformation Sup. Eq. (36) the matrix of the system consists of 3×3

and 4× 4 blocks, the coupling between these blocks is proportional to k. However, the blocks are

not diagonal even for k = 0.

As a first step, we diagonalize the matrix of the system for k = 0 and small u (from now
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on terms proportional to u2, u3, etc. are neglected). The necessary transformation is given by the

matrix W = W1 ⊕W2, where matrix W1

W1 =


1 −

√
3u/(q−2G2 − 2ε2) −

√
3u/(q−2G2 − 2ε2)

0 −1/
√

2 1/
√

2

√
6u/(q−2G2 − 2ε2) 1/

√
2 1/

√
2

 (37)

diagonalizes the 3× 3 block of the Hamiltonian for k = 0 with the precision up to the terms linear

in u, and the matrix W2

W2 =
1√
2



0 i 0 eiπ/6

e5iπ/6 0 eiπ/6 0

e5iπ/6 0 e−5iπ/6 0

0 −i 0 eiπ/6


. (38)

diagonalizes the 4× 4 block of the Hamiltonian for k = 0.

Next we would like to exclude the 3× 3 block of singlet states. To this end we treat coupling

between the two blocks of the matrix using degenerate perturbation theory in the special form 3.

Similarly to the tight binding treatment we also make a redefinition kx → ky and ky → kx. As a

result, we obtain the following eigenvalue problem:

Ĥeff |ψ〉 = λ |ψ〉 . (39)

Here, the effective 4× 4 Hamiltonian is given by the expression

Ĥeff =



µ+ β k2 kx − i ky α (kx + i ky)
2 0

kx + i ky −µ− β k2 0 −α (kx − i ky)2

α (kx − i ky)2 0 µ+ β k2 −kx − i ky

0 −α (kx + i ky)
2 −kx + i ky −µ− β k2


(40)

with µ = 3uq2/G, β = −Gu/(3 ε2
2 q

2), α = −G/(3ε2 q
2), and λ = −G + q2 (ε0 − ε2)/G −

k2/G − Gk2/(3 q2 ε2). The components of bispinor |ψ〉 comprising Sup. Eq. (39) are defined in
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terms of the field Fourier components:

ψ1 =
1√
6

[
eiπ/6EG1 + eiπ/2EG2 + e5iπ/6EG3 + e−5iπ/6EG4 + e−iπ/2EG5 + e−iπ/6EG6

]
, (41)

ψ2 =
1√
6

[
eiπ/6EG1 + e5iπ/6EG2 + e−iπ/2EG3 + eiπ/6EG4 + e5iπ/6EG5 + e−iπ/2EG6

]
, (42)

ψ3 =
1√
6

[
e−5iπ/6EG1 + e5iπ/6EG2 + eiπ/2EG3 + eiπ/6EG4 + e−iπ/6EG5 + e−iπ/2EG6

]
, (43)

ψ4 =
1√
6

[
eiπ/6EG1 + e−iπ/2EG2 + e5iπ/6EG3 + eiπ/6EG4 + e−iπ/2EG5 + eiπ/6EG6

]
. (44)

Note that the derived form of the effective Hamiltonian Sup. Eq. (40) is consistent with Sup.

Eq. (12) obtained within tight binding approach. The difference between the two methods is only in

the identification of parameters µ, β and α. Similarly to the tight binding model µ < 0 corresponds

to the shrunken structure (R < R′) and µ > 0 describes expanded structure (R > R′). However,

in contrast to the tight binding description which assumes parameter β negative, this approach

predicts that β switches its sign together with µ during the topological transition.

Overall, we recover the same expression for the effective Hamiltonian [Sup. Eqs. (12) and

(40)] in the two extreme scenarios. On that basis we use this form of the effective Hamiltonian

while analyzing the experimental spectra.

Supplementary Note 3. Coupled mode theory and experimental data fitting

In this section, we discuss a procedure of the topological invariant extraction from the measured

extinction spectra. To this end we develop an analytical model for the metasurface extinction

based on coupled mode theory 7, 8. We use the effective Hamiltonian in the block-diagonal form

Sup. Eq. (17), (18) and employ the following coupled mode equation:
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− i ε |ψ±〉 = −i Ĥ± |ψ±〉+ κ

Ein

0

−
γ0 + κ2/2 0

0 γ0

 |ψ±〉 (45)

Here, |ψ±〉 is the “wavefunction” composed of p (dipole) and d (quadrupole) modes of the system:

|ψ±〉 = (|p±〉 , |d±〉)T . ± sign refers to the left- or right-hand circular polarizations of the mode.

