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SUPPLEMENTARY NOTE 1: THE ROLE OF BROKEN SYMMETRY IN NONLINEAR RESPONSES

Perturbative response - expansion to different broken inversion symmetries

Although these derivations have been given before, it is convenient to present them here in a consistent formalism
to provide the reader with a coherent overview of the topic (and prepare the later extension of semiclassical transport
theory in solids).

Non-inversion symmetric media

Assuming that the electric field has the general form E(t) = E0H(t) sin(ωLt) where E0, H(t), ωL are the peak,
envelope, angular frequency of the laser electric field, the perturbative response derived from perturbation theory
[1] is Pmedium(t) = ε0

∑∞
n=1 χ

(n)En(t) where n runs over all odd and even positive integers because of non-vanishing
even-order susceptibilities in non-isotropic media [1]. In the long pulse regime, this formula can be expanded using
De Moivre’s formula and binomial theorem as follows where F [X] is the Fourier transform of X:
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∞∑
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with a = (2m+ 1− 2k)ωL, b = (2m− 2k)ωL. (3)

Clearly, the Fourier transform of Pmedium(t) contains both odd and even harmonics of the fundamental carrier
frequency ωL. If the trigonometric function on the right-hand side of Supplementary Eq. 1 is of cosine type (the same
electric field, with only a change of carrier-envelope phase of π/2), the expansion can be performed similarly and the
result stills includes both even and odd harmonics.

Inversion-symmetric media with the electric field as the source of symmetry breaking

In this case, certainly the even-order susceptibilities vanish completely, only the odd orders χ(2n+1) remain. However,
the addition of the second harmonic to the fundamental electric field leads to a non-inversion-symmetric electric field:
E(t) =

(
E0 sin(ωLt) + E1 sin(2ωLt)

)
. Similarly, we can also expand the perturbative response of this electric field as

follows:

PEt(t) ∝
∞∑
n=0

χ(2n+1)
(
E0 sin(ωLt) + E1 sin(2ωLt)

)2n+1
, (4)

PEt(t) ∝
∞∑
n=0

χ(2n+1)
(

E2n+1
0 sin2n+1(ωLt)︸ ︷︷ ︸

A

+ E2n+1
1 sin2n+1(2ωLt)︸ ︷︷ ︸

B

+ other mixing terms
)
, (5)

The A term in Supplementary Eq. 5 is very similar to the right-hand side of Supplementary Eq. 3 except for the
running index which is always odd. Therefore, it is straightforward to see that the A term includes all odd harmonics
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in the spectral response. Similarly, the B term includes 2a and 2b thus all the even harmonics are included in this
term. As a result, PEt(ω) consists of both even and odd harmonics.

The above consideration shows that regardless of the exact cause of broken symmetry (medium or electric field),
as soon as the inversion symmetry in the process is broken, the polarization response will include both even and odd
harmonics, although with different spectral intensities.

Origin of even and odd harmonics in the semiclassical model
without anomalous term for solids

We start our discussion with the simplest model describing HHG from solids: high-energy photons are emitted
due to Bragg scattering of a time-dependent electron wavepacket in a conduction band (beyond nearest-neighbor
approximation) of solids. Here we follow previous works [2–7] and slightly extend recent work [8] to show how
even and odd harmonics could be emitted in the framework of this semiclassical model and its implications on the
quantum-mechanical model. The incident electric field is a linearly polarized 30 fs pulse at the carrier wavelength of
800 nm.

