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Supplementary Note 1. Scattering Effect of Grating Elements 

 The sub-micron particles used as 2nd-order grating in this study are of a square cuboidal shape 

(with dimensions a×a×h), and the orientation of their edges are parallel to the local coordinates (r, φ, z) 

of ring resonator, as shown in Supplementary Figure 1. The scatterers are of the same height as the 

waveguide (i.e., h = 0.4 µm or 0.6 µm in this paper), and attached to the inner-sidewall. 

 For scattering the virtually transverse-polarized [1] (i.e., in the x-y plane) light fields bounded 

in the sidewall evanescent region, it is essentially the transverse cross-sectional area (i.e., a2) of such 

cuboids that dictates the scattering behaviour of the grating [2]. The transverse size of each grating 

element in the proof-of-concept devices here is a = 100 nm, considering the resolution limits of electron 

beam lithography used for defining the waveguide and gratings. The scattering of particles of such 

transverse size, given the wavelength of illumination λ = 1550 nm in this study, can be well described 

by the Rayleigh scattering approximation as a << λ [3]. That is, the light scattered from each grating 

element can be approximated by radiation from a dipole antenna, with the phase locked to the driving 

transverse evanescent fields [3]. The polarizability of such cuboidal scatterers, α, is in general a tensor 

that quantifies the dipole moment p induced by external field E [3] 

p E         (1) 

However, the fact that the sides of cuboidal scatterers are orientated along the axes of local coordinates 

(r, φ, z) results in a reduced form of polarizability as a diagonal matrix [2] 
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where αii (i = r, φ, z) represents the polarizability for dipole moment component pi with an external field 

Ei. Considering the z-component electric field is negligible at sidewalls, the local scattering of 

evanescent wave at each grating element can be described as 
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Note that under Rayleigh approximation αii (i = r, φ) is a real number [2], as here the absorption by SiNx 

scatterers can be neglected (cf. [4]), and no instantaneous phase shift should be imparted on the scattered 
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fields. As a result, the two transverse electric components (i.e., Er and Eφ) retain their ±π/2 phase 

difference with each other after scattering. This assumption is justified by the Stokes polarimetry 

performed on the near-field emission of devices (shown in Figure 5 of main text), as the measured 

Stokes parameters as a function of the azimuthal position (φ) are all practically in-phase with the curves 

predicted by theory. In other words, any phase change induced by scattering of Er and Eφ will alter their 

phase difference from ±π/2, so that tangible phase shifts between the measured and theoretical Stokes 

parameter curves will have appeared here. 

 

Supplementary Figure 1. Geometry of the Rayleigh scatterers placed in the evanescent region. All the scatterers 

used in this work are in a square cuboidal shape with the dimensions of a×a×h (a = 100 nm for the fabricated 

devices and h is the waveguide height), and the edges of scatterers are aligned with the local coordinates (r, φ, z) 

to ensure no crosstalk among different field components is induced by scattering. 

Supplementary Note 2. Phase-matching in CVV Scattering  

 The 2nd-order-grating-like scatterers distributed along the ring resonator perturb the evanescent 

wave of whispering-gallery modes (WGMs) circulating in the ring, and the scattered waves collectively 

produce vertically propagating waves. The interaction among the WGMs, grating, and scattered waves 

is generally governed by the following angular phase-matching condition 

WGM grating k  K K            (4) 

where KWGM = ±φ∙2πneff/λ = ±φ∙p/R and Kgrating = ∓φ∙2π/Λ = ∓φ∙q/R are the local wave vectors of the 

WGM and of the angular grating, respectively (the opposite signs of these two vectors indicates they 

are always in the opposite angular directions, φ is the azimuthal unit vector, neff is the effective index 

of WGM, Λ is the period of grating, p is the azimuthal order of WGM, q is the number of grating 

elements, and R is the radius of resonator).  kφ = φ∙Ksca denotes the φ-component of the scattered wave 

vector, as illustrated in Supplementary Figure 2. As a result, the angular phase-matching can also be 

written as 
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Here we define the azimuthal propagation constant (phase shift per unit azimuthal angle) of the scattered 

wave as l = kφ/R, or, l = ±(p – q). Note here the choice of the sign (±) depends on the direction of WGM 

(i.e., clockwise or counter-clockwise). The scattered vector wave thus possesses a helical wavefront as 

   sca exprE E il    E r       (6) 

and non-zero orbital angular momentum (OAM) can be observed if the system is configured away from 

the Bragg reflection condition, i.e., p – q ≠ 0.  

