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Supplementary Figure 1. Experimental overview of A431 and normal tissues 
datasets. One A431 TMT set and two normal tissues TMT sets were prepared and 
subsequently aliquoted for HiRIEF separation using multiple IPG strips of different 
pH ranges. 



       
 
Supplementary Figure 2. Overlap of peptides (left) and gene protein products 
(right) identified from different IPG ranges in the A431 dataset. The peptides 
were filtered by 1% FDR for each individual plate. Gene protein products were 
filtered by 1% protein level FDR (using the “picked protein FDR” method by Savitski 
et al1). 
 
  



 
 

 
 

 
Supplementary Figure 3. Comparison of number of identified peptides and 
proteins (top) and number of unique peptides per protein (bottom) in the 
“normal tissues” dataset and the corresponding tissues in the Wilhelm et al 
publication. We downloaded the MS raw files corresponding to the five normal 
tissues (kidney, liver, tonsil, placenta, and testis) from the Wilhelm et al2 draft 
proteome publication, and searched them in the same pipeline as used for our MS 
data. The data in Wilhelm dataset comes from a total of 5 samples (one per tissue 
type) that were run in label free mode for a total MS acquisition time of 7 days. Our 
data comes from 17 samples (each one from a different individual) which were pooled 
into two TMT sets run on LCMS for a total acquisition time of 16 days. All peptides 
and proteins reported are at 1% FDR (peptide and protein level). The bottom figure 
shows the cumulative fraction of proteins identified ranked by their respective number 
of unique peptide identifications. About 25% of all proteins identified in the Wilhelm 
dataset had only a single peptide identified whereas only 10% of all proteins 
identified in our “normal tissues” dataset were single-peptide identifications. 
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Supplementary Figure 4. Evaluation of HiRIEF focusing sharpness, or pI based 
fractionation resolution for different IPG ranges.  Histogram of fraction spreads of 
all identified peptides in each IPG range. The fraction spread of each peptide is 
calculated as: number of highest fraction wherein a peptide is present – number of 
lowest fraction where the same peptide is present + 1. A peptide is considered present 
in a fraction if the MS1 area of the peptide in that fraction is at least 1% of the 
maximal MS1 area of that peptide in any fraction. 
 
 



 Supplementary Figure 5. Distribution of unique peptides over the 72 fractions of 
the IPG3-10 HiRIEF strip in different species. The percentages (of all unique 
peptides identified) contributed by each IPG3-10 fraction (numbered on the X-axis) 
are plotted. IPG3-10 strips have a linear pH gradient. For Neptuniibacter caesariensis 
(top), the drop of peptide yield at fractions 12 and 13 was due to poor extraction from 
the IPG strip to the 96 well plate. The distribution of unique peptides over the pI 
range appears to be universal across the different species analyzed. Marine bacteria 
datasets are from Muthusamy et al3 and the fungus dataset is from Zhu Y et al4. 
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Marine bacterium Neptuniibacter caesariensis  
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Marine bacterium Roseobacter sp.  
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Marine bacterium Dokdonia sp.   
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Fungus Malassezia sympodialis  



 

 
 
Supplementary Figure 6. Reproducibility of HiRIEF based fractionation. In the 
top two rows, the focusing fraction of each peptide is compared between different 
samples for the same IPG range. Only peptides that focused in one or at most two 
consecutive fractions were plotted. In the bottom row, different IPG ranges are 
compared for the same sample. Experimental pI values were calculated based on 
linear equations obtained by calibrations with fluorescently labelled pI markers (see 
Methods). 
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Supplementary Figure 7. Fraction specific yield of unique peptides in different 
IPG strips. The distribution of unique peptides per IPG fraction in each HiRIEF 
range employed to analyze the A431 cells is shown. Only peptides focusing in a 
single fraction are plotted. Y-axis is the percentage of unique peptides identified from 
each fraction. X-axis is the fraction number in the order of low to high pI values. 
  



 
 

 
Supplementary Figure 8. Search engine score (SpecEvalue) distribution of single 
amino acid variant peptides compared to known peptides. The SAAV peptides 
shown here were identified from A431 data at 1% class specific FDR at the discovery 
stage. The score distributions of discarded and curated SAAV peptides (by 
SpectrumAI) are shown as blue and red curves, respectively. Known peptides plotted 
here are unique peptides identified from the standard proteomics database search at 
1% peptide level FDR. 
 
  



 
 
 
Supplementary Figure 9. Frequency of amino acid substitution in curated 
SAAVs identified in A431 dataset. The SAAVs plotted here were curated by 
SpectrumAI. Substitutions supported both by DNA and RNA sequencing shown as 
red bars; substitutions with no evidence from either DNA or RNA sequencing shown 
as blue bars. Several types of amino acid substitutions, particularly Q>E, D>N, and 
E>Q, were over-represented in SAAVs without evidence in the sequencing data. 
Some of these enrichments could be explained by chemical artifacts occurring during 
sample preparation. For example, Q>E could be explained by deamidation.  
 



 
Supplementary Figure 10. Combined proteogenomics results of 6FT and VarDB 
searches in “A431 cells” and “normal tissues”. All novel peptides displayed were 
filtered applying a 1% class-specific FDR according to Nesvizhskii5. 
 



 
Supplementary Figure 11. Curation stage results of the proteogenomics pipeline 
for A431 cells and normal tissues dataset. The number of novel peptide candidates 
passing each curation step is shown. SpectrumAI only inspects novel peptides that 
possess a single amino acid substitution compared a known peptide sequence. 
  