From the definition of the group velocity and the “acceleration theorem” [9, 10], which is very similar to the main
text, without the anomalous terms:

vν(k) =
dr

dt
=

1

h̄

Eν(k)

dk
, (6)

dk

dt
= − e

h̄

(
E +

1

c
v ×B

)
, (7)

where vν(k), Eν(k) are group velocity and band dispersion of a given band ν, E and B are electric, magnetic fields.
In the non-relativistic regime, v ×B� E thus we arrive at

dk(t)

dt
= − e

h̄
E(t). (8)

The solution of this differential equation is

k(t) = k(0) +
e

h̄
A(t), (9)

with the vector potential A(t) = −
∫ t
−∞E(t′)dt′. Here we emphasize that we do not take for granted that k(0) = 0

and we keep k(0) in the formula since it plays an important role in the harmonics, as will be revealed later. Since we
can always decompose the band dispersion into Fourier series as

Eν(k) =

nmax∑
n=0

εν,n cos(nka), (10)

where nmax is the maximum number of distant neighbors considered in our model and a is the lattice constant.
We should emphasize that the trigonometric function on the right-hand side of Supplementary Eq. 10 can only be of
cosine type, not sine type, due to time-reversal symmetry [11], which is very important for later expansions. Inserting
Supplementary Eq. 10 into Supplementary Eq. 7 we have

vν(k) = − 1

h̄

nmax∑
n=0

naεν,n sin(nka)., (11)

Taking Supplementary Eq. 9 into account, we arrive at
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(
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[
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e

h̄
A(t)

])
, (12)
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which can be rewritten using the trigonometric identities
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If we assume A(t) = E0

ωL
G(t) cos(ωLt+ ϕCE) where E0

ωL
, G(t), ωL, ϕCE are the peak field strength, envelope, carrier

angular frequency and carrier-envelope phase of the vector potential of the incident electric field, Supplementary Eq.
13 can be expanded as
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(14)

In the multi-cycle regime or monochromatic electric field, G(t) = 1, we can apply the Jacobi-Anger expansion to
arrive at
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]
. (15)

Here Jl is the Bessel function of the first kind of order l. Now the associated spectrum of the intraband current can

be calculated as proportional to
∣∣F [vν(t)]

∣∣2. This can be calculated through F [A] and F [B] where

F [A] =
√

2π · δ(ω−2mωL)+δ(ω+2mωL)
2 cos(2mϕCE)−

√
2π · δ(ω−2mωL)−δ(ω+2mωL)

2i sin(2mϕCE), (16)

F [B] =
√

2π · δ(ω−(2m−1)ωL)+δ(ω+(2m−1)ωL)
2 cos((2m− 1)ϕCE)−

√
2π · δ(ω−(2m−1)ωL)−δ(ω+(2m−1)ωL)

2i sin((2m− 1)ϕCE).

(17)

Equations 15, 16, 17 comprise the full analytical solution of the semiclassical model under minimal approximation.
Two conclusions can be drawn at this stage:

� The spectrum associated with the intraband current consists of modulated Dirac combs with both even and odd
harmonics (represented in Supplementary Eq. 16 and 17) which are included in the first term and second term
respectively, under general conditions.

� The spectral intensity of the harmonics depends on Jl, n, εν,n, a,
E0

ωL
, but are independent of ϕCE because

|F [A]|2ω=lωL
= |F [B]|2ω=lωL

= π/2, which is expected for a long pulse.

And the consequences of these equations are

� It is important to remember that time-reversal symmetry results in a symmetric (even function) band dispersion,
thus the trigonometric function in Supplementary Eq. 12 is of sine type. If time-reversal symmetry was not
in force, the trigonometric function in Supplementary Eq. 12 would be of cosine type hence the first term in
Supplementary Eq. 15 would contain odd harmonics whereas the second term would contain even harmonics.
The result is very similar to the case of even harmonics due to Berry curvature as discussed in [12].

� In a typical semiclassical model, it is natural to start with k(0) = 0 thus sin
[
nak(0)

]
= 0, cos

[
nak(0)

]
= 1

hence first term in Supplementary Eq. 15 vanishes completely and the second term is maximized. This means
that the even harmonics are canceled entirely, only the odd harmonics remain. Therefore, a typical semiclassical
simulation in this case will result in a spectrum of purely odd harmonics.