To sum up, the physical interpretation of the helical wavefront in CVVs can be made as follows: 

the WGM circulating around the resonator carries a spatial phase profile as exp(±ipφ) (i.e., represented 

by the wave vector KWGM), is scattered by the angular 2nd-order grating and imparted with a 1st-order-

diffraction phase as exp(∓iqφ) (i.e., characterized by the vector Kgrating). And therefore, the scattered 

wave exhibits a spatial phase as exp(ilφ) with a topological charge l = ±(p – q). 

The above phase-matching rule is elaborated in [5]. 

 

Supplementary Figure 2. Illustration of angular phase-matching in the emission of cylindrical vector vortex 

beams from the angular grating based devices. The deviation from the Bragg reflection in the ring resonator (i.e., 

the mismatch between the azimuthal mode order of WGM and the grating element number) gives rise to the helical 

wavefront and non-zero OAM carried by the scattered waves. 

Supplementary Note 3. Transverse Spin State in Evanescent Wave 

The transverse spin state in the perturbed evanescent wave is defined as 
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where EL and ER are the local left- and right-hand circular polarization components in the evanescent 

wave, respectively, under the cylindrical basis (r, φ) 
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in which [*]† denotes the conjugate transpose of the right- or left-hand circular polarization Jones vector, 

and Eeva ∝ [Err Eφφ]T  (Err = WrrEr and Eφφ = WφφEφ). As a result, the transverse spin state can be explicitly 

rewritten as 
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Additionally, note that Err and Eφφ retain their ±π/2 phase difference after grating scattering 

(Supplementary Note 1), and thus the local polarization unit vector in the polar basis always follows 

the form as [Err Eφφ]T = [cosγ ±isinγ]T, where γ is a real number. If we denote here the ratio of the two 

components by a real number κ = iEφφ/Err, the dependence of σ on this ratio can be obtained as  
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Supplementary Note 4. Formulation of Cylindrical Vector Vortices Emission 

 The phase-matching condition that governs the WGM and grating scatterers has been discussed 

in the previous Note to show the essence of this device. However, to fully present the interaction 

between the transverse spin in evanescent waves and the OAM in CVVs, a more explicit formulation 

is presented here. The evanescent wave of WGMs, written in the cylindrical polarization basis as Ein ∝ 

e±ipφ[Er Eφ]T, is perturbed by the second-order-grating-like scatterers when circulating around the 

resonator. Here we denote the positive integer p as the azimuthal mode number of WGMs, and the two 

counter-propagating degenerate WGMs resonating in the same wavelength have the mode numbers of 

p (counter-clockwise, CCW) and p (clockwise, CW), respectively. The perturbation of gratings to the 

evanescent wave is generalized in a matrix as 
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where Wrr and Wφφ are real numbers that reflect the modulation on the amplitudes of local transverse 

(Er) and longitudinal (Eφ) fields, respectively, due to grating perturbation (see Supplementary Note 1). 

The off-diagonal elements of M1 are vanishing as we assume the scattering does not introduce coupling 

between orthogonal field components (Supplementary Note 1). Note that the phase acquired in 

scattering δ(φ) is not an instantaneous phase shift to the scattered fields, but only represents the relative 
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phase delay between the scattered waves at different locations. From the phase-matching condition 

above (i.e., l = p – q) and the spatial phase of WGMs (i.e., ±pφ), it’s straightforward to find that δ(φ) = 

∓qφ.  This result agrees with the phase imparted on the first-order wave in 2nd-order-grating diffraction 

derived using coupled-mode theory (cf. supplementary material of ref. [5]).  

In addition, as WGMs travel around the resonator, the vector evanescent wave experiences a 

rotation of local coordinates (r, φ) with respect to the global laboratory frame (x, y), as shown in main 

text Figure 1c. The effect of this rotation on the emitted CVVs (represented in the basis of [Ex Ey]T) can 

be written with a single matrix M2 as 

2

cos sin

sin cos

x rr rr

y

E E E

E E E 

 

 

      
       

     
= M                     (13) 

The final output CVV (Eout = M2·M1·Ein) can be obtained in the basis of circular polarizations 
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where lTC = ±(p – q) is the topological charge. By incorporating the transverse spin state σ defined in 

Supplementary Equation (10), the output can be written more explicitly as a function of σ 
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Supplementary Note 5. Angular Momentum in Cylindrical Vector Vortices 

