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Supplementary Note 1:
Sample and Experimental Setup

Three qubit sample is designed to simulate the follow-
ing Hamiltonian in the rotating wave approximation:

Ĥ/~ =

3∑
j=1

 (ωj − ωin)

2
σ̂zj +

∑
k<j

Jkj
(
σ̂+
k σ̂
−
j + σ̂+

j σ̂
−
k

)
+ (ωr − ωin)â†â+ g3

(
â†σ̂−3 + σ̂+

3 â
)

(1)

+
ΩR1

2
(σ̂+

1 + σ̂−1 ) +
ΩR2

2
(σ̂+

2 + σ̂−2 ).

Here σ̂zj , σ̂+
j = (σ̂xj + iσ̂yj )/2 and σ̂−j = (σ̂xj − iσ̂yj )/2 are

Pauli operators, â (â†) is the annihilation (creation) oper-
ator of the resonator’s harmonic mode with a transition
frequency ωr. ωi are qubit transition frequencies and ωin

is the input microwave frequency and also the frequency
of the reference frame. Jkj are coupling coefficients be-
tween the qubits, g3 is a coupling coefficient between Q3

and resonator and ΩR1 (ΩR1) is the Rabi frequency for
Q1 (Q2).

Transmon qubits are implemented with a grounded de-
sign, similar to X-mon qubits1, to minimize the unwanted
capacitive coupling between Q1 and Q3. Their arrange-
ment (see Fig. 1b in the main text) yields capacitive cou-
pling rates of J12/2π = 83.6 MHz, J23/2π = 33.4 MHz
and an order of magnitude smaller J13/2π = 3.67 MHz.
All reported qubit parameters are determined at the
qubit transition frequency of ω/2π = 6.28 GHz. When
extracting individual qubit parameters the other two
qubits are detuned by at least 1.5 GHz. The measured
maximum transition frequencies between the ground |g〉
and first excited state |e〉 are ωmax

1 /2π = 6.948 GHz,
ωmax

2 /2π = 6.694 GHz and ωmax
3 /2π = 7.271 GHz

for the three qubits and their anharmonicities of the
first-to-second excited state are α1/2π = −140 MHz,
α2/2π = −142 MHz and α3/2π = −137 MHz. The
spectroscopically measured pure dephasing rates of Q1

and Q2 are γ
(1)
φ /2π = 115 kHz and γ

(2)
φ /2π = 82 kHz.

Q1 and Q2 are coupled to an open waveguide (trans-
mission line) with coupling rates γ1/2π = 6.57 MHz and
γ2/2π = 7.39 MHz. Q3 is coupled to a λ/2 resonator with
coupling coefficient g/2π ≈ 90 MHz. The uncoupled res-
onator has a fundamental frequency of ωr/2π = 6.00 GHz
and a loaded quality factor of QL ≈ Qext ≈ 55 dominated
by the external coupling. The transition frequencies of

the three qubits are tuned by magnetic flux Φi,
2

ωi(Φi) ' (ωmax
i − αi)

√
|cos(πΦi/Φ0)|+ αi, (2)

where Φ0 is the flux quantum, for i = 1− 3 qubits. Mag-
netic flux is generated by applying DC currents to two
flux lines (FL1, FL2) located close to the SQUID loops of
Q1 and Q2 and to a superconducting coil coupled globally
to all three qubits. Individual qubit frequency control is
obtained by inverting the flux coupling matrix and ap-
plying appropriate currents.

Coherent microwave radiation (RF) generated at room
temperature by a commercial source is thermalized and
attenuated at the 4 K, 100 mK and 11 mK stages of
dilution refrigerator and applied to the sample at port
1 of the waveguide (see schematic diagram in Supple-
mentary Fig. 1). Radiation emitted from the waveguide
and from the resonator is amplified with high-electron-
mobility transistor (HEMT) amplifiers at 4 K followed
by a chain of ultralow-noise (ULN) and low-noise (LN)
amplifiers at room temperature. Three isolators are in-
serted between the sample and the HEMT amplifier to
suppress the amplifier input noise propagating back to
the sample. The radiation emitted from port 2 of the
waveguide is filtered with a band-pass filter (BPF). The
amplified signals are down-converted to an intermediate
frequency (IF) of 250 MHz with an IQ mixer using a local
oscillator (LO) tone and then digitized with an analog-to-
digital converter (ADC). The digital signal in the mea-
surement bandwidth of 250 MHz is then processed by
a field-programmable-gate-array (FPGA) which deter-
mines the amplitude and the power spectral density of
the signal3. Typically 224 ≈ 16 ·106 samples are collected
in about 15 min to obtain a single power spectral den-
sity S(ω) measurement. The low frequency noise is gen-
erated by an arbitrary waveform generator (AWG) and
combined with the DC bias using a bias tee with a low-
frequency cutoff of 5 kHz and then applied to FL2 (see
Supplementary Fig. 1). Instead of an AWG we could use,
for example, a heated resistor to generate low frequency
white noise. However, AWG offers a unique advantage of
in-situ control of both amplitude and shape of the noise
power spectrum and has been used previously to create
quasi thermal noise in circuit QED experiments4.
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Supplementary Figure 1: Schematic of the experimental setup with complete wiring of electronic components inside and
outside of the dilution refrigerator. Color code is the same as in Fig. 1b in the main text.