� If for any reason, the initial electron wavepacket in the semiclassical model does not start at 0 which means
k(0) 6= 0, both the first term and the second term will exist, the emitted spectrum will inevitably contain both
odd and even harmonics. This result is best illustrated in Supplementary Figure 1 using the semiclassical model
[8].
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Odd and even harmonics in the semiclassical model with anomalous term (Berry curvature)

Here we consider an extended version of Supplementary Eq. 6 which is Eq. 1 in the main text.

vν(k) =
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dk︸ ︷︷ ︸− e
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where vν(t)‖ is the ordinary, parallel component of the current that has the full expansion described in Supplemen-
tary Eq. 15. Similarly we can expand the second term vν(t)⊥ using the Fourier expansion of Ων(k) (Eq. 2 in the
main text) as:
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Now for simplicity, we assume that H(t) = G(t) = 1 and ϕCE = 0, Supplementary Eq. 21 reduces to:
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We consider the limit where k(0) = 0 then Supplementary Eq. 23 reduces to:
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The associated emitted spectra can be calculated using F
[
vν(t)⊥

]
as:

vν(ω)⊥ =
eE0

h̄

∞∑
n=1

γn

[
−
∞∑
m=1

(−1)mJ2m−1(n
ΩB
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2π · δ(ω − 2mωL)− δ(ω + 2mωL)
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+
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2i

)]
, (26)

where ΩB = aeE0/h̄ is the Bloch frequency. Supplementary Eq. 26 is the general expression in the long pulse
limit of anomalous current due to non-vanishing Berry curvature, which is very similar to [12]. Clearly, the associated
spectrum contains only even harmonics of the fundamental laser frequency. The most important message from this
derivation is that the broken symmetry of the medium results in an odd function of the Berry curvature, therefore
its trigonometric function is of sine type. This together with the Jacobi-Anger expansion leads to Supplementary Eq.
25,26 which contain only even harmonics.
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Semiclassical simulations

As a simple illustration for the consideration of the broken symmetry in the semiclassical model, we performed
numerical simulations [8, 13] for a linearly polarized 30 fs pulse at the carrier wavelength of 800 nm, peak electric
field strength 0.5 V/Å and the results are shown in Supplementary Figure 1.
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Supplementary Figure 1. Odd and even harmonics in the semiclassical model for an incident linearly polarized
electric field. a,b, Temporal evolution of the electron wavepacket probably density in the conduction band, with k(0) = 0
and k(0) 6= 0. c, Associated emitted spectra of the two cases and k(0) = 0 with anomalous velocity . The electric field used is
a 30 fs pulse at 800 nm.

In a typical case where k(0) = 0, the associated spectrum of Supplementary Figure 1a consists of purely odd
harmonics (Supplementary Figure 1c, solid dark blue line). On the other hand, if k(0) 6= 0 then the associated
spectrum consists of both odd and even harmonics, Supplementary Figure 1c dashed red line. If k(0) = 0 and Berry
curvature is not zero, then the associated spectrum consists of only even harmonics, Supplementary Figure 1c solid
orange line. In this particular simulation the Berry curvature is simulated as: Ω(k) = sin(ka) + sin(2ka) + sin(3ka) +
sin(4ka).

SUPPLEMENTARY NOTE 2: EXTREME–ULTRAVIOLET POLARIZER

Design

There are several requirements for constructing the EUV polarizer which would be suitable for our experiments:

� The polarizer should be able to transmit a broad photon energy range, preferably much broader than the range
of our experiments: 0− 30 eV, well in the vacuum ultraviolet regime.

� The polarizer should have a high contrast between the horizontal and vertical polarization.

� The polarizer should not change the direction of the output beam as compared to the input beam so that the
energy calibration of the whole spectrometer during polarizer’s measurements would not be an issue.