 The cylindrical vector vortices (CVVs) emitted from the angular-grating based devices 

considered in this paper exhibit good paraxiality, as the radius of ring resonator (R = 80 μm) is much 

larger than the wavelength (λ = 1.55 um) [6, 7]. The angular momentum (AM) carried in paraxial optical 

vortex beams can be essentially considered as the sum of the spin and orbital AM components, which 

are associated with the polarization and spatial properties of light, respectively [8, 9]. The cycle 

averaged z-component of the spin AM (SAM) and orbital AM (OAM) per unit length per photon of a 

vortex beam can be written as [9] 
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By substituting the CVV shown in Supplementary Equation (15) into the equations above, the SAM 

and OAM components carried by the CVV are 

zS σ              (18) 

 TCzL l σ                    (19) 

where σ is the transverse-spin state in the near-field evanescent wave. The total angular momentum 

(TAM) in a CVV (Jz = Sz + Lz) is thus simply written as 

TCzJ l                (20) 

Supplementary Note 6. Geometric Phase Induced by Coordinate Rotation 

As the polarization state of CVVs is space-variant [6], here the Pancharatnam phase is used to 

define the phase difference of light fields in different positions in CVVs [7], that ΦP = arg⟨E(r1, φ1), 

E(r2, φ2)⟩, where arg⟨E1, E2⟩ is the argument of the inner product of the two Jones vectors E1 and E2. 

Following this definition, the Pancharatnam phase of fields at two different positions (r1, φ1) and (r2, φ2) 

in a CVV is given by 

 P TC arg cos sinΦ l iσ                  (21) 

where Δφ = φ2 – φ1, and the CVV excited by CCW (CW) WGM takes the + () sign in the equation. 

The gradient of Pancharatnam phase along the azimuthal direction is 
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Clearly, the Pancharatnam phase in CVVs is a linear function of coordinate φ, and thus we can rewrite 

it as 

P TCΦ l σ             (23) 

Considering the SAM component carried by CVVs shown in Supplementary Equation (18), the 

Pancharatnam phase can be generalized as 

P TCΦ l d   S        (24) 

where S = Szħ
-1·z is the SAM per photon, and Ωφ is the angular velocity of reference frame rotation with 

respect to the coordinate φ for Pancharatnam phase comparison (see main text Figure 1c). Here, Ωφ = 

±z for CCW and CW WGMs, respectively. 
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Supplementary Note 7. Techniques for Polarization and OAM States Characterization 

 

Supplementary Figure 3. Experimental setup for device characterization and the observation of the transverse-

spin induced SOI effect.  

The experimental characterizations of the devices are performed with the setup shown in 

Supplementary Figure 3. For the excitation of WGMs and hence emission of CVVs, the continuous-

wave light from the tunable laser source (8461B, Agilent) is controlled with a fiber polarization 

controller (FPC561, Thorlabs), and the quasi-TE mode in the waveguide is excited by launching the 

horizontally polarized light into one of the ports (e.g., Port 1 as shown in Supplementary Figure 3) using 

a lensed fiber (SMF-28E+LL, Corning). A small fraction, 1%, of the input light is tapped using a coupler 

(PMC1550-90B-FC, Thorlabs) and directed to another collimator (F240FC-1550, Thorlabs) to serve as 

the reference light for the interference with the emitted CVVs.  

For the measurement of the emission spectrum of the device, the vertically emitted beam from 

the device plane is collected and collimated with a 20X objective lens (UPlanFLN, Olympus) positioned 

in the working distance (1.7mm) away from the device. A power meter (PM122D, Thorlabs) is placed 

behind the collimating objective lens to record the dependence of emission power on the working 

wavelength, while the output wavelength of the tunable laser is swept from 1500 nm to 1640 nm with 

the step of 10 pm.  

For measuring the average cylindrical-basis polarization ellipticity of CVVs, a liquid crystal 

based element called Radial Polarization Converter (RPC, ARCoptix S. A., Switzerland) is used to 

selectively measure the power of Eφ and Er components. The RPC can be typically used for its spatially 

varying anisotropy to convert linearly polarized light into vector beams of azimuthal or radial 

polarizations [11]. Here the reversed effect of this element is employed: by injecting the light into the 

exit side, Eφ and Er in the CVV will be converted into x- and y-polarized light leaving the entrance side, 

respectively. A linear polarizer (LPNIR100-MP2, Thorlabs) is then used to filter out one of the 
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components, and by detecting the power of the two orthogonal components as Pφ and Pr, the squared 

polarization ellipticity (ε2) in the CVV determined by the near-field transverse spin state can be obtained 

as ε2 = Pr/Pφ or Pφ/Pr. 

For Stokes parameters measurements, the near-field pattern of the CVV is imaged onto an 

InGaAs camera (C14041-10U, Hamamastu) with an achromatic lens (f = 250 mm, AC254-250-C-ML, 

Thorlabs), and the linear- and circular-polarizations are obtained by adjusting the quarter-wave plate 

(QWP, AQWP 10M-1600, Thorlabs) and the linear polarizer (LP) mounted on continuous rotation 

mounts (CRM1, Thorlabs). 