The first term of Sup. Eq. (45) describes the evolution of the coupled modes in a closed system.

The second term is associated with the external driving field. The third term captures the effect of

losses that lead to the diminishing of the mode amplitude including both radiative γr = κ2/2 and

non-radiative γ0 losses. An explicit expression for Ĥ± is given by Sup. Eq. (18).

Once Sup. Eq. (45) is solved with respect to the unknown |ψ±〉, the transmitted wave can be

calculated as follows:

E
(±)
t = t0E

(±)
in + c ψ±(p) , (46)

where t0 is the transmission coefficient of the sapphire substrate on which the structure is fabri-

cated and ψ±(p) is the first (dipole) component of the two-component wave function |ψ±〉. The

magnitude of the c coefficient is determined by the requirement of energy conservation: the change

of the mode energy measured by 〈ψ±| ψ±〉 should be equal to the intensity of the incoming wave

minus the intensity of the transmitted and reflected waves and minus the non-radiative dissipation

rate. Since the results turn out to be the same for left- and right circular polarizations, we omit the

± subscript thus obtaining the result:

t = t0 [1− κ ψ(p)/Ein] . (47)

Plugging Sup. Eq. (18) into the Sup. Eq. (47), we derive

R̃ ≡ 1− |t|
2

|t0|2
= 2 γ0 κ2 [ε+ µ(k)]2 + v2 k2 + γ2

0

[µ2(k)− ε2 + v2 k2 + γ0 (γ0 + κ2/2)]2 + [2γ0 ε+ κ2/2 (µ(k) + ε)]2
.

(48)
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Supplementary Equation (48) suggests in particular that the peaks in the 1 − T/T0 spectrum are

impossible without both radiative and non-radiative losses. Overall, there are six parameters in

the effective Hamiltonian: µ, γr = κ2/2, γ0, v and β. To determine these parameters we used

the extinction spectra measured in the wavelength range from 896 to 2142 nm for the set of the

incidence angles from 0◦ to 16◦ with the step equal to 2◦. Parameters µ, γr and γ0 were determined

from the spectra for normal incidence (k = 0) since in such scenario these three parameters and

the center-of-bandgap frequency f0 are the only essential parameters determining the extinction

spectrum [see Sup. Eq. (48)]. The remaining two parameters, v and β, were determined from the

extinction spectra for oblique incidence. While analyzing the experimental data on extinction, we

aimed to achieve the best possible fit of the spectral positions, width and height of the characteristic

peaks in 1−T/T0 spectrum (see Sup. Fig. 4). The results of fitting are presented both for shrunken

and expanded structures in Sup. Fig. 4.

The deviations of experimental spectra from the analytical formulas occur due to the structure

imperfections (defects, non-cylindrical form of pillars, etc.) as well as due to the approximate

nature of the used theoretical model. Specifically, the developed analytical approach does not

describe the asymmetry of the transmittance peaks observed in experiment. This asymmetry can

be explained by the phase difference between the light reflected from sapphire substrate and from Si

pillars which gives rise to Fano-type interference of the two reflected waves. The discussed phase

difference can be incorporated into our analytical formula by means of the auxiliary parameter ϕ:

t = t0
[
ei ϕ − κ ψ(p)/Ein

]
. (49)

Supplementary Figure 4(c,f) shows the influence of the ϕ parameter on the asymmetry of trans-

mittance peaks. Since incorporation of the additional ϕ parameter does not change significantly

the numerical results for the remaining parameters but makes the numerical procedure of the data
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fitting less robust, we prefer to use the simplified formulas Sup. Eqs. (47)-(48).
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Supplementary Figure 4. Fitting of the experimental extinction spectra 1− T/T0 (T0 is the

substrate transmittance) by the analytical model. Results for shrunken (a-c) and expanded (d-f)

structures with a/R = 3.15 and a/R = 2.85, respectively. (a,b) Normal incidence. (c,d) Incidence

angle θ = 16◦. (e,f) The influence of the phase shift ϕ on the asymmetry of the transmittance

peaks in shrunken and expanded structures, respectively.

With the developed technique, we analyzed the experimental data for both shrunken (a/R =

3.15) and expanded (a/R = 2.85) structures for the range of incidence angles from 0 to 16 deg

(Sup. Fig. 5). The obtained values of the effective Hamiltonian parameters are provided in the arti-

cle main text. Using Eq. (5), we calculated spin Chern number for both of the structures confirming
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the theoretical result that the shrunken structure is topologically trivial, whereas the expanded one

is topological.
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Supplementary Figure 5. Measured extinction spectra for the fabricated dielectric metasurface.