Supplementary Note 2:
Description of Symmetric and Antisymmetric su-
perposition of Q1 and Q2

On resonance, Q1 and Q2 excited states |q1〉 and
|q2〉 form symmetric and antisymmetric (bright and

dark) states |b〉 = (|q1〉+ |q2〉) /
√

2 and |d〉 =

(|q1〉 − |q2〉) /
√

2. The formation of the hybridized states
is observed as an avoided crossing in measurements of
the transmission coefficient |t21| through the waveguide
for magnetic flux chosen such that the bare frequencies
of Q1 and Q2 cross, indicated by the black dashed lines
in Supplementary Fig. 2a. Fully hybridized |b〉 and |d〉
states at zero detuning between Q1 and Q2 (∆12 = 0) are
separated in energy by 2J12 (Supplementary Fig. 2b). We
fit the measured transmission coefficient at the point of
maximal hybridization using the expression5

t = 1− γr
γr + 2γφ

1− i∆
γr/2+γφ

1 +
(

∆
γr/2+γφ

)2

+
Ω2

R

γr(γr/2+γφ)

, (3)

with detuning ∆ = ωi−ωin, excitation frequency ωin and
Rabi rate ΩR. From the fit we extract the radiative decay
rate γr, dominated by the coupling rate to the waveguide,
and the pure dephasing rate γφ for both states. Here
we neglect the non-radiative decay. We find a higher
frequency bright state coupling rate of γb/2π = 12.44
MHz and pure dephasing rate of γb

φ/2π = 0.38 MHz
and a lower frequency subradiant state coupling rate of
γd/2π = 0.29 MHz and comparable pure dephasing rate
of γd

φ/2π = 0.55 MHz.

Supplementary Note 3:
Characterization of Q3 and its Purcell Decay

We tune the Q3 decay rate by adjusting the |q3〉 tran-
sition frequency detuning from the extraction resonator
frequency. When the resonator decay rate is large, the
radiative decay rate of the qubit is enhanced by the Pur-
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Supplementary Figure 2: Q1, Q2 avoided crossing. a Mea-
sured frequency dependent transmission coefficient |t21| of the
waveguide as a function of magnetic flux. |q1〉 and |q2〉 tran-
sition frequencies linearly cross (black dashed lines). |q3〉 is
detuned by more than 1.5 GHz. b |t21| measurement as a
function of frequency ν at φ = 49 [vertical dashed line in a]
where |q1〉 and |q2〉 are maximally hybridized.

cell effect6,7. The Purcell decay rate8

γPur =
κ

2
−
√

2

2

√
−A+

√
A2 + (κ∆3r)

2
, (4)

with A = ∆2
3r + 4g2 − κ2/4, depends on the coupling g

between the qubit and the resonator, the resonator decay
rate κ and the detuning ∆3r between the qubit and the
resonator. In the dispersive limit (∆3r � g), Eq. (4) re-

duces to the well known expression γPur = κ (g/∆3r)
22,8.

The Purcell broadening of the Q3 spectral line is ob-
served in a reflection coefficient measurement |t44| at
the resonator port 4 (Supplementary Fig. 3a). Fitting
the spectral lineshape using master equation simulations
we extract the Purcell decay rate γPur which is a func-
tion of the tunable |q3〉 frequency near the resonator
fundamental mode ωr/2π = 6.00 GHz (Supplementary
Fig. 3b). The extracted values γPur for positive detun-
ings above the resonator frequency agree with Eq. (4)
with coupling g/2π = 90 MHz and resonator decay rate
κ/2π = 110 MHz. For ω3/2π = 6.198 GHz used in
the presented experiments (indicated by the gray dashed
line in Supplementary Fig. 3b) the Purcell decay rate is
γPur/2π ≈ 20 MHz.
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Supplementary Figure 3: Purcell decay of Q3. a Fre-
quency dependent reflection coefficient |t44| as a function of
magnetic flux where the |q3〉 transition frequency ω3 is swept
linearly and the resonator fundamental frequency ωr is fixed
(displayed as black dashed lines). The gray dashed line cor-
responds to the |q3〉 transition frequency ω3/2π = 6.198 GHz
shown in Fig. 2b. b Q3 Purcell decay rate γPur as a func-
tion of Q3 transition frequency extracted from the reflec-
tion coefficient measurements |t44|. The resonator frequency
ωr/2π = 6.00 GHz is indicated with a black dashed line. The
solid line is a fit to Eq. (4). The light blue area indicates
the frequency range in a and the vertical gray dashed line
indicates the |q3〉 transition frequency, similar as in a.

Supplementary Note 4:
Rabi Rate and PSD Calibration

The Rabi rate ΩR of the coherently driven bright |b〉
state was determined from measurements of bright state
resonance fluorescence power spectra S2(ω) (Supplemen-
tary Fig. 4). To obtain the Rabi rate ΩR/2π = 14 MHz
for the microwave powers used in our experiments we fit
the resonance fluorescence spectrum to the Mollow triplet
expression9 assuming negligible pure dephasing and non-
radiative decay. For larger applied microwave powers,
the full Mollow triplet10 of the bright state emerges with
resolved side peaks. We determine the Rabi rate ΩR for
these amplitudes from the frequency splitting between
the central and the side peaks when fitting the spectra
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Supplementary Figure 4: Mollow triplet of the bright
state. Measured power spectral density (PSD) S2(ω) of the
bright state resonance fluorescence emission spectrum at the
output of the waveguide for indicated coherent microwave am-
plitudes given in terms of the extracted Rabi rate ΩR. The
microwave drive frequency was set to the bright state transi-
tion frequency ωb. Solid lines are fits to the Mollow triplet
spectrum9 for ΩR/2π = 11.8 MHz and to the sum of three
Lorentzian functions for ΩR/2π = 26.1 and 42.1 MHz.

with three Lorentzian lines. Fits to the data are shown
with solid lines in Supplementary Fig. 4.

In order to calibrate the amplitude of the measured
power spectral densities we performed the same power
spectrum measurement on Q2 with all other qubits de-
tuned by more than 1.5 GHz. For strong coherent drive,
when the qubit is saturated, and assuming that pure de-
phasing and non-radiative decay rates are negligible the
integrated power of the measured Mollow triplet is equal
to γ1/2 photons per unit time. This allows us to express
the magnitude of measured PSD in Photons s−1 Hz−1.