The first requirement results in the use of metallic mirrors at grazing incidence. The grazing-incidence angle is
optimized such that the total throughput and contrast are maximized (second requirement). In order to satisfy the
third requirement, a symmetric assembly should be used. The final design consists of four bare gold mirrors, all at
grazing angle of 20 degrees, assembled as illustrated in Supplementary Figure 2a and main text, Fig. 2a. The whole
assembly is placed on a rotary stage that has the rotation axis identical to the propagation axis of the laser beam,
which satisfies the third requirement.
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Supplementary Figure 2. All reflective extreme–ultraviolet polarizer design. a, Three dimensional drawing of the
rotary EUV polarizer. The whole assembly is put on a rotary stage with the rotation axis overlapping with the incident electric
field k-vector. The linearly polarized input pulse will have a much higher throughput if it is S-pol, compared to P-pol. b,c,
Calculated reflectivity of the EUV polarizer for different input polarizations after one reflection. d, Enhancement ratio between
S-pol and P-pol after four reflections.

In this configuration, the linearly polarized input electric field after one reflection on S-pol (Supplementary Figure
2b) is stronger than the one on P-pol (Supplementary Figure 2c), illustrated in Supplementary Figure 2a. The
reflectivity data of bare gold is taken from standard source [14]. The enhancement factor (or contrast) is calculated
as the total reflectivity for S-pol divided by the total reflectivity for P-pol and plotted in Supplementary Figure 2d
after four reflections. Here, the calculated contrast between the S-pol and P-pol beam at 17 eV (11th harmonic) is
≈ 70 times.

Calibration

In order to properly examine the polarization of the HHG spectra from solids, the polarizer contrast should be
calibrated. Its calibration is done by performing measurements of HHG from gases under identical experimental
conditions. It is known that HHG from interaction of noble gases with linearly polarized multi-cycle pulses is linearly
polarized, parallel to the polarization of the input pulse. We performed polarization measurement of HHG from xenon
under high contrast linearly polarized input pulses and the result is shown in Supplementary Figure 3a.

The cross-cut of the spectrogram at 11th harmonics (17 eV) shows the contrast, spectral intensity at parallel
polarization divided by spectral intensity measured in perpendicular polarization, of ≈ 60. Because the polarization
purity of the incident laser electric field is very high, more than three orders of magnitude, we can conclude that the
contrast of our polarizer at 17 eV is 60 : 1.

Since the experiments in the main text show the contrast of 30 : 1 at 17 eV, it means that the remaining perpen-
dicular polarization accounts for not more than 2/60 which is ≈ 3.3% of the total spectral intensity. Therefore all
polarizations measured in the main text are linearly polarized, with a depolarization ratio of less than 4%.
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Supplementary Figure 3. Contrast calibration of the EUV polarizer. a, Recorded spectra as a function of the polarizer
angle, emitted from xenon, pumped by 30 fs pulses at the carrier wavelength of 800 nm. b, Cross-cut of the 11th harmonic
showing the maximum contrast of ≈ 60 times.

SUPPLEMENTARY NOTE 3: AB–INITIO CALCULATIONS OF THE BERRY CURVATURE IN SIO2 -
α–QUARTZ

Methodologies

Although the ideas related to Berry phase and curvature have been developed over the last three decades, actual cal-
culations of Berry phase and curvature of condensed-matter systems only recently gained interest due to development
in studies of electronic charge and spin transport of electrons. Here we outline three methodologies for calculating
the Berry curvature that are used in our work. Interested readers could consult [15] for a more comprehensive review
on this topic.

Direct implementation

In solid-state physics, the parameter space R on which the quantum system evolves is k-space. Thus the generic
Berry curvature Ωn(R) is represented by Ωn(k) where n is a quantum number specifying the band index and k is the
crystal momentum. The definitions of the Berry connection An(k) and Berry curvature Ωn(k) [15–17] are given by

An(k) = i

∫
uc

d3ru∗n,k(r)∇kun,k(r), (27)

