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Reviewer #1 (Remarks to the Author):  
 
Spin-orbit interaction of light induced by transverse spin angular momentum engineering  
Zengkai Shao et al.  
 
The authors study an integrated optical structure capable of generating vortex beams from a 
guided optical waveguide, via a circular resonator with indentations, very similar to Ref. [41] in 
structure and in physics. However, the authors provide a crucial insight and convincingly 
demonstrate a novel phenomena. While the authors of Ref. [41] consider their vortex beams as 
being azimuthally polarized, neglecting other components of the electric field in the guided 
modes, in the present work the authors take into full account the different components of the 
electric field in the waveguide, and crucially, their phase relation, to show that the vortex beam 
will have different circular polarization components (spin angular momentum) on top of their 
vortex character (orbital angular momentum). The ratio of their amplitudes is determined by the 
transverse spin of the waveguide mode. The phase relation of the electric field components in the 
waveguide is determined by the spin-momentum locking phenomenon, and the transverse spin 
can be tuned by changing the parameters of the waveguide. By doing so, the authors demonstrate 
that the transverse spin angular momentum can be converted into OAM in the radiated vortex 
beam.  
 
After reading this work, I completely agree with the authors that "This is the first demonstration 
of an SOI effect resulted from the interaction between the intrinsic OAM and transverse SAM of 
light" to the best of my knowledge. I believe this is a remarkable achievement. At first I was 
skeptical on how they would prove this to be the case, but I was very pleasantly surprised at the 
extremely clear argument that the authors use, particularly the elegant simplicity and clarity of 
Eq. (5) and the excellent geometric explanation of the trasnverse spin giving rise to a geometrical 
phase due to the angular rotation of the waveguide. More importantly, they perform a clear 
experimental demonstration that agrees extremely well with their result. I was completely 
convinced of their argument after seeing how "the relative intensities of the two dominant peaks, 
i.e., the two constituent CP vortices, can be changed by modifying σ." On top of this, the authors 
even show the reciprocal situation, using the structure for unidirectional coupling of AM 
components in vortex beams.  
 
In my opinion this work is a very important step in the field of angular momentum of light. It is 



extremely interesting to the community, it has an excellent introduction, has very elegant 
theoretical foundations and simple explanations, is supported by very solid experiments, and 
should definitely be published in Nature Communications. With this very positive opinion, I 
have only minor suggestions for the authors:  
 
- After Eq. (2) it is argued that sigma is a real number because the electric fields are: but what 
about W1 and W2? are they real as well? In the supplementary information it is claimed that they 
are both real numbers, but I do not see any physical reason that they couldn't be complex in 
general. The polarizability of the scatterers might induce phase changes. The real character of 
W1 and W2 should be justified (at least in the supplementary materials).  
 
- It would be much easier for readers if Eq. (3) was better introduced. The rotation matrix 
appears when converting the fields at each location from a cylindrical basis (azimuthal and radial 
electric field components, corresponding to longitudinal and transverse components of the 
waveguide) into the global rectangular (xy) coordinate system. This indeed introduces a 
geometric phase that depends on the transverse spin of the waveguide. This is very clear in the 
SI, but could be made much clearer in the main text.  
 
- The notation used in page 9 with the angled brackets is not defined. I understand the authors are 
writing the spin and orbital angular momenta <S,L> but this should be clarified.  
 
- Fig 2(d): Please add a label to the colormap: clarify it is showing i E_long/E_trans  
 
- The introduction has a very complete review of the field. However, there are some works 
closely related to some aspects of the present work: the coupling of radiated light to and from 
transverse spin in the evanescent region near a rectangular integrated waveguide, also by using a 
laterally located scatterer, and also considering the different coupled polarization components for 
sorting and synthesis of different polarization states, similar to what is done here but with no 
OAM, in works [A,B,C,D] which the authors could consider including.  
[A] ACS Photonics, vol. 1, pp. 762–767, 2014.  
[B] Opt. Lett., vol. 39, pp. 1394–1397, 2014.  
[C] Laser Photon. Rev., vol. 8, pp. L27–L31, 2014.  
[D] Nano Lett., vol. 17, pp. 3139–3144, 2017.  
 