Supplementary Note 5:
Noise Generation

Low frequency noise is generated from a filtered ran-
dom number time series consisting of 16 ·106 values. The
bandwidth of the generated noise spans from 75 Hz to
600 MHz. The time series with a desired power spectral
density S(ω) is constructed by first calculating the Gaus-
sian random number sequence with a unit power spectral
density S(ω) = 1 and then applying a finite impulse re-
sponse filter (FIR) with the frequency response function
H(ω). We compensate AWG signal discritization dis-
tortions by pre-equalizing the digital noise series with an
additional filter, constructed from the AWG output spec-
trum of an ideal white noise digital signal measured using
a spectrum analyzer.

In this work we consider two distinct power spectral
densities: (i) white noise with an exponential cutoff based

on the Fermi-Dirac distribution

SW(ω) =
AW

1 + e
ω−ωc
∆ω

, (5)

where AW is the amplitude of the function constant up
to an exponential cutoff at ωc/2π = 325 MHz with a
characteristic width ∆ω/2π = 5.44 MHz. (ii) Noise with
a Lorentzian power spectral density:

SL(ω) =
AL

1 +
(
ω−ωL

∆ωL/2

)2 , (6)

where AL is the amplitude, ωL/2π = 0− 300 MHz is the
variable center frequency and ∆ωL/2π = 10 MHz is the
full width at half maximum. The noise power spectral
densities in Fig. 2c in the main text are measured with a
spectrum analyzer at the output of the AWG.

Supplementary Note 6:
Pure Dephasing Rate Calibration

White noise applied to Q2 increases the pure dephasing
rate of |q2〉 and consequently that of bright |b〉 and dark
|d〉 states. The bright state pure dephasing rate γb

φ is
determined from the resonance fluorescence power spec-
trum of the bright mode measured through the waveguide
S2(ω) for indicated applied noise powers Φ2

W (see Supple-
mentary Fig. 5a). Measured spectra are fitted to the Mol-
low triplet expression9 with the pure dephasing rate γb

φ
as a free parameter and fixed center frequency ω0, Rabi
rate ΩR and decay rate γb. The extracted pure dephas-
ing rate γb

φ (see Supplementary Fig. 5b) shows an initial

linear increase with applied white noise power Φ2
W as ex-

pected for ideal Markovian white power spectral density
PSD11. Deviations from the linear dependence at higher
noise powers originate from the finite cutoff of the engi-
neered white noise (see Fig. 2c in the main text). This
is corroborated by an excellent agreement between data
and numerically calculated pure dephasing rate11 using
noise power spectral density with a finite cutoff frequency
(solid line in Supplementary Fig. 5b).

Supplementary Note 7:
White Noise PSD Analysis

We analyze power spectral densities S4(ω) measured
at the resonator as a function of applied environmen-
tal white noise power (see Fig. 3a and Supplemen-
tary Fig. 6a) by fitting the spectra with a sum of two
Lorentzian functions

F (ν) =
a1

1 + 4
(
ν−ν01

∆ν1

)2 +
a2

1 + 4
(
ν−ν20

∆ν2

)2 . (7)

Here ai is the amplitude, ν0i the center frequency and ∆νi
the full width at half maximum of the i-th Lorentzian.
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Supplementary Figure 5: Bright state dephasing rate.
a Measured power spectral density S2(ω) of the bright mode
at port 2 of the waveguide for indicated environmental applied
white noise powers Φ2

W. Solid lines are fits to the Mollow-
triplet spectrum9, see text. b Pure dephasing rate γb

φ of the

bright mode as a function of white noise power Φ2
W obtained

from the fitted bright state resonance fluorescence spectra.
The solid curve is a numerical calculation of the pure dephas-
ing rate γb

φ for the white noise power spectral density with a
finite frequency cutoff at 325 MHz (see Fig. 2c in the main
text).

For higher noise powers, for which the two peaks are not
resolved anymore, we fit the data to a single Lorentzian.
The two resonances centered near the spectroscopically
determined transition frequencies νd1 and νd1 for low
white noise powers gradually shift towards the bare |q3〉
transition frequency ν3 (Supplementary Fig. 6b). At
the same time the linewidth of the lower frequency reso-
nance corresponding to |d1〉 significantly broadens while
the one corresponding to |d2〉 remains unchanged (see
Supplementary Fig. 6c). The different dependence of
the |d1〉 and |d2〉 resonances on the applied noise is at-
tributed to an imperfect hybridization of the |d〉 and
|q3〉 states. From the analyzed data we determine the
crossover from the strong to the weak coupling regime
to occur at Φ2

W = 3.0 ± 1.0 pWb2 corresponding to
γb
φ/2π = 50 ± 10 MHz. This value is comparable to

the 2Jd3/2π = 37 MHz, which is in agreement with the
crossover from strong to weak coupling as discussed in
the main text.
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Supplementary Figure 6: Spectra of |d1〉 and |d2〉 dark
states. a Power spectral density S4(ω) at the resonator
output port 4 for applied environmental white noise powers
Φ2

W ranging from 0 to 8.1 pWb2. Black solid curves show
two selected fits to the data using two Lorentzian functions
(Φ2

W = 0.6 pWb2) and a single Lorentzian function (Φ2
W =

6.1 pWb2). Vertical dashed lines indicate spectroscopically
determined transition frequencies of |d1〉 (νd1 = 6.179 GHz),
|d2〉 (νd2 = 6.216 GHz) and |q3〉 (ν3 = 6.198 GHz) states.
b Lorentzian center frequencies as a function of white noise
power Φ2

W from the fits (red, blue and green dots). Horizontal
dashed lines mark |d1〉, |d2〉 and |q3〉 transition frequencies as
in a. c Lorentzian full width at half maximum (fwhm) as a
function of white noise power Φ2

W determined from fitting the
power spectral densities indicated in a. Solid lines in b and c
are results from master equation simulations.