For the characterization of OAM states in CVVs, a phase-only reflective spatial light modulator 

(PLUTO SLM, HOLOEYE Photonics AG) loaded with grey-scale fork-grating patterns is used [12]. A 

linear polarizer is first used to acquire one of the linear-polarized components in the CVV, which 

generally is a mixture of two topologically charged vortices as shown in Equation (4) in the main text. 

The central axis of the polarized CVVs is then aligned with the center of fork-grating patterns on the 

SLM. For each incident CVV, the SLM is loaded with a series of fork-grating images with consecutive 

integer topological charges, e.g., lSLM = -5, -4, …, +5. The light reflected off each image is focused by 

an achromatic lens (f = 150 mm, AC254-150-C-ML, Thorlabs) followed by the InGaAs camera, and 

the power of the corresponding OAM component lSLM is obtained by integrating the intensity of the 

central Gaussian-like spot [13]. The process is repeated for the other linear-polarized component, and 

the measured OAM spectrum of the incident CVV is then obtained by averaging the two corresponding 

OAM components over the two linear polarization components. 

Supplementary Note 8. Preliminary Characterization of Devices 

 

Supplementary Figure 4. Measured emission spectral response of sample device W6-8 as input wavelength is 

swept from 1500-1640 nm. The inset shows a typical near-field intensity profile of emitted CVVs. 
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The measured emission spectral response of sample WG6-8, as an instance, is plotted in 

Supplementary Figure 4 after normalization to the output power of tunable laser. The central 

wavelength at which the emitted CVV has lTC = p  q = 0, is λc = 1596.6 nm, and the free spectral range 

is around 2.2 nm. At the wavelengths longer (shorter) than λc, CVVs carry positive (negative) integer 

lTC at the resonance peaks. The inset shows a typical near-field intensity profile of the device at the 

resonance wavelengths. The long-range variation of peak emitted power across the spectral range is 

primarily caused by the fixed gap between access waveguide and ring resonator that couples varying 

power into the resonator across the spectrum.  

 

Supplementary Figure 5. Far-field profiles and interferograms of left-hand circular-polarized components of 

CVVs from device WG6-8.  

Some typical far-field intensity profiles and interferograms of CVVs are illustrated in 

Supplementary Figure 5, in which the device WG6-8 is configured for the emission of CVVs with lTC 

from 2 to +4. The left-hand circular polarized (LHCP) component is obtained by filtering the far-field 

CVVs with a QWP and LP combination, and then interferes with the LHCP Gaussian beam. For each 

CVV of lTC, the LHCP component possesses the OAM state of lLHCP = lTC - 1 (see Equation (4) in the 

main text), and therefore each interferogram shown in the figure clearly exhibits the spiral fringes with 

the number of lLHCP [5]. 

Supplementary Note 9. Discussion on the Measured Stokes Parameters 

Generally, the fluctuations in the measured Stokes parameters along the resonator (azimuthal 

direction), as shown in Figure 5 in the main text, are attributed to the non-uniformity of fabricated 

gratings, as well as the decaying intensity of WGMs along the resonator. The deviation of measurements 

from the theory is more evident with devices of smaller |S3|. This is possibly caused by the light that is 

scattered from the other (outer-) side of waveguide, carrying the opposite σ, due to sidewall roughness. 

In some devices, standing-wave-like patterns (e.g., map (iv) in Figure 5c) are introduced by the 

interference of scattered co-existing TE and TM modes, because in these waveguide designs these two 
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modes are more degenerate and single-polarization-mode excitation is more critical to polarization 

control in mode launching. 

Supplementary Note 10. Experimental Setup for Spin-Orbit Unidirectional Coupling 

The experimental setup for the measurement of spin-orbit controlled unidirectional coupling is 

shown in Supplementary Figure 6. The polarized light from the tunable laser is collimated with a 

collimator and then reflected by the SLM for the conversion to the vortex carrying OAM state lin. The 

linear-polarized vortex is imparted a certain polarization state (σin) by the rotatable QWP. A 20X 

objective lens is used for focusing and illuminating the prepared vortex of spin and orbital AM states 

<σin, lin> onto the device. Two lensed fibers are used for collecting the received power from the 

waveguide Ports 1 and 2, respectively. 

 

 

Supplementary Figure 6. Experimental setup for the measurement of spin-orbit controlled directional coupling 

of waveguide modes. 
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