Color encodes the magnitude of extinction 1− T/T0 (T and T0 are metasurface and substrate

transmittances, respectively) for p-polarized incident light. (a,b) Results for the shrunken structure

with a/R = 3.15: (a) whole studied spectral range; (b) range 1600 < λ < 1900 nm. (c,d) Results

for the expanded structure with a/R = 2.85: (c) whole studied spectral range; (d) range

1600 < λ < 1900 nm.

Supplementary Note 4. Perturbative electromagnetic theory of radiative losses

To support our phenomenological coupled mode approach and elaborate more on the underlying

physics, we additionally apply the method of guided mode expansion to describe the photonic

bands of the non-Hermitian photonic crystal slab. In particular, this treatment allows us to get an
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approximate analytical expression for the radiative coupling. After the folding due to the permit-

tivity modulation, the localized guided modes of the unperturbed dielectic waveguide fall above

the cladding light line, leading to a radiative decay and complex eigenfrequencies. To tackle this

leaky behavior, we utilize the approach recently developed in Refs. 9–11.

We write the equation for the magnetic field H:

∇×
[

1

ε(r)
∇×H(r)

]
= q2H(r), (50)

where q = ω/c, and focus on the TM-like polarization characterized by the components (Hx, Hy, Ez).

To develop a perturbation theory, we adopt the expansion in the basis of Bloch waves. The high-

order waves and radiative waves are assumed to be excited by the basic waves. As follows from

Maxwell’s equations, in our geometry coupling of the waves is governed by the two physical mech-

anisms: in-plane permittivity modulation and the surface coupling stemming from the permittivity

discontinuity at the slab interfaces. The latter effect can be incorporated in equations as boundary

conditions using the formalism of Dirac δ-functions.

We employ the basis of Bloch waves V associated with the reciprocal vectors Gj , j = 1÷6.

In this way, at the Γ point, the components Hx,y can be expanded as

Hx =
6∑
j=1

Gjy

G
VjΘ0(z) e−iGj ·r⊥ (51)

Hy =
6∑
j=1

−Gjx

G
VjΘ0(z) e−iGj ·r⊥ , (52)

where r⊥ = (x, y), Θ0(z) is the unperturbed transverse profile of the mode supported by the

effective dielectric waveguide,
∫

Θ∗0(z)Θ0(z)dz = 1. At the Γ point, the basic waves have the

same transverse profile Θ0(z) and wavenumber β0. The dispersion relation for TM guided modes
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is given in the following implicit form

tan
(√

εavgq2 − β2h
)

=
2εavgεcl

√
(εavgq2 − β2)(εclq2 − β2)

ε2
cl(εavgq2 − β2)− ε2

avg(εclq2 − β2)
, (53)

where εavg is the average dielectric permittivity of the slab, and εcl are the permittivities of the

claddings. We assume the permittivities of the upper and lower cladding equal. Here, for sim-

plicity, we neglect TE-TM coupling and coupling to higher-order modes. Thereby, we disregard

the Hz component (responsible for coupling to TE modes) that means the trivial transversality

condition of the form GjxHjx + GjyHjy = 0. We also expand the permittivity in Fourier series

1/ε(r) = κ0(z) +
∑
Gj

κGj
e−iGj ·r⊥ .

Using these expansions, equations for the field components can be recast to the eigenvalue

problem for the modes amplitudes

(q2 − β2
0)V = ĈV (54)

where V = [V1, V2, V3, V4, V5, V6]T . The coupling matrix Ĉ consists of two parts

Ĉ = Ĉ1 + Ĉrad , (55)

where Ĉ1 and Ĉrad correspond to the direct couplings between basic modes and the coupling with

the radiative mode (H0x, H0y), respectively. The matrix elements depend on the parameters of the

structure.
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Due to the C6v symmetry of the PC slab, the matrix Ĉ exhibits the following form

Ĉ1 =



0 κ1(G2 + I/2) κ2(G2 − I/2) κ3(G2 − I) κ2(G2 − I/2) κ1(G2 + I/2)

κ1(G2 + I/2) 0 κ1(G2 + I/2) κ2(G2 − I/2) κ3(G2 − I) κ2(G2 − I/2)

κ2(G2 − I/2) κ1(G2 + I/2) 0 κ1(G2 + I/2) κ2(G2 − I/2) κ3(G2 − I)