Supplementary Note 8:
Master Equation

Unitary dynamics of three coupled qubits where Q3

is coupled to an extraction resonator and Q1 and Q2

are driven by a coherent tone applied to a waveguide is
described by the Hamiltonian given in Eq. 1. In the case
of ideal hybridization between Q1 and Q2 (ω1 = ω2) the
Hamiltonian can be written in the bright and dark state
bases as

Ĥ/~ =
∑

j=b,d,3

(ωj − ωin)σ̂+
j σ̂
−
j + (ωr − ωin)â†â

+ Jb3

(
σ̂+

b σ̂
−
3 + σ̂+

3 σ̂
−
b

)
− Jd3

(
σ̂+

d σ̂
−
3 + σ̂+

3 σ̂
−
d

)
(8)

+ g
(
â†σ̂−3 + σ̂+

3 â
)

+
ΩR

2
(σ̂+

b + σ̂−b ),

where σ̂±b = (σ̂±1 + σ̂±2 )/
√

2 and σ̂±d = (σ̂±1 − σ̂±2 )/
√

2
are bright and dark state creation and annihilation op-
erators, ωb = ω1 + J12, ωd = ω1 − J12 are bright and
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dark state transition frequencies, Jb3 = (J23 + J13)/
√

2

and Jd3 = (J23 − J13)/
√

2 are coupling rates between
Q3 and bright, and Q3 and dark state, respectively, and
ΩR =

√
2ΩR1 is the bright state Rabi frequency.

The full dynamics including the non-unitary terms is
given by the Lindblad equation

ρ̇ = L(ρ), (9)

where ρ is the density matrix and L(ρ) is given by

L(ρ) =− i

~

[
Ĥ, ρ

]
+ γb(1 + nth)L(σ−b )ρ+ γbnthL(σ+

b )ρ

+ γd(1 + nth)L(σ−d )ρ+ γdnthL(σ+
d )ρ (10)

+
γφ
2
L(σ+

2 σ
−
2 − σ−2 σ+

2 )ρ

+ κL(a)ρ.

Here L(σ) is the Lindblad superoperator

L(σ)ρ = σ̂ρσ̂† − 1

2

(
σ̂†σ̂ρ+ ρσ̂†σ̂

)
(11)

and nth < 0.01, a typical thermal occupation for our
experiments.

Supplementary Note 9:
Numerical Simulations of Master Equation

Simulations of power spectral densities S2(ω) at the
waveguide output port 2 and the resonator S4(ω) at port
4 as well as the integrated power at the waveguide P2,
the resonator P4 and the transfer efficiency η are per-
formed with QuTiP 3.1.012. All simulations are done us-
ing the Lindblad master equation, which is sufficient for
time independent decay channels, as well as the Bloch-
Redfield master equation to account for the finite noise
frequency cutoff (see Fig. 2c). Both methods yield identi-
cal results confirming that the noise PSD cutoff frequency
(≈ 325 MHz) is high enough for the interaction between
our circuit and the environment to be considered in the
Markovian approximation.

Waveguide and resonator spectra are calculated for the
steady state ρ̇ = 0 via two-time correlation functions

S(ω) =

∫ ∞
−∞
〈A(τ)B(0)〉 e−iωτ dτ. (12)

As a proxy for the waveguide emission we use the bright
state |b〉 correlation function 〈σ̂+

b (τ)σ̂−b (0)〉 and for the

resonator emission we use 〈â†(τ)â(0)〉. The correct mag-
nitude is achieved by multiplication with the respective
radiative decay rates γb/2 and κ, where the factor 1/2 for
the γb reflects the detection of only half of the photons
emitted into the waveguide when measured only at port

Description Parameter Value
|q1〉 transition frequency ω1/2π 6.277 GHz
|q2〉 transition frequency ω2/2π 6.277 GHz
|q3〉 transition frequency ω3/2π 6.161 GHz

Resonator frequency ωr/2π 6.000 GHz
Coupling between Q1 and Q2 J12/2π 83.5 MHz
Coupling between Q2 and Q3 J23/2π 33.4 MHz
Coupling between Q1 and Q3 J13/2π 3.67 MHz

Coupling between Q3 and g3/2π 90 MHz
the resonator

|b〉 state decay rate γb/2π 12.4 MHz
Resonator decay rate κ/2π 110 MHz
Bright state Rabi rate ΩR/2π 14.0 MHz
Input field frequency ωin/2π 6.368 GHz

Supplementary Table 1: System parameters used for sim-
ulations. All parameters are experimentally determined from
spectroscopic measurements except g and κ which were ad-
justed within their experimental uncertainty.

2 and omitting port 1

S2(ω) ≈ γb

2

∫ ∞
−∞
〈σ̂+

b (τ)σ̂−b (0)〉 e−iωτ dτ, (13)

S4(ω) = κ

∫ ∞
−∞
〈â†(τ)â(0)〉 e−iωτ dτ. (14)

As in the experimental analysis we obtain the full power
as an integral of the power spectral density over fre-
quency.

For the simulations shown in Fig. 3b and Figs. 4a,c,
in the main text we use system parameters specified in
Supplementary Table 1. In Figs. 4a,c of the main text the
data is plotted against the bright state pure dephasing
rate, which is related to the Q2 pure dephasing rate as
γb
φ = γφ/2 assuming that the bright state is an equal

superposition of |q1〉 and |q2〉.
To reproduce experimental results for incoherent ex-

citation a Lindblad master equation was solved without
the last two terms in Eq. (1). A thermal occupation of
nth = 0.3 was used to compute the integrated re-emitted
P2 and extracted P4 powers as well as the transport effi-
ciency η shown with solid lines in Fig. 4c.