- Finally, an optional suggestion. I believe the title doesn't make justice to the work: right now it 
seems a very general title and makes a reader wonder what is different to previous spin-orbit 
interactions based on spin-angular momentum. The title does not mention intrinsic OAM. Here 
for the first time they show interaction between intrinsic OAM and transverse SAM, the authors 
might consider mentioning IOAM in their title.  
 



 
Reviewer #2 (Remarks to the Author):  
 
 
This work investigates a spin-orbit interaction phenomenon of the coupling between the 
transverse spin of whispering-gallery (WG) modes and the intrinsic orbital angular momentum 
(OAM, vortex) of the outgoing far field.  
The idea is interesting and novel, and it can be published in some form in Nature 
Communications, provided there is a clearly described theory and the corresponding experiment.  
Unfortunately, I found it to be very difficult to follow the explanations in the manuscript, both in 
its theoretical and experimental parts.  
The mixture of various phases and topological numbers is confusing. It seems that p is the OAM 
quantum number of the WG mode, while q is the number of scatterers. Then, why the number of 
scatterers results in additional vortex phase exp(-iq\phi)?  
Does this assume a kind of diffraction-grating scattering along the azimuthal coordinate? What 
determines the momentum matching condition in this case?  
Next, \sigma is defined as the ratio of the radial and azimuthal field components (which have a 
pi/2 phase difference producing the transverse spin). Usually, in the literature on the topic, 
\sigma denotes the wave helicity or spin, i.e., it is better to make the substitution  
\sigma —> 2\sigma/(1+\sigma^2) throughout the paper. This will simplify equations.  
Then, as far as I understand, there should be a sort of selection rules for the coupling between 
different WG modes (characterized by p and q numbers) and different far-field vortex modes 
(characterized by the vortex charge \ell and polarization \sigma). What are these selection rules? 
It seems that they somehow correspond to the experimental results in Fig. 7 but this is not clearly 
explained.  
The experimental part is also very difficult to understand. The WG modes are denoted as 
WG_{m-n}. What are the {m-n} numbers? Where is the azimuthal index p?  
Why the full Stokes polarimetry is needed if only the transverse spin matters?  
To summarize, I recommend the authors to considerably improve the presentation and to make 
the manuscript more reader-friendly and accessible for a general audience. There are too many 
technical details and plots but there is lack of clear explanation and emphasis for the central 
results of the work.  
 
 



Response to Reviewer’s Comments on Nature Communications Manuscript NCOMMS-
17-22490:

‘Spin-orbit interaction of light induced by transverse spin angular momentum
engineering’ by Zengkai Shao et al. 

Reviewer 1: 

[general comments omitted] – thanks for the very enthusiastic comments! 

(1) After Eq. (2) it is argued that sigma is a real number because the electric fields are: but 

what about W1 and W2? are they real as well? In the supplementary information it is claimed 

that

they are both real numbers, but I do not see any physical reason that they couldn't be complex 

in general. The polarizability of the scatterers might induce phase changes. The real character

of W1 and W2 should be justified (at least in the supplementary materials).

Response: Thank you for the comment. This is a critical point indeed and should have been 

better clarified in the manuscript. 

The two parameters W1 and W2 defined in this paper are used to characterize the scatterers’ 

modulation on the field strength of electric components in evanescent wave scattering. The 

values of W1 and W2 (including being complex or real) are primarily subject to the type (i.e., 

Rayleigh or Mie) of scattering occurred, the geometric shape and material of the scatterers, 

as briefly discussed below. 

• In this study, considering the constraints by fabrication techniques, square cuboidal

scatterers are used for scattering the evanescent wave uniformly along the ring

resonator waveguide. For scattering the predominantly transverse-polarized

evanescent fields (i.e., Er and Eφ as explained in the paper), the type of scattering

only depends on the transverse cross-section (in the x-y plane) of particles. The

square transverse cross-section of the scatterers in this work is a2 (a = 100 nm), and



particle scattering of such cross-section at the given wavelength (λ = 1590 nm) can 

be well described by the Rayleigh approximation, as a << λ. As a result, the light 

scattered from each scatterer can be approximated by dipole radiation, with the 

phase locked to the driving transverse evanescent fields. 

• The edges of the square cuboidal scatterers are strictly aligned with the local 

cylindrical coordinate axes (r, φ, z), so that the polarizability tensor of such particles 

is in fact a 3-by-3 diagonal matrix and the diagonal elements (αrr, αφφ, αzz) represent 

the polarizabilities in the r, φ, and z directions, respectively. In other words, the 

scattering off such particles does not introduce crosstalk among orthogonal 

cylindrical field components. 