κ3(G2 − I) κ2(G2 − I/2) κ1(G2 + I/2) 0 κ1(G2 + I/2) κ2(G2 − I/2)

κ2(G2 − I/2) κ3(G2 − I) κ2(G2 − I/2) κ1(G2 + I/2) 0 κ1(G2 + I/2)

κ1(G2 + I/2) κ2(G2 − I/2) κ3(G2 − I) κ2(G2 − I/2) κ1(G2 + I/2) 0


(56)

where κ1,2,3 = κG1,G1−G3,G1−G4 , I =
∫
PC

(
− ∂2

∂z2
+ [δ(z − h/2)− δ(z + h/2)]

∂

∂z

)
Θ0(z)Θ∗0(z)dz.

Coupling to free-space modes causes the out-of-plane diffraction losses. The profile of the

radiative mode (H0x, H0y) generated by basic waves can be found using the Green’s function

method 10, 11:

H0x = κ1

(
V1 +

1

2
V2 −

1

2
V3 − V4 −

1

2
V5 +

1

2
V6

)
Ĩ0 ,

H0y = κ1

(
−
√

3

2
V2 −

√
3

2
V3 +

√
3

2
V5 +

√
3

2
V6

)
Ĩ0 ,

where Ĩ0 stands for the integral

Ĩ0 =

∫
PC

(
∂2

∂z′2
− [δ(z′ − h/2)− δ(z′ + h/2)]

∂

∂z′

)
G0(z, z′)Θ0(z′)dz′ ,

and Green’s function is the solution of equation

(
q2 + κ0∂

2/∂z2 + [(ε−1
cl − κ0){δ(z − h/2)− δ(z + h/2)}]∂/∂z

)
G0(z, z′) = −δ(z, z′) .
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The coupling of the guided modes with this radiative mode is then calculated by overlap integrals

Ĉrad = I0



1 1/2 −1/2 −1 −1/2 1/2

1/2 1 1/2 −1/2 −1 −1/2

−1/2 1/2 1 1/2 −1/2 −1

−1 −1/2 1/2 1 1/2 −1/2

−1/2 −1 −1/2 1/2 1 1/2

1/2 −1/2 −1 −1/2 1/2 1


,

where

I0 = κ2
1

∫∫
PC

{[−∂2/∂z2 + [δ(z − h/2)− δ(z + h/2)]∂/∂z] ·G0(z, z′)

[(∂2/∂z′2 − [δ(z′ − h/2)− δ(z′ + h/2)]∂/∂z′)Θ0(z′)]}Θ∗0(z)dz′dz (57)

is a purely imaginary quantity.

To block-diagonalize Ĉ, we next perform the unitary transformation Ĉcp = UĈU−1 with the

matrix

U =
1√
6



1 1 1 1 1 1

1 eiπ/3 e2iπ/3 −1 e−2iπ/3 e−iπ/3

1 e2iπ/3 e−2iπ/3 1 e2iπ/3 e−2iπ/3

1 e−iπ/3 e−2iπ/3 −1 e2iπ/3 eiπ/3

1 e−2iπ/3 e2iπ/3 1 e−2iπ/3 e2iπ/3

1 −1 1 −1 1 −1


.

After excluding the first and the sixth rows describing singlet states, we get the matrix in the

subspace of the circular-polarized states.

It can be proven using Sup. Eq. (53) that in the vicinity of the Γ point, the propagation
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constants of the modes are linearly dependent on small deviations (kx, ky)
11

βj = β0 + β̃

(
Gjx

G
kx +

Gjy

G
ky

)
, (58)

that is the right-hand side of Sup. Eq. (54) is additionally corrected with the diagonal matrix ∆K̂

∆K̂ = 2β0β̃



ky 0 0 0 0 0

0
√

3kx/2 + ky/2 0 0 0 0

0 0
√

3kx/2− ky/2 0 0 0

0 0 0 −ky 0 0

0 0 0 0 −
√

3kx/2− ky/2 0

0 0 0 0 0
√

3kx/2 + ky/2


.