Ωn(k) = ∇k ×An(k),

Ωn(k) = i

∫
uc

d3r∇ku
∗
n,k(r)×∇kun,k(r), (28)

where un,k(r) is the cell-periodic part of the Bloch wavefunction Ψn,k(r). The integral in Supplementary Eq. 28
is performed over the whole unit cell, spanned by the (â1, â2, â3) primitive vectors. Since the derivative operation
is done in k-space, the direct implementation suffers from the fact that a large number of ab–initio calculations are
needed in order to converge the calculation of Supplementary Eq. 28, which in extreme cases can reach up to one
million k-points [15].
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Kubo formula

In order to overcome the expensive calculation cost induced by the direct implementation, there have been multiple
methodologies proposed [15, 17]. One widely used methodology is the use of a Kubo-like formula [18, 19]:

Ωn(k) = ih̄2
∑
m 6=n

〈Ψn,k| v̂ |Ψm,k〉 × 〈Ψm,k| v̂ |Ψn,k〉
(εn,k − εm,k)2

. (29)

Here, v̂ is the usual velocity operator, εi,k is the eigen-energy of the band index i and crystal momentum k, and for
compact representation, the Dirac notation is used. Equation 29 replaces the computationally demanding derivative
operation in Supplementary Eq. 28 by evaluation of the velocity matrix element and the loop through all the band
indices {i}. Theoretically, all the band indices (occupided and unoccupied states) have to be included in the evaluation
of Supplementary Eq. 29. However, practically only a small number of bands are needed as we will show in the next
section.

Fukui formula

Another good method that we employed in our calculation is a technique introduced by Fukui, Hatsugai, and Suzuki
[20, 21] and being used later [22, 23] by defining a so-called link variable:

Uµ,n(k) =
〈un,k|un,k+µ̂〉
|〈un,k|un,k+µ̂〉|

, (30)

where µ̂ is the vector in the direction µ = (k̂x, k̂y, k̂z) with the fractional amplitude 1/(Nµ − 1) with Nµ being the
number of k-points used in discretizing the Brillouin zone in µ direction. Next, the lattice field strength is defined by

F12,n(k) = ln
U1,n(k)U2,n(k + 1̂)

U1,n(k + 2̂)U2,n(k)
, (31)

and for large Nµ, the corresponding Berry curvature will be calculated as

Ω3,n(k) =
ImF12,n(k)

Aplaquette
, (32)

with the area of the plaquette Aplaquette =
k̂x·k̂y

(N1−1)(N2−1) where (k̂x, k̂y, k̂z) are primitive vectors in the reciprocal

lattice. This method has been proven [20, 21] to be extremely stable even for a very small number of k-points.

Numerical considerations

Since SiO2 (α−quartz) has a hexagonal lattice, not the simple cubic lattice with orthogonal primitive vectors,

thus (k̂x, k̂y) = 60◦ and (k̂x, k̂z) = (k̂y, k̂z) = 90◦ as shown in the main text, Fig. 2b, and vectorial k is used
throughout the calculations. Here, the direct implementation and Kubo formula result in a full vectorial Berry
curvature Ωn(k) = (Ωx,n(k),Ωy,n(k),Ωz,n(k)) whereas the Fukui formula gives the result in only one predefined
direction Ωi,n(k) where i = (x, y, z). Within the scope of our work, the quantity of interest is Ωz,n(k) for all k
points making the directions Γ −M and Γ − K with the corresponding fractional k-points (0, 0, 0) − (0, 0.5, 0) and
(0, 0, 0) − (1/3, 1/3, 0). Because there are 3 silicon atoms and 6 oxygen atoms in a unit cell, there are 48 valence
electrons accordingly contributing to the valence bands. Due to spin, each band is doubly degenerate thus there are
in total 24 valence bands. Our focus is on the bands close to the Fermi level which has the quantum number n close
to 24 (top valence band) and 25 (bottom conduction band). The focus of our calculation is the first conduction band
in Γ−M direction where there is no degeneracy with other bands, leaving a smooth band dispersion and accordingly
no sharp jump in the Berry curvature.