Supplementary Note 10:
Rate Equations

The rate equations for the populations of the bright
|b〉 state pb = ρbb, dark |d〉 state pd = ρdd and |q3〉 state
p3 = ρ33 are derived from the Lindblad equation of mo-
tion [Eq. (9)] where the coupling of Q3 to the resonator
is approximated by an effective Purcell decay. The inco-
herent dephasing γφ/2L[σz2 ]ρ, with γφ = 2γb

φ leads to a
decay of all coherences involving Q2

ρ̇i2 = −γφρi2 ∀i 6= 2. (15)
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In the bright/dark state basis this operator describes
incoherent transport γb

φ(L[σ+
b σ
−
d ] + L[σ+

d σ
−
b ])ρ between

|d〉 and |b〉 towards an equilibrium population deter-
mined by

d

dt
(ρbb − ρdd) = −2 γb

φ︸︷︷︸
kbd

(ρbb − ρdd), (16)

The bright state population ρ̇bb ∝ ΩRIm(ρgb) is reduced
by incoherent dephasing since the coherence between the
ground and the bright state ρgb evolves as

ρ̇gb ∝ i
ΩR

2
(ρgg − ρbb)−

γb + 2γb
φ

2
ρgb. (17)

Thus absorption is reduced by dephasing when γb
φ & ΩR.

In the steady state the bright state population can be
written as

ρ̇bb ∝
Ω2

R

γb + 2γb
φ

(ρgg − ρbb). (18)

The coherent population transfer from |d〉 to |q3〉 is de-
fined by their coherence

d

dt
(ρdd − ρ33) ∝ −4Jd3Im(ρd3), (19)

which in turn is controlled by the coherent coupling and
the incoherent dephasing

ρ̇d3 ∝ −iJd3(ρ33 − ρdd + ρdb)−
γPur + 2γb

φ

2
ρd3. (20)

The scale at which coherent transport is expected to be
reduced due to noise is γb

φ & Jd3. To derive the Förster

transport rates kgb between the ground |g〉 and the bright
state |b〉 and the dark |d〉 and |q3〉 state kd3 in the strong
dephasing limit we assume that coherences are small, if
they are not participating in transport, and that deriva-
tives of coherences are negligible13. For ρdb ≈ 0 and
ρ̇d3 = ρ̇gb = 0 we therefore have

ρd3 = i
−Jd3

γPur/2 + γb
φ

(ρ33 − ρdd), (21)

ρgb = i
ΩR

γb + 2γb
φ

(ρgg − ρbb). (22)

With the help of the above expressions we find the rate
equations

ṗg = −kgb(pg − pb) + γbpb + γPurp3, (23)

ṗb = kgb(pg − pb)− kbd(pb − pd)− γbpb, (24)

ṗd = kbd(pb − pd)− kd3(pd − p3), (25)

ṗ3 = kd3(pd − p3)− γPurp3, (26)

for |g〉, |b〉, |d〉 and |q3〉 populations with transfer rates

kgb =
Ω2

R

γb + 2γb
φ

, (27)

kd3 =
4J2

d3

γPur + 2γb
φ

, (28)

kbd = γb
φ, (29)

where state populations are bound by pi ∈ [0, 1]. Since
γb ≈ γPur and ΩR � 2Jd3, the reduction of absorption
for increasing γb

φ happens before the complete decoupling

of |d〉 and |q3〉. From Eqs. (21) and (22) we see that pop-
ulation transfer between |d〉 and |q3〉 is always coherent
although |d〉 is populated incoherently and the transfer
is suppressed by the dephasing rate γb

φ.
Transfer efficiency is calculated using steady state so-

lutions of Eqs. (23)-(26) as

η =
γPurp3

γPurp3 + γbpb
, (30)

where we assumed pg = 1. The efficiency has a maximum

at γb
φ =
√

2Jd3 ≈ J23 where it can be expressed as

η =
1

1 +
√

2 γb

Jd3
+ γb

γPur
+ γbγPur

4J2
d3

. (31)

Assuming that 2Jd3 � γb, γPur, the efficiency can be
written as

η ≈ (1− γb/γPur), (32)

as stated in the main text.

Supplementary Note 11:
Dephasing Rate due to Lorentzian Noise

Flux noise acting on Q2 leads to an effective dephasing
of the qubit with a dephasing rate depending on the noise
power spectrum. In this section, we consider the effect
of Lorentzian flux noise, in particular how it differs from
white flux noise, and the emergence of non-Markovian
effects. We study the essential physics with a single qubit
model for Q2 alone, described by the Hamiltonian

H2 =
ω2

2
σz2 + ξ(t)σz2 . (33)

Here, ω2 is the qubit transition frequency and ξ(t) rep-
resents the input flux noise with power spectral density
Sξξ(ω),

〈ξ(t)〉 = 0 , Sξξ(ω) =

∫ ∞
−∞

dτ e−iωτ 〈ξ(τ)ξ(0)〉 (34)

In the experiment, Sξξ(ω) is either a flat spectrum up to
a certain cutoff frequency SW(ω) [Eq. (5)] or a Lorentzian
spectrum SL(ω) [Eq. (6)].
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Supplementary Figure 7: Dephasing induced by Lorentizan noise. Dynamics of 〈σx2 (t)〉 as a function of Lorentzian noise
power bandwidth ∆ωL/2π = {10, 100, 1000} MHz. The noise amplitude A is decreased with increasing ∆ωL so as to keep γL
fixed at γL/2π = 1.6 MHz. Open squares indicate a calculated exponential decay of 〈σx2 (t)〉 within the Markov approximation
[see Eq. (41)] for γL/2π = 1.6 MHz. As the Lorentzian noise correlation time 1/∆ωL decreases (left to right), the system
dynamics are increasingly more faithfully described within the Markov approximation [Eq. (41)].