 
 

 
 
Supplementary Figure 12.  Precursor mass error and score distribution of novel 
peptides that passed curation stage from A431 cells (top) and normal tissues 
(bottom) datasets. Search engine scores (such as SpecEvalue) are typically better for 
novel peptides than for known peptides, a natural consequence of the search space 
size influence, and therefore this parameter is of limited use for curation of candidate 
novel peptides post class-specific FDR cut. The shoulders present in the precursor 
mass error distribution of novel peptides suggest that some false discoveries still 
survived the curation steps. Novel peptides are from the proteogenomics searches 
whereas known peptides are from the standard proteomics searches. 
 
  



 
 

 
 
Supplementary Figure 13. Delta pI distribution of novel peptides identified from 
A431 and normal tissues dataset. Delta pI was calculated as the difference between 
experimental pI and theoretical pI. Novel peptides are from the proteogenomics 
searches whereas known peptides are from the standard proteomics searches. 
  



 

 
 
Supplementary Figure 14. Precursor mass error distributions of different 
populations of curated novel peptides. a) All novel peptides that passed curation 
stage. b) Novel peptides with neighboring peptides within 10 kb. c) Novel peptides 
with one amino acid substitution compared to a known peptide. d) Remaining novel 
peptides that don’t belong to b) or c). 
 
  



 
 

 
Supplementary Figure 15. Novel protein-coding loci findings in normal tissues 
dataset. a) The left pie chart shows the number of novel protein-coding loci 
supported by one, two or more peptides (peptides within 10kb distance were grouped 
into one loci); the right pie chart shows the different types of novel coding events 
supported by multiple peptides. b) An automatic categorization of novel peptides 
based on Refseq gene annotation. c) Chromosome Manhattan plot of novel peptides. 
y-axis represents the posterior error probability (PEP) in -log10 scale. d) Orthogonal 
data support for novel peptides including conservation analysis, PhyloCSF coding 
potential, A431 cell line RNA-seq reads evidence, Ribosome profiling, CAGE (up to 
500 bp upstream from peptide location), presence of peptides in draft proteome 
studies of Kim et al6 and Wilhelm et al2. Continuous data was discretized into binary 
value 0 or 1 for visualization purposes.  
 
 
 
 
 



 
 
Supplementary Figure 16. LncRNA CTD-2620I22.3 (ENSG00000267943) 
expression in public transcriptomics data. We assessed orthogonal transcriptomics 
support for the peptides found for this gene using the EMBL-EBI Expression Atlas 
(www.ebi.ac.uk/gxa). In two experiments therein, “The Human Protein Atlas” (32 
Uhlen’s Lab); and “RNA-seq of coding RNA of 19 human tissues from fetuses with 
congenital defects” (19 NIH epigenomics roadmap), this lncRNA transcript showed 
specificity to placenta, in agreement with the quantitative preference for placenta 
shown by the four novel peptides in our normal tissues dataset. 
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Supplementary Figure 17. Pseudogene and parental gene correlation. 
Pseudogenes and respective parental genes identified in the A431 cells treated with 
EGFR inhibitor (gefitinib) are plotted here. Pseudogene and parental gene protein 
ratios (from 10 samples – TMT reporter ion channels – at four time points, with the 
control channels used as denominators) were calculated using the median ratio of 
their unique peptides. On the top, with spearman correlation shown in y-axis, 
pseudogene-parental gene pairs were ranked from high to low correlation. PSM count 
of corresponding pseudogene and parental genes are shown below in the same order. 
Based on the PSM count plots, it can be observed that high or low correlation was not 
biased to genes identified with high or low number of PSMs. 
 
 
 
  



 

 
 
Supplementary Figure 18. VarDB database composition. It combines hypothetical 
peptide sequences from four different sources: CanproVar 2.07, COSMIC 718, 
Gencode 199,10 and LNCipedia 3.111. The sequences of pseudogenes and lncRNAs 
were translated in three reading frames to generate hypothetical peptide sequences 
and then in silico digested by trypsin. Redundant tryptic peptides found in known 
protein databases were discarded before concatenating to VarDB.  
 
 



 
 
Supplementary Figure 19. Curation of mutant peptides from COSMIC and 
CanProVar database. Entries from COSMIC8 were downloaded from 
http://cancer.sanger.ac.uk/cosmic (version 71) and were converted to mutant protein 
sequences by customized python script ConvertCosmic.py, then in silico digested into 
tryptic peptides with the script filter_var_pep.py, which also filtered away redundant 
known peptide sequences.  
CanProVar 2.0 database7 MSCanProVar_ensemblV79.fasta was downloaded from 
http://canprovar2.zhang-lab.org. Corresponding variant peptide sequences were 
generated by python script ConvertCanProVar.py and redundant known sequences 
were removed. Substitutions of isoleucine to leucine and vice versa were removed in 
both databases. 
 
  



 
Supplementary Figure 20. The distribution of Ribo-seq reads, CAGE reads and 
conservation score for known peptides (green), random loci (blue) and novel 
peptides (red). To choose a threshold to convert Ribo-seq and CAGE evidence12 to 
binary values, 10000 random genomic loci were generated to compare their Ribo-seq 
and CAGE reads counts with those of known and novel peptides. For Ribo-seq and 
CAGE reads, 1 and 100 were used, respectively, as thresholds to determine if a novel 
peptide has support or not. For conservation, 0.3184 (first quartile of known peptides) 
was used as the cutoff. 
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