As a result, we finally obtain the right-hand side of the eigenvalue problem Sup. Eq. (54)

describing a photonic bandstructure of the PhC slab in the proximity of Γ point as follows

Ĉcp + ∆K̂cp =



(κ1 − κ2 − κ3)G2 −β0β̃(ikx − ky) 0 0

β0β̃(ikx + ky) (κ3 − κ2 − κ1)G2 0 0

0 0 (κ1 − κ2 − κ3)G2 β0β̃(ikx + ky)

0 0 −β0β̃(ikx − ky) (κ3 − κ2 − κ1)G2



+ I



κ1 + κ2

2
+ κ3 0 0 0

0
κ2 − κ1

2
− κ3 0 0

0 0
κ1 + κ2

2
+ κ3 0

0 0 0
κ2 − κ1

2
− κ3


+ I0



3 0 0 0

0 0 0 0

0 0 3 0

0 0 0 0


,

(59)

where similarly to Sections I and II we redefine kx → ky, ky → kx. In the absence of dissipation,

the first and second matrices in Sup. Eq. (59) compose the Hermitian Hamiltonian which contains

the Dirac part and real mass-terms. The imaginary part of p (dipolar) modes eigenfrequencies is
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determined by I0 which is directly related to the magnitude of radiative losses γr. Thus, the GME

method confirms applicability of our phenomenological model.

Supplementary Note 5. SOS (Silicon on Sapphire) implementation of the metasurface. Fab-

rication Recipe

Supplementary Figure 6 illustrates the main stages of the technique used for the metasurface fab-

rication.

Sapphire substrate

Silicon (600 nm epilayer)

Sapphire substrate

Silicon

ZEP® e-beam resist

Sapphire substrate

Silicon

ZEP® e-beam resist
Espacer (Showa Denko)

Sapphire substrate

Silicon

ZEP® e-beam resist
Espacer (Showa Denko)

e-beam 
(JEOL JBX-6300FS)

Sapphire substrate

Silicon

Develop 
(Amyl acetate)

Sapphire substrate

Silicon

E-beam evaporate 
mask material (Al2O3)

Sapphire substrate

Silicon

Lift-off (NMP 1165)

Sapphire substrate

Cryogenic Silicon DRI etch

Supplementary Figure 6. Schematic of the metasurface fabrication procedure.
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Supplementary Note 6. Coupled mode theory for the metagrating based on tight binding

approach

To describe the excitation of the edge states on a sample consisting of an array of domain walls

formed by repetitive stitching of N unit cells of shrunken and expanded domains, we use coupled

mode theory (CMT) described in Supplementary Note 1 with the Hamiltonian derived from the

tight-binding method. The intercell and intracell tunneling amplitudes are denoted as J and K, re-

spectively. The translation vectors of the lattice are equal to a1 = a (1, 0) and a2 = a
(
1/2,
√

3/2
)
,

where a is the lattice period. Bloch vectors are defined as kp = 2π/λ sin (θ), where λ is the

wavelength of the incident plane wave, and θ is the angle between the propagation direction and

normal to the sample. The propagation plane is chosen to be x-z, and the electric field is polar-

ized along y direction. Due to symmetry matching, only dipolar modes are directly excited by the

plane wave source. Two types of dipolar modes can be excited at small incidence angles θ ≈ 0,

namely |U1〉 = (1, 1, 0,−1,−1, 0)T and |U2〉 = (1, 0,−1,−1, 0, 1)T , which are eigenmodes of

tight-binding unit cell Hamiltonian near normal incidence angle. Since the polarization of the im-

pinging wave is fixed, we consider only one of the dipolar modes, specifically, |U1〉 here; excitation

of the mode |U2〉 can be described by the same method. Domain walls with zigzag cuts are aligned

along the x direction. Thus, the system is described by the following equations:

− i ε |ψ〉 = −i Ĥ |ψ〉+ κ Ŝ1 − L̂ |ψ〉 , (60)

where Hamiltonian of the meta-grating structure Ĥ is represented as a direct sum of the Hamilto-

nians corresponding to the strips of shrunken or expanded structures, and it is derived from tight
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binding model which reads

Ĥ = Diag (N, 0)⊗ ĤI ⊕Diag (N, 0)⊗ ĤII

+Diag (N,−1/2)⊗ (Ĥm1 ⊕ Ĥm2) + Diag (N, 1/2)⊗ (Ĥp1 ⊕ Ĥp2)

+Diag (2N,−2)⊗ Ĥmm + Diag (2N, 2)⊗ Ĥpp.