• The polarizabilities αrr, αφφ, and αzz can be regarded as real numbers, because the 

absorption by SiNx particles is negligible for 1590 nm light. Consequently, there is 

no instantaneous phase change in the Rayleigh scattering by the scatterers here, so 

that W1 and W2 can be assumed as real numbers. 

• Interestingly, the assumption that W1 and W2 are real numbers has actually been 

justified by close examination of the measurements from the Stokes polarimetry 

performed on the near-field emission of devices (shown in the panel (v) curves of 

Figure 5), as the measured Stokes parameters as a function of the azimuthal position 

(φ) are all practically in-phase with the curves predicted by theory. In other words, 

any phase change induced by scattering of Er and Eφ would have altered their phase 

difference from ±π/2, so that tangible phase shifts between the measured and 

theoretical Stokes parameter curves would have appeared, which we didn’t observe 

in experiment. 

Revision 1: Following the Reviewer’s advice, we have added a new note to the 

supplementary material, as the Supplementary Note 1: Scattering Effect of Grating 

Elements, to elaborate the scattering effect by such particles and the true character of W1 

and W2 (including the analysis above). 1 figure, 4 reference papers, and 4 equations are 

included in this note, so that all other figures, references and equations in the supplementary 

material have been renumbered accordingly 

Revision 2: In addition, the following revisions are also made to the main text and 

supplementary material to better clarify the discussion regarding W1 and W2. 



• The notations W1 and W2 have been changed to Wrr and Wφφ, respectively, 

throughout the entire paper, for a clearer indication of their physical nature and 

connection to the polarizabilities of the particle. 

• The following passage is inserted to the main text paragraph after Table 1 to justify 

our design of the scatterers. 

“Intuitively, the simplest geometry of the scatterers for projecting the evanescent-

field transverse-spin information into far-field with high fidelity is spherical 

Rayleigh particle22. However, the fabrication of sub-micron spherical scatterers, 

whether of metallic or dielectric nature, placed uniformly in the evanescent region 

along the resonator is rather challenging. Here we utilize square cuboid structures 

(as shown in Figure 1b), attached to the inner sidewall and of the same height as 

waveguide, as Rayleigh scatterers, allowing for both one-step etching in fabrication 

and highly uniform scattering of evanescent waves along the entire resonator (see 

Supplementary Note 1)” 

 (2) It would be much easier for readers if Eq. (3) was better introduced. The rotation matrix 

appears when converting the fields at each location from a cylindrical basis (azimuthal and 

radial electric field components, corresponding to longitudinal and transverse components of 

the waveguide) into the global rectangular (xy) coordinate system. This indeed introduces a 

geometric phase that depends on the transverse spin of the waveguide. This is very clear in the 

SI, but could be made much clearer in the main text. 

Response: Thanks for the valuable comment.  

Revision 1: Following your suggestion, the description of Equation (3) and the local 

coordinate rotation it stands for has been clarified, as the original remarks  

“In addition, the vector fields of WGMs travelling along the resonator experience a rotation 

of local coordinate frame, which is described by the matrix”  

are now extended to  

“In addition, the vector fields of CCW WGMs travelling along the resonator experience a 

rotation of local coordinates (r, φ) with respect to the global reference frame (x, y) as φ·z 

(see Figure 1c, and z is unit vector), which can also be described by the matrix”. We believe 

this new description allows for easier understanding with a clearer reference to the 

illustration in Figure 1c. 



Revision 2: In addition, in the introduction to the geometric phase induced by coordinate 

rotation (i.e., the passage before Equation (6)), a short reference to Equation (3) is now 

inserted: “… a transverse-spin dependent geometric phase that stems from the rotation of 

local vector field, as represented by Equation (3)”. However, we believe that the 

introduction and detailed explanation in the geometric phase is better given in the passage 

after Equation (5), as before, because the generalization of this geometric phase (given at 

the end of the passage after Equation (6)) involves the average spin angular momentum Sz, 

which is given in Equation (5). In this way, the discussion on the geometric phase appears 

more compact in the paper without redundancy.  