The Hamiltonian [Eq. (33)] is non-demolition with re-
spect to σz2 since [H2, σ

z
2 ] = 0, but leads to an effective

decay of 〈σx2 〉 and 〈σy2 〉 components, which we derive next.
The effective dephasing rate is extracted by studying the
dynamics of these observables. Moving into a frame ro-
tating at ω2, we write the Heisenberg equations of motion
for these operators as

σ̇x2 = −2ξ(t)σy2 , (35)

σ̇y2 = +2ξ(t)σx2 . (36)

The above coupled system is formally solved to obtain
a single dynamical equation for σx2 (t). Averaging this
equation under noise realizations, we arrive at

σ̇x2 (t) = −4

∫ t

0

dτ 〈ξ(t)ξ(t− τ)〉σx2 (t− τ). (37)

Note that the noise autocorrelation appears in the above
memory kernel; it is then possible to proceed via a Marko-
vian approximation provided the noise correlations de-
cay much faster than the relaxation dynamics of the sys-
tem, which are themselves driven by the noise. We make
this condition precise in a self-consistent way. Assuming
Markovian approximation, we can drop the system’s de-
pendence on its past history via the memory kernel and
extend the integral’s upper limit to infinity, thus obtain-
ing

σ̇x2 (t) = −4σx2

∫ ∞
0

dτ 〈ξ(τ)ξ(0)〉. (38)

The remaining integral is simply half the zero frequency
power spectral density of the noise signal (ignoring the
principle part that leads to a Lamb shift contribution,
not dephasing), so that

σ̇x2 (t) = −2Sξξ(0) · σx2 . (39)

Hence, the noise signal drives system decay at a rate
2Sξξ(0) within the Markovian approximation. For white
noise, which is δ-correlated, correlations always decay
faster than the induced decay. Using Sξξ(0) for white
noise, the dephasing rate γφ is given by:

γφ = 2AW (40)

More interesting is the case of Lorentzian noise. Eq. (39)
yields a decay rate γL for this case as well, so long as
the Lorentzian noise ‘appears’ white, namely when the
correlation time of the Lorentzian noise signal is much
shorter than the time scale of the decay it induces, 1/γL.
Since the Lorentzian noise correlation time is on the order
of its inverse bandwidth 1/∆ωL, we require 1/∆ωL �
1/γL, or ∆ωL � γL. If this is the case, the dephasing
rate is given by

γL = 2AL

(
∆ωL

2

)2
ω2

L +
(

∆ωL

2

)2 , ∆ωL � γL. (41)

Clearly, the dephasing rate is reduced compared to the
white noise value for the same noise amplitudes (AW =
AL). This is due to the colored noise spectrum which is
not in fact equal at all frequencies.

However, we caution that the above expression holds
only when the Lorentzian noise bandwidth is much larger
than the induced decay rate, ∆ωL � γL. In the current
experiment, this condition is not met and the Markovian
approximation should not hold. To observe dynamics in
this regime for the simple single qubit model, we numer-
ically compute the noise-averaged dynamics of 〈σx2 〉 as
governed by H2, over multiple realizations of the noise
ξ(t). By varying the bandwidth ∆ωL of the Lorentzian
noise, we are able to explore both Markovian and non-
Markovian regimes. For each ∆ωL, the noise amplitude A
is chosen such that the decay rate within the Markovian

8
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of center frequency νL of Lorentzian noise spectrum. This
measurement was performed at Lorentzian noise power Φ2

L =
0.016 pWb2 and coherent excitation. Orange solid line is a fit
to a sum of two Lorentzians.

approximation has the fixed value γL/2π = 1.6 MHz.
The dynamics of 〈σx2 (t)〉 (solid line in Supplementary
Fig. 7) for ∆ωL/2π = {10, 100, 1000} MHz increasing
from left to right is approximately an exponential decay.
As ∆ωL becomes large in comparison to γL - that is,
when the noise correlation time 1/∆ωL becomes increas-
ingly short relative to the noise-induced system relax-
ation time 1/γL - the Lorentzian noise-induced dynamics
approach those predicted within the Markovian approx-
imation (open squares in Supplementary Fig. 7). Due to
its non-Markovian effects Eq. (39) does not exactly de-
scribe the decay of coherence for the Lorentzian noise,
however, it offers a meaningful estimation that is used
when comparing the effects of the two types of noise.

Supplementary Note 12:
Numerical Simulations with Lorentzian Noise

Lorentzian noise spectra employed in the discussed ex-
periments have bandwidths ∆ωL that are on the order
of, or slower, than the pertinent circuit decay rates. This
implies that noise autocorrelation decay times surpass
typical system relaxation timescales. As such, a noise
environment structured in this way can give rise to non-
Markovian dynamics of the system density matrix: the
system’s state at time t can be affected by its history
over a time set by the autocorrelation time of the applied
noise. Note that this is the case even if the noise signal
itself is entirely independent of the system evolution, as
in the present setup, where the noise is algorithmically
generated. Integrating out the Lorentzian noise signal
yields complex memory kernels that cannot be collapsed,
unlike the case for Markovian dynamics. Our approach
incorporates the Lorentzian noise environment as part of
the system dynamics. In this way, we may still employ
a Lindblad master equation for simulations of the sys-

tem density matrix, at the cost of having to deal with a
stochastic term describing the system’s evolution.