(61)
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Here Diag (N, n) meansN×N nth diagonalized matrix and with unity elements 1, and ĤI/II , Ĥp1,2/m1,2

and Ĥpp/mm are defined as

ĤI =



0 −K 0 0 0 −K

−K 0 −K 0 0 0

0 −K 0 −K 0 , 0

0 0 −K 0 −K 0

0 0 0 −K 0 −K

−K 0 0 0 −K 0


, ĤII = ĤI (K ↔ J) , (62)

Ĥm1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −J

0 0 0 0 0 0

0 e−i
√

3kxa 0 0 0 0

0 0 0 0 0 0


, Ĥp1 =



0 0 0 0 0 0

0 0 0 0 −J 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 e−i
√

3kxa 0 0 0


, (63)

Ĥm2 =
¯̂
Hp1, Ĥp2 =

¯̂
Hm1, (64)

Ĥmm =



0 0 0 0 0 0

0 0 0 0 −J 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 e−i
√

3kxa 0 0 0


, Ĥpp =

¯̂
Hmm. (65)
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The source matrix is Ŝ1 = Ein |2N〉 ⊗ |U1〉, where |2N〉 = (1, 1, ..., 1)T , which has 2N sites, and

the loss matrix L containing both internal loss γ0 and radiative loss κ2/2 has the form

L̂ = Diag (2N, 2N)⊗



γ0 + κ2/2 0 0 0 0 0

0 γ0 + κ2/2 0 0 0 0

0 0 γ0 0 0 0

0 0 0 γ0 + κ2/2 0 0

0 0 0 0 γ0 + κ2/2 0

0 0 0 0 0 γ0


(66)

Periodic boundary conditions are applied at the outer domain walls in the y direction. Solving

Sup. Eq. (60), transmittance and extinction can be calculated similar to Sup. Eq. (47).

Compared to the bulk structures without domain walls, the extra periodicity of domain walls

along y direction with the lattice constant ay =
√

3Na0 supplies extra diffraction channels for

the scattered fields in the wavelength range under study if the incidence angle is swept along y

direction. Due to the continuity of Ey at boundaries y = nay, the transmitted fields can be written

as 12

Et
y (r) =

∞∑
m=−∞

∞∑
n=1

an,me
i(kmx x+kzz) sin kny y (67)

where kmx = 2πm/a, kny = 2π/λ sin(θ) + nπ/ay, and kz =
√

(2π/λneff)
2 − [kmx ]2 − [kmy ]2, neff is

the effective index of the substrate. We notice these diffraction modes become leaky for kz > 0,

thus both reflectivity and transmittance drop due to coupling of the leaky modes to the internal

modes of the structure.
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Supplementary Note 7. The role of non-Hermiticity

Radiative and non-radiative losses can be included explicitly into the system Hamiltonian. As a

result, the obtained effective Hamiltonian will be non-Hermitian. For instance, the expression for

the block Ĥ− describing one of the pseudospins reads:

Ĥeff
− (k) = v [σx kx + σy ky] + [µ(k)− i γr/2] σz − i (γ0 + γr/2) Î . (68)

In analogy with the standard derivation 4 it can be verified that despite the losses the boundary

of the two materials with the opposite sign of effective mass µ still supports the edge mode. The

energy of this mode becomes complex due to the losses:

ε = v ky − i (γ0 + γr/2) , (69)

where we assume that the boundary of the two materials is along the y-axis. Equation (69) means

that the edge mode has a finite lifetime τ = (γ0 + γr/2)−1. However, if the system is pumped

externally, the edge mode still has the impact on the metasurface scattering characteristics. The

two components of the Dirac spinor |ψ〉 are described by ψ1,2(x) = A1,2 e
λx for x < 0 and

ψ1,2(x) = A1,2 e
−λx for x > 0. Parameter λ acquires a non-zero imaginary part:

λ =
µ(k)− i γr/2

v
, (70)

i.e. losses introduce an oscillatory behavior of the eigenfunctions.

In the non-Hermitian case left
∣∣ψL〉 and right

∣∣ψR〉 eigenvectors of the Hamiltonian do

not coincide which leads to the four possibilities of the Berry connection definition: ALLm (k) =

i
〈
ψL
∣∣ ∂mψL〉,ALRm (k) = i

〈
ψL
∣∣ ∂mψR〉,ARLm (k) = i

〈
ψR
∣∣ ∂mψL〉, andARRm (k) = i

〈
ψR
∣∣ ∂mψR〉,

where ∂m means here ∂/∂ km. Though these four definitions have a different form, we confirmed
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that for the parameters corresponding to the metasurface studied here, they yield the same result

for the spin-Chern number 13. Thus, as evidenced by both theory and experiment, the edge states

still persist in the presence of losses, and in our case they can be conceived from the spin Chern

number of bulk states.
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