For the direct implementation, we used 6th order central finite difference for the evaluation of the derivation.
Combining this with three different k directions, it results into 18 different sets of un,k(r) and corresponding Bloch
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wavefunctions Ψn,k(r) for each k point and a given band index. The step size for the derivative evaluation is different
(much smaller) than the step size used for the evaluation of the Berry curvature on the whole k points spanning the
direction of interest.

For the Kubo formula, there is no derivation in k-space, but instead an evaluation of the velocity matrix elements
which can be easily carried out using Fast Fourier Transform. In addition, all of the band indices need to be included
thus the total number of Bloch wavefunctions required is not small.

For the Fukui formula, only one band index is needed but due to Supplementary Eq. 30, 31, 8 different sets of
un,k(r) are required for evaluation of Ωi,n at one k point.

All calculations are performed at room temperature (300K).

Convergence

For all calculations reported in this manuscript, the self-consistent calculation was performed first using an existing
software package [24, 25], then the calculation of the Bloch wavefunctions is done using k-meshes of different sizes to
test for convergence. The results are presented in Supplementary Figure 4.

As it is expected from the nature of the direct implementation and the Kubo formula, there is no dependence of
the Berry curvature calculation on the size of the grid that spans Γ−M, Supplementary Figure 4a,c. However, if the
fractional dk is 10−4 or larger, the calculation does not converge, as shown in Supplementary Figure 4b. Therefore,
convergence of the direct implementation is reached when the fractional dk is 10−6 or smaller which is very compatible
with the requirement mentioned in [15]. For the Kubo formula, as mentioned in the previous section, evaluation of
Supplementary Eq. 29 is dependent on the number m of the bands taken into account. Figure S 4d shows that as long
as more than 7 bands below and 7 bands above the desired band are taken into account, the calculation is converged.
Nevertheless, for the Fukui formula, the standard deviation changes as a function of the grid size. Reliable results
can only be achieved if the Brillouin zone is discretized by 100 or more k points. For speed and convenience reasons,
the direct approach is the method of choice for any further calculations.

Dependence on exchange-correlation energy functional approximations

Supplementary Figure 5a,b,c show how different exchange-correlation approximations affect the bandstructure
and consequently the calculated Berry curvature (Supplementary Figure 5d). While it was well known that the
introduction of the modified Becke Johnson exchange potential with correlation effects [26] should result in a more
accurate bandgap. However, the bandgaps retrieved in all approximations here are different from the experimentally
measured one of about 9 eV [27, 28]. This reveals the shortcommings of the LCAO approach as compared to the
full-potential (linearized) augmented plane-wave and local orbitals (FP-(L)APW + lo) method as used in [26, 29]. For
this reason, our experiment and follow-up developments provide a new approach to benchmark ab–initio calculations.

Berry curvature calculated for Γ−M and Γ−K

It is intuitive to note that the valence bands 1 and 2 (VB1, 2) and conduction bands 2 and 3 (CB2, 3) have
degeneracies at the Γ point as shown in Supplementary Figure 6a, thus their Berry curvatures are a bit higher close to
the Γ point. At the same time, they have almost opposite Berry curvature values, as shown in Supplementary Figure
6b. In addition, if we consider the fact that VB3 is more likely to be filled than CB1 to be populated, this leaves CB1
as the most effective band, influencing Berry phase effects in this direction which would correspond to the Ωeffective(k)
in the main text. Furthermore, Supplementary Figure 6c shows that the Berry curvature of the same band is very
much (100 times) weaker in the Γ−K direction. For symmetry reason, it should be zero. In the semiclassical model,
this translates into a spectral intensity that is about four orders of magnitude less intense. This is certainly too weak
to be seen within the precision of our measurements.