To proceed, we add to the system Hamiltonian in
Eq. (6) a modulation of the Q2 energy splitting, given
by the time series ξ(t):

Hφ = ξ(t)σz2 ≡ ξ0 cos [ωLt+ φ(t)]σz2 (42)

Here, φ(t) is a random variable describing phase noise,
characterised by its statistical mean and variance:

〈φ〉 = 0 , 〈φ2〉 = ∆ωLt (43)

The variance being linear in time indicates that the phase
undergoes diffusion, with the parameter ∆ωL character-
izing the strength of this diffusion. The phase noise φ(t)
is often referred to as Brownian noise or a Wiener process
in other contexts and is the integral of Gaussian white
noise. ξ(t) has a Lorentzian power spectral density14

Sξξ(ω) = ξ2
0

∆ωL

2

(ω − ωL)2 +
(

∆ωL

2

)2 (44)

with a constant integrated power proportional to ξ2
0 (in-

dependent of the value of ∆ωL). Note that Sξξ(ω) is
written for ω > 0; a symmetrical contribution exists for
negative frequencies since ξ(t) is a classical signal. Fi-
nally, note that taking ∆ωL → 0 formally yields a coher-
ent modulation of the Q2 energy splitting at frequency
ωL.

For small ξ0 we solve the master equation, Eq. (9), with
the addition of Hφ to the system Hamiltonian. The cost
of adding a stochastic term to the system evolution is that
any physical quantity must be computed via an explicit
averaging procedure. In the Markovian approxiation, an
equivalent procedure is implicitly carried out when ‘trac-
ing out the bath’. For a given set of system parameters,
we propagate the Master equation to long times to obtain
an approximate steady state density matrix ρss. Then,
steady state correlation functions are computed starting
with the system in ρss. To obtain meaningful results,
these computations are repeated over multiple realiza-
tions of ξ(t); the relevant resonator and transmission line
power spectra are then given respectively by:

S2(ω) = (45)

γb

2

∫ ∞
−∞

dτe−iωτ 〈(σ+
b (τ)− 〈σ+

b 〉ss)(σ−b (0)− 〈σ−b 〉ss)〉φ

S4(ω) = κ

∫ ∞
−∞

dτe−iωτ 〈a†(τ)a(0)〉φ (46)

where 〈·〉φ indicates an ensemble average over multiple
realizations of φ(t). The subtraction of steady state av-
erages from the bright state correlation function serves
to remove the Rayleigh scattered peak from the trans-
mission spectrum.

For stationary problems, a variety of methods exist
to compute the above power spectra directly in the fre-
quency domain, foregoing the need for a Fourier trans-
form. Such techniques do not apply here, following in-
clusion of the explicitly time-dependent Lorentzian noise
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Supplementary Figure 9: Stochastically averaged master equation simulations. a Power spectral density calculated at the
resonator S4(ω) and waveguide S2(ω) output for Lorentzian noise with a center frequency of νc = 190 MHz and variable
modulation drive strength ξ2. b Calculated integrated power P4 as a function of the Lorentzian center frequency νL at fixed
modulation drive strength ξ2 = 0.0001. c Integrated powers P2 and P4 and the transfer efficiency η as a function of Lorentzian
noise modulation drive strength ξ2. Power spectra at lowest noise power are matched with experiment to fix overall scaling
factors, which are then used to scale all other spectra.

term. We find that the aperiodic, finite nature of com-
puted correlation functions here leads to well known ar-
tifacts in their numerical Fourier transforms, namely a
broad noise spectrum in the frequency domain due to
spectral leakage. To suppress this noise, we apply a
standard, total-power-preserving (Blackman) windowing
function prior to performing the Fourier transform. This
technique non-uniformly modifies the power at every fre-
quency component, in different ways for each correlation
function, restricting us to making only qualitative com-
parisons with experiment.

Simulated spectra S4(ω) and S2(ω) as a function of in-
creasing Lorentzian noise power (Supplementary Fig. 9a),
integrated power at the resonator P4 as a function of
Lorentzian center frequency νL (Supplementary Fig. 9b)
and the integrated power at the resonator P4, the open
waveguide P2 and the transport efficiency η as a function
of Lorentzian noise power (Supplementary Fig. 9c) are all
in good qualitative agreement with the experimental re-
sults (Figs. 3c, 4b and Supplementary Fig. 8).

Supplementary Note 13:
Effective Qubit-Environment coupling

Engineered noise with Lorentzain PSD emulates cou-
pling of Q2 to a classical phononic mode at center fre-
quency ωL and spectral width ∆ωL. We can estimate
the effective qubit-environment coupling by decomposing
the applied flux into a large static and a small fluctuating
component [Φ(t) = Φ0 + ∆Φ(t)]. Using Eq. (2) the qubit
transition energy can be decomposed as

Hq/~ = ω(t)σz2 = ω0σ
z
2 + σz2

dω

dΦ

∣∣∣∣
Φ0

·∆Φ(t). (47)

By assuming that a phononic environmental mode carries
at most a single excitation its harmonic spectrum can be

effectively substituted by that of a two-level system

Hq/~ ≈ ω0σ
z
2 +Kσz2

[
σxph(t) + σx†ph(t)

]
, (48)

where K = dω/dΦ·∆Φ0 is an effective qubit-environment
coupling constant and (σxph) is dimensionless Pauli oper-
ator with unit magnitude.

For experiments with Lorentzian noise we estimate the
effective qubit-environment coupling constant (K) as a
root-mean-square of Q2 transition frequency fluctuation
induced by applied structured noise.

Supplementary Note 14:
Modulating the Transition Frequency of Q2 with
a Coherent Tone

In order to elucidate the mechanism of energy trans-
port for Lorentzian noise applied to Q2 we perform an
additional measurement in which the Q2 transition fre-
quency is coherently modulated via the flux line while
it is simultaneously coherently driven via the waveguide.
This corresponds to the limiting case of very narrow noise
power spectral density. We initially adjust the frequency
of the coherent tone νc to be equal to the |b〉, |d1〉 fre-
quency difference ∆b,d1 as in the Lorentzian noise case.