(3) The notation used in page 9 with the angled brackets is not defined. I understand the authors 

are writing the spin and orbital angular momenta <S, L> but this should be clarified. 

Response: Accepted with thanks.  

Revision: Following your suggestion, a short sentence is now added after the first 

appearance of this notation (in the section of Spin-orbit controlled unidirectional 

coupling): “… i.e., <2σ/(1+σ2), lTC-2σ/(1+σ2)> and <-2σ/(1+σ2), lTC+2σ/(1+σ2)>. Here the 

notation <s, l> is used to indicate the SAM (s) and OAM (l) states of light.” 

(4) Fig 2(d): Please add a label to the colormap: clarify it is showing i E_long/E_trans. 

Response: Thanks for the advice.  

Revision: A label as ‘iElong/Etrans’ is now added at the top center of Figure 2d. 

(5) The introduction has a very complete review of the field. However, there are some works 

closely related to some aspects of the present work: the coupling of radiated light to and from 

transverse spin in the evanescent region near a rectangular integrated waveguide, also by using 

a laterally located scatterer, and also considering the different coupled polarization components 

for sorting and synthesis of different polarization states, similar to what is done here but with 

no OAM, in works [A,B,C,D] which the authors could consider including. 

[A] ACS Photonics, vol. 1, pp. 762–767, 2014. 

[B] Opt. Lett., vol. 39, pp. 1394–1397, 2014. 

[C] Laser Photon. Rev., vol. 8, pp. L27–L31, 2014. 

[D] Nano Lett., vol. 17, pp. 3139–3144, 2017. 



Response: Thanks for the suggestion.   

Revision: We agree that these works recommended by the Reviewer are highly related 

indeed to the subject of present work, especially the papers [A], [B], and [D]. These three 

papers are now included as the new references [37-39]. In addition, during the revision, we 

found two additional works that present excellent theoretical description to the effect of 

spin-direction locking in evanescent fields, so that these two papers are now referenced as 

[40, 41]. All the other references have been renumbered accordingly. 

(6) Finally, an optional suggestion. I believe the title doesn't make justice to the work: right 

now it seems a very general title and makes a reader wonder what is different to previous spin-

orbit interactions based on spin-angular momentum. The title does not mention intrinsic OAM. 

Here for the first time they show interaction between intrinsic OAM and transverse SAM, the 

authors might consider mentioning IOAM in their title. 

Response: Thanks for the inspiring advice.  

We have tried to take the Reviewer’s suggestion and considered new titles such as 

‘Interaction between intrinsic orbit angular momentum and engineered transverse spin 

angular momentum’. But titles like this explicitly highlighting the ‘intrinsic orbital angular 

momentum’ and ‘transverse spin angular momentum’ will inevitably look long-winded to 

some extent, because of the repeated appearance of ‘angular momentum’.  

On the other hand, the term ‘spin-orbit interaction’ we use in the current title is a clear and 

concise phrase that summarizes the general phenomena that involve the spin and orbital 

angular momentum of light. We feel that this widely known concept conveys the very 

central idea of this paper to readers in a straightforward and efficient manner. Although the 

intrinsic nature of orbital angular momentum studied in this work is not specified in the title, 

we have clearly introduced in the first sentence of Abstract the two objects being 

investigated: “We report the first demonstration of a direct interaction between the 

extraordinary transverse spin angular momentum in evanescent waves and the intrinsic 

orbital angular momentum in optical vortex beams.” Therefore, we decided to stick to the 

current title. 

 



Reviewer 2: 

This work investigates a spin-orbit interaction phenomenon of the coupling between the 

transverse spin of whispering-gallery (WG) modes and the intrinsic orbital angular momentum 

(OAM, vortex) of the outgoing far field. 

The idea is interesting and novel, and it can be published in some form in Nature 

Communications, provided there is a clearly described theory and the corresponding 

experiment. 

Unfortunately, I found it to be very difficult to follow the explanations in the manuscript, both 

in its theoretical and experimental parts.:  

 
(1) The mixture of various phases and topological numbers is confusing. It seems that p is the 

OAM quantum number of the WG mode, while q is the number of scatterers. Then, why the 

number of scatterers results in additional vortex phase exp(-iq\phi)? 

Does this assume a kind of diffraction-grating scattering along the azimuthal coordinate? What 

determines the momentum matching condition in this case? 