A direct comparison between the experimentally retrieved Berry curvature and the theoretically calculated value is
shown in the main text, Fig. 3b. Near-quantitative agreement is obtained with the MGGA functional (shown) and
the LDA functional (not shown), whereas the GGA functional appears to overestimate the Berry curvature by a factor
of ≈ 2. Discrepancy of the values can be attributed to: (i) imperfections of the experimental measurements, (ii) first
order derivation of the adiabatic transport theory utilized in determining the retrieved value from experimental results,
and (iii) limitations inherent to the ab–initio calculations: even in the DFT:LCAO technique, different functionals
used already lead to amplitude variations up to a factor of ≈ 2. (Supplementary Figure 5d, LDA-PZ versus MGGA-
TB09LDA).
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Supplementary Figure 4. Convergence of Berry curvature calculations of the first conduction band. a, c, e,
Standard deviation of the Berry curvature as a function of the number of k points spanning the direction Γ − M for three
methods. b, For direct implementation, standard deviation as a function of the fractional dk used in the derivative evaluation.
d, For Kubo formula, standard deviation as a function of the number of neighboring bands used in Supplementary Eq. 29: i
bands above and i bands below with i = 3, 5, 7. All the references are calculations at the highest discretization size possible.

SUPPLEMENTARY NOTE 4: DENSITY OF STATES

Supplementary Figure 7 shows the calculated density of states in SiO2 crystal using different approximations.
Because the density of states expands more than 30 eV with a relatively constant amplitude for both crystal directions,
this is not in favor of the picture of multiple plateaus due to higher-lying conduction bands [30, 31]. As a result, more
extensive experiments and simulations should be carried out in order to fully explain the second plateau behavior in
HHG from quartz.
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structure calculated using different approximations (LDA, GGA, MGGA) and different parameterizations. The corresponding
direct bandgaps are illustrated. d, Berry curvature calculated using the direct approach with three different functionals.

SUPPLEMENTARY NOTE 5: FURTHER TECHNICAL INFORMATION

Toward a precise determination of the spectral intensity

In many cases where the absolute spectral intensity is not needed, only the relative intensity is of importance, for
instance in Fig. 2b,c,d of the main text, we do not need to calibrate the spectral intensity perfectly. However, for the
application of retrieving the Berry curvature, accurate spectral intensity is needed. In order to determine the spectral
intensity as precisely as possible, we took care of the following issues:

Wavelength calibration

Since the spectrometer is grating-based, we perform the calibration in wavelength domain first, then the spectrum
is converted to frequency domain for plotting. By measuring the spectrum of the incident light, the carrier central
wavelength is determined to be λ0 ≈ 798.9 nm. We recorded HHG spectra from gases and solid samples. The formed
high-harmonics are calibrated using the grating equation.



13

b

c

ΚΜ,ΓΚ

ΜΓ

ΜΓ
-10

-8

-6

-4

-2

0

2

4

6

8

10
En

er
gy

 (e
V)

VB3

VB2

VB1

CB1

CB2

CB3

VB3

VB2

VB1

CB1

CB2

CB3

Γ − M
Γ − K

a

x 100

-20

-10

0

10

20

30

40

50

Ω
z,

25
(k

) (
at

om
ic

 u
ni

ts
)

-300

-200

-100

0

100

200

300

Ω
z,

22
-2

7
(k

) (
at

om
ic

 u
ni

ts
)

Supplementary Figure 6. Bandstructure and Berry curvature for different bands/directions. a, Zoomed-in band-
structure calculated using MGGA-TB09LDA. A few representative bands are highlighted. b, Berry curvature of the highlighted
bands in a. c, Comparison of Berry curvature of the first conduction band in Γ−M and Γ−K direction. Note that the value
in Γ−K direction (should be zero due to symmetry reason) has been multiplied by 100 to be visible in the same plot.

Intensity calibration

� Multi-channel plate and phosphor’s screen are assumed to have a flat spectral response in our measurement
range.

� Polarizer reflectivity: for S-pol and P-pol are calculated using [14] as discussed before.

� Grating reflectivity: the grating efficiency for the two different polarizations (S-pol and P-pol) are obtained from
the manufacturer and applied to the corresponding cases.