Measurements of the power spectral density at the
resonator S4(ω) show, similarly to the Lorentzian noise
case (see Fig. 3c), a pronounced resonance at |d1〉
frequency composed of a broad part with linewidth
of approx. 20 MHz and a strong narrow peak with
the linewidth of approx. 500 kHz (see Supplementary
Fig. 10a). The narrow peak is comparable in width
with the environmental bright |b〉 state pure dephasing
rate γb

φ/2π = 380 kHz which indicates that it proba-
bly originates from the broadened and frequency shifted
coherent microwave drive tone applied to the waveg-
uide. When sweeping νc between 100 and 250 MHz
and keeping the power of the modulation tone con-
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Supplementary Figure 10: Coherent environmental modulation of Q2 transition frequency. a Measured power spectral
densities of radiation extracted from the resonator S4(ω) and re-emitted into the transmission line S2(ω) for coherent modulation
of Q2 transition frequency with center frequency at νc = 190 MHz and indicated powers Φ2

c . b Integrated extracted power P4

as a function of coherent modulation frequency νc at fixed modulation tone power Φ2
c = 54.6 aWb2. c Integrated powers P2

and P4 and the transfer efficiency η as a function of coherent modulation power Φ2
c .

stant at Φ2
c = 54.6 aWb2, P4 shows similar depen-

dence as in the white noise case where the extracted
power is maximized for νc = ∆b,d1 or ∆b,d1 (Supple-
mentary Fig. 10b). The linewidth of the resonances
∆νd1 = 14.1 MHz and ∆νd2 = 15.7 MHz correspond
to the |d1〉 and |d2〉 state spectral widths. In the case
of Lorentzian noise these were additionally broadened by
the Lorentzian PSD width of ∆νL = 10 MHz, which re-
sulted in ∆νd1,L = 30.0 MHz and ∆νd2,L = 21.5 MHz
(see fit in Supplementary Fig. 8).

For the low frequency coherent modulation the inte-
grated power extracted from the resonator P4 for νc =
∆b,d1 is almost twice as large as in the Lorentzian noise
case (see Supplementary Fig. 10c and Fig. 4b), with ap-
proximately half of the power originating from the narrow
peak at |d1〉. The enhanced value of P4 is in agreement
with the model proposed in the main text. The inte-
grated power of the radiation re-emitted into the waveg-
uide P2 is significantly smaller (0.7 Photons/µs) when
P4 reaches its maximum, as compared to white noise
(Fig. 4a) or Lorentzian noise (Fig. 4b) case. As a result
the internal transfer efficiency, as defined in the main
text, reaches maximum values above 95%. Although not
relevant for light-harvesting processes the depletion of the
bright |b〉 state population is a result of coherent popu-
lation trapping in the |d1〉 state and electromagnetic in-
duced transparency (EIT) of the bright |b〉 state. In our
experiment EIT originates from the destructive interfer-
ence between coherent excitation of the bright state |b〉
and strong coherent exchange between |d1〉 and |b〉 state
due to low frequency coherent modulation of Q2 transi-
tion frequency15,16.

Supplementary Note 15:
Excitation with incoherent microwave radiation

We engineer a broadband incoherent microwave signal
by up-converting white noise (see Supplementary Note
5). In the up-conversion process the high-frequency LO2

tone is multiplied by a low-frequency signal generated
with an AWG (see inset to Supplementary Fig. 11). In
our experiment, low-frequency white noise with flat spec-
tral density up to ωc/2π = 450 MHz and exponential
cutoff with characteristic width ∆ω/2π = 5.44 MHz
is up-converted using a coherent tone at ωLO2/2π =
6.371 GHz. The resulting high-frequency incoherent sig-
nal has a power spectral density with a constant ampli-
tude that spans over a 900 MHz wide band centered at
ωB/2π = 6.371 GHz as shown in Supplementary Fig. 11.
The attenuated incoherent signal is applied to the sample
at port 1, similar to the RF line in Supplementary Fig. 1.

Applying Lorentzian noise to the incoherently excited
system with central frequency νL = 190 MHz set at the
|b〉-|d1〉 frequency difference we observe no enhancement
of the extracted power S4(ω) at νd1 relative to νd2 (Sup-
plementary Fig. 12a) as in the case of coherent excitation.
Contrary to the coherent excitation where a multi-photon
process is fixed in frequency by a coherent tone, for the
incoherent excitation a multi-photon process occurs over
a larger frequency range and therefore does not produce
a pronounced peak at the |b〉-|d1〉 frequency difference.
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Supplementary Figure 11: Power spectral density of ap-
plied microwave signals. Comparison between incoherent and
coherent microwave signal, measured with a spectrum ana-
lyzer. The inset shows a diagram of the up-conversion pro-
cess.
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Supplementary Figure 12: Incoherently excited system subject to Lorentzian noise. a Power spectral density detected at
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L or equivalently an effective qubit-environment coupling constant K.
Lorentzian noise spectrum is centered at νc = 190 MHz for a and b.

The Lorentzian noise increases the transferred power
P4 when resonant with the |d〉 and |d1〉 or |d2〉 fre-
quency difference (Supplementary Fig. 12b) similar to
the coherent excitation case. The transfer efficiency η
(Supplementary Fig. 12c) shows a non-monotonic be-
haviour as a function of applied Lorentzian noise power
Φ2

L or effective coupling constant K with the maximum
at K/2π ≈ 130 MHz, similar to the coherent excitation
case. However, the maximal efficiency ηmax

L,inc. = 41%
is considerably lower compared to the coherent excita-
tion and Lorentzian noise. The reduced efficiency can

be attributed to the absence of a resonant multi-photon
process, which increases the efficiency of the coherently
excited system. On the other hand, the maximal effi-
ciency obtained with Lorentzian noise (ηmax

L,inc.) is larger
than the maximal efficiency obtained with white noise
(ηmax

W,inc.). This is in agreement with observations for the
coherently excited qubit system. We conclude that the
narrow Lorentzian noise spectrum enhances the excita-
tion transport when resonant with the appropriate en-
ergy level mismatch for both coherently and incoherently
excited qubit systems.
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