Response: Thank you for the comment. The micro-ring resonator based device indeed is 

embedded with an 2nd-order angular diffraction grating to diffract the bounded WGMs out 

as propagating vortex modes. We first reported such a device as a vortex beam emitter 

several years ago, and the fundamentals and principles of the device have been elaborated 

in our previous papers, e.g., ref. [46] in the manuscript. However, with this comment from 

the Reviewer, we realize that giving a brief introduction of the working principle of the 

structure (at least in the supplementary notes) will be very helpful for the understanding of 

a broad audience. 

Revision 1: We insert a new independent note (including a schematic diagram) in the 

supplementary material to explain the interaction between the WGMs, grating and emitted 

vortex beams, i.e., the angular phase matching (or angular momentum conservation) 

condition. This note is now referred to as Supplementary Note 2. Phase-matching in CVV 

Scattering, in which the derivation of the additional vortex phase exp(-iqφ) is also presented. 

Note that all the equations, figures and references have been renumbered accordingly. 

Revision 2: In addition, some more explanation of the diffraction phase exp(-iqφ) 

specifically is given in the passage below Equation (8) of the current Supplementary Note. 

3. The relevant remarks has been modified from (in the previous Supplementary Note. 1) 



“δ(φ) = ∓qφ is the phase imparted on the first-order diffracted wave derived using the 

coupled-mode theory (cf. supplementary material of ref. [1]) and q the number of grating 

elements” to “Note that the phase acquired in scattering δ(φ) is not an instantaneous phase 

shift to the scattered fields, but only represents the relative phase delay between the 

scattered waves at different locations. From the phase-matching condition above (i.e., l = 

p – q) and the spatial phase of WGMs (i.e., ±pφ), it’s straightforward to find that δ(φ) = 

∓qφ.  This result agrees with the phase imparted on the first-order wave in 2nd-order-

grating diffraction derived using coupled-mode theory (cf. supplementary material of ref. 

[4])”. 

Revision 3: Accordingly, the introduction to the phase δ(φ) in the main text has also been 

changed from “δ(φ) = -qφ (see supplementary material of ref. 41) is the azimuthal phase 

acquired by the second-order grating scattering” to “δ(φ) = -qφ (Supplementary Note 2 and 

3) is the azimuthal phase acquired by the second-order grating scattering”. 

(2) Next, \sigma is defined as the ratio of the radial and azimuthal field components (which 

have a pi/2 phase difference producing the transverse spin). Usually, in the literature on the 

topic, \sigma denotes the wave helicity or spin, i.e., it is better to make the substitution  

\sigma —> 2\sigma/(1+\sigma^2) throughout the paper. This will simplify equations. 

Response: Thank you very much for the comment. We agree that σ is usually used to denote 

the helicity or spin state of many text-book light beams, such as plane wave and Gaussian 

beam. But for complex light fields of inhomogeneous polarization state across the transverse 

plane or of high non-paraxiality, which means the polarization state is a function of 

transverse position (i.e., σ ~ σ(x, y)), generally the spin angular momentum (SAM) flux 

across the transverse plane (or, the SAM per unit longitudinal length per energy, Sz as used 

in this paper) is used instead to represent the average SAM or spin property of the beam. 

Therefore, using a single averaged helicity σ in this case to characterize the whole light beam 

is not very meaningful. 

Meanwhile, the quantity of 2σ/(1+σ2) that appears multiple times in the paper actually stands 

for the spatial phase gradient along the azimuthal direction (as shown in Equation (S17) of 

the new Supplementary Note. 5) resulting from the rotation of evanescent waves along the 

resonator. That is, 2σ/(1+σ2) has a completely different physical nature to σ, and therefore 

the substitution suggested by the Reviewer is inappropriate. 



On the other hand, we do have given it a serious consideration about defining 2σ/(1+σ2) as 

a new quantity that resembles a topological charge, similar to lTC in the paper, and denotes 

the change rate of spatial phase solely contributed by the rotation of transverse spin. 

However, just as suggested by the Reviewer, the amount of physical quantities involved in 

this paper might already be a bit overwhelming for the general audience and we should be 

extremely careful in introducing new concepts. In addition, we believe that presenting the 

equations (e.g., Equations (5) and (6)) with the part of 2σ/(1+σ2) unsubstituted can be even 

beneficial by emphasizing the effect of the transverse spin state σ in these equations and the 

spin-orbit interaction phenomenon they stand for. Considering all the factors above, we 

decide not to use any substitution for 2σ/(1+σ2). 