� Effect of slit on the total spectral intensity: since the different wavelengths diffract differently, the spatio-spectral
distribution of the beam after the slit could be illustrated in Supplementary Figure 8. Therefore, the beams
carrying high-energy photons have a smaller divergence, thus the percentage of transmission is higher than for
low-energy photons. As a first order calibration to this effect, we use the following formula:

S(ω)averaged after slit = S(ω)averaged before slit · ω2 (33)

� First order propagation approximation and beam profile averaging effect: because we measured only the spectra,
the phase was not measured, thus we could not perform the back propagation to get the exact spatially resolved
EUV spectra at the focus. Therefore, we assume the averaged spectral intensity measured before the slit is the
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Supplementary Figure 8. Spatio-spectral distribution before and after the slit. The spatially-integrated model spectrum
before the slit is shown on the left. Spectra at the inner and outer part of the transmitted beam are shown on the right.

signal at the center of the beam (the degree of nonlinearity is high). First order propagation inside the crystal
is approximated by: S(ω)propagated = S(ω)microscopic · ω2. As a consequence, we have:

S(ω)measured on MCP = S(ω)microscopic · ω4 · R(ω)grating (34)

� Electric field strength: is calculated using the measurement of the beam profile at the focus for various intensity
settings and the temporal characterization of the electric field using Transient Grating - Frequency-Resolved
Optical Gating.

Fitting of the Berry curvature

Basis of the fitting: Associated spectra of different Fourier coefficients of the Berry curvature

In order to examine the reliability of the fitting, we make use of the analytical derivation of the associated spectra
of the Berry curvature: Supplementary Eq. 25, 26. Although the derivations apply for the long pulse regime,
because we are only interested in the relative intensity of the harmonic peaks, not their shapes, these equations
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are of great applicability. Indeed, we could assign Supplementary Eq. 25 as vν(t)⊥ = eE0

h̄

∑∞
n=1 γnAn with An =

−
∑∞
m=1(−1)mJ2m−1(na eh̄

E0

ωL
)
(

sin [2mωLt] + sin [(2m− 2)ωLt]
)
. Now we could plot associated spectra of different

{An} as illustrated in Supplementary Figure 9 for the electric field strength of E0 = 1.0 V/Å. Due to the properties
of the Bessel functions, the summation over m converges at m = 30 for our energy range.
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Supplementary Figure 9. Fourier coefficients of Berry curvature form a basis set of spectra. a → f, Associated
spectra of the individual components of {An} for n = 1→ 6.

From Supplementary Figure 9, it is clear that: (i) all An exhibit only even harmonics, with different number of
harmonics as well as their relative intensity; (ii) the higher the number n is, the higher the associated photon energy
is. The first feature is obvious from the formula while the second feature is a consequence of the Bessel functions.
Therefore, {An} forms a basis set of HHG spectra from Berry curvature. This basis set is possibly complete but
redundant because the harmonics of An at high n are very similar. In addition, within our photon energy range, all
An with n > 20 contribute very little and thus play almost no role in the fitting result.

In conclusion, the above analysis shows that the basis set formed by the series {An} could be well utilized for
retrieving the Berry curvature from our measured HHG spectra, especially for the range of n = 1→ 10.

The fitting

We first simulated the k(t) using the measured electric field and a given set of dipole matrix elements. The fitting is
done using Eq. 2 (main text) and the trust-region reflective algorithm in a commercial software package. The fitting
error is defined as:

G =
∑
ω

[
S(ω)microscopic − S(ω)Berry curvature

]2
(35)

Since the basis set used above is not orthonormal, there are different sets of Fourier coefficients that give similar
fitting results. Therefore, in order to quantify more accurately the retrieved Berry curvature, we performed a large
number (104) of fittings using random-number generation for the initial guesses. The fitted results with errors lower
than a given threshold are then used to illustrate the probability density of the retrieved Berry curvature given in Fig.
3b main text. More accurate measurements and calibration of this experiment could be carried out in the future, for
instance with atomically-thin quartz samples, which could help deriving a more accurate effective Berry curvature in
quartz. Unfortunately such samples are not presently available.
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