(3) Then, as far as I understand, there should be a sort of selection rules for the coupling 

between different WG modes (characterized by p and q numbers) and different far-field vortex 

modes (characterized by the vortex charge \ell and polarization \sigma). What are these 

selection rules? It seems that they somehow correspond to the experimental results in Fig. 7 

but this is not clearly explained. 

Response: Thanks for the comment. Indeed, the purpose of the incident vortex experiment 

is to further establish the selection rules that have been shown in the emission process. This 

selection rule is now provided and included in the supplementary material (i.e., 

Supplementary Note 2. Phase-matching in CVV Scattering, as shown above in the 

response to the first comment of Reviewer 2). In this new Note, the interaction among the 

whispering-gallery modes, grating, and the scattered vortex modes, as well as the selection 

rule of CVV emission, is described with a simple phase-matching condition (i.e., Equation 

(S5) in Supplementary Note. 2).  

Revision 1: Nevertheless, this selection rule of mode coupling into devices is now also 

reiterated in the section of Spin-orbit controlled unidirectional coupling of the main text, 

shown in the first paragraph as “… Additionally, the excited modes must follow the phase-

matching condition for the resonance as WGMs (Supplementary Note 2), which can be 

written here as lin + σin = lres and lin is the OAM state of incident vortex”. 

Revision 2: In addition, following the Reviewer’s suggestion, in order to improve the 

presentation of the results in Figure 7 so that it is easier to understand by readers, the entire 

section of Spin-orbit controlled unidirectional coupling has been literally rewritten, 

and the key revisions made include 



• Figure 7 is now replotted.  

o A new schematic plot showing the selection rule of CVV reception is now 

provided as Figure 7a.  

o The previous bar graphs in Figure 7 showing the received power at the two 

access ports have now been replaced with three new 3-D bar graphs, in order 

to present the results and details more clearly.  

o The results are also re-organized, and now Figures 7b-7d respectively show 

the results with incidence of SAM states σin = +1, 0, -1. In this way, the spin-

direction locking effect is more evident, as only bars of a single color are 

predominant if the incident light is of circular polarizations. Moreover, the 

spin-orbit jointly controlled unidirectional coupling is presented more clearly, 

as now the bar graphs show the identity-matrix-like distribution in a 

straightforward accordance with the selection rule. 

o The caption of Figure 7 is revised accordingly. 

• Table 2 in the previous version is removed, as it may cause some confusion to 

readers and also appear rather redundant with the new Figure 7. 

• The text of whole section is substantially revised to better explain the selection rule 

and the new Figure 7.  

 (4) The experimental part is also very difficult to understand. The WG modes are denoted as 

WG_{m-n}. What are the {m-n} numbers? Where is the azimuthal index p?  

Response: Thanks for the comment. The notation WGw-h in the paper is used to refer to the 

sample devices of various ring-resonator waveguide (WG) dimensions, and the subscripts 

w and h denote the width and height (in the unit of 100-nm) of the rectangular waveguides, 

respectively.  

Revision 1: To better clarify this notation in the paper, the following sentence is added to 

the paragraph before Table 1: 

“… where the subscripts w and h in the notation for waveguide sample WGw-h indicate the 

width and height of waveguide (in the unit of 100-nm), respectively”. 

(5) Why the full Stokes polarimetry is needed if only the transverse spin matters?   

Response: The full Stokes polarimetry is needed to completely characterize the spatial 

variation of the polarization state because it reveals important information about how the 



near-field transverse SAM is projected onto the CVV’s longitudinal spin. In particular the 

cyclic oscillation of the Stokes parameters reveals the existence of the geometric phase and 

also provides clues to the scattering process (as discussed per Reviewer 1’s comment on the 

real or complex nature of the coefficients W1,2).  

Revision 1: To better introduce the Stokes polarimetry to the context, we revised the 

following sentence “Secondly, Stokes polarimetry is performed to characterize the local 

transverse-spin state distribution in near-field CVVs” into “The results above also indicate 

that the transverse spin state once bounded at near-field now manifests itself as the 

longitudinal (i.e., along z direction) spin state in the propagating CVVs. Therefore, by 

performing the spatially resolved Stokes polarimetry to the near-field image of CVVs, the 

local transverse-spin state distribution in near-field CVVs can be revealed (see 

Supplementary Note 4)”. 

Revision 2: Moreover, to provide more detailed explanation on the results of Stokes 

polarimetry, the discussion on the results shown in Figure 5 is rewritten from the previous 

text of “The agreement between the theoretical curves and measured dots shown in the S3 

plots of (v) validates the overall effect of waveguide geometry on the transverse-spin state 

in evanescent waves. For devices of larger |σ|, e.g., WG6-8, S1 and S2 oscillate less, 

indicating local polarization states of larger ellipticity” into “First, the dots of each 

measured S1 or S2 in (v) complete the oscillation of two full sinusoidal cycles around the 

resonator, following the theory predictions (curves). And thus, the rotation of near-field 

transverse spin state shown in Figure 1c is visualized, thereby indicating the existence of 

the geometric phase predicted in Equation (6). On the other hand, the modulation effect of 

waveguide geometry on the local transverse-spin state in evanescent waves can be validated, 

by comparing the amplitude of S1 (S2) oscillation from the four devices in Figure 5. Sample 

WG6-8, with which S1 and S2 hardly oscillate, produces the largest local polarization 

ellipticity of the four in the evanescent region. More discussion on the results of Stokes 

polarimetry is provided in Supplementary Note 8.” 

Revision 3: In addition, the passage shown below is now removed from the main text, as 

these detailed discussions may cause distraction to readers from the most important results. 

“Generally, the jitters in the measured results are attributed to the non-uniformity of 

fabricated gratings, as well as the decaying intensity of WGMs along the resonator. The 

deviation of measurements from the theory is more evident with devices of smaller |S3|. This 

is possibly caused by the light that is scattered from the other (outer-) side of waveguide, 



carrying the opposite σ, due to sidewall roughness. In some devices, standing-wave-like 

patterns (e.g., map (iv) in Figure 5c) are introduced by the interference of scattered TE and 

TM modes, because in these waveguide designs these two modes are more degenerate and 

single-polarization-mode excitation is more critical to polarization control in mode 

launching”. Instead, these are moved to the supplementary material now as the new 

Supplementary Note 8.  

(6) To summarize, I recommend the authors to considerably improve the presentation and to 

make the manuscript more reader-friendly and accessible for a general audience. There are too 

many technical details and plots but there is lack of clear explanation and emphasis for the 

central results of the work.   

Response: Many thanks for the advice. Following this suggestion, we have made substantial 

revisions to improve the presentation of our results. The revisions regarding improving the 

presentation that have been mentioned above are here briefly summarized: 

• The physical nature of scatterers and their effect on evanescent waves are more 

explicitly explained, and the new Supplementary Note 1 is added. 

• The fundamental physics of this device in vortex beam emission and receiving 

are more clearly explained, including the selection rules (phase-matching condition) 

of mode coupling (Supplementary Note 2 is added) and the physical nature of 

coordinate rotation shown in Equation (3). 

• The discussion on the Stokes polarimetry is significantly expanded and more 

explanation on the results is provided. 

• The entire section of Spin-orbit controlled unidirectional coupling is rewritten to 

better explain the results shown in Figure 7, including a schematic plot added in 

Figure 7 and Figure 7 results re-organized and re-plotted. 

Apart from the revisions mentioned above, other revisions and clarifications we made to 

provide more reader-friendly presentation include 

In the introductory passages before Results 

• The word ‘incident’ is inserted into the sentence “… we further demonstrate 

directional coupling of optical vortices into this integrated photonic circuitry, with 

the direction of the waveguide modes jointly controlled by the incident spin and 

orbital AM states …” 



In the section of Interaction of transverse-spin and OAM 

• A reference to the supplementary material is added to the first sentence: “The 

emission of CVVs from such structures can be generally described in the form of 

transfer matrices as Eout = M2·M1·Ein (see Supplementary Note 3 for details)”. 

• The words ‘evanescent wave’ are removed from the sentence “Assuming the WGM 

evanescent wave maintains a uniform distribution around the resonator” for simpler 

expression. 

• The notations for the radial and azimuthal field components are now added in the 

following sentence “… the generic input light for the matrices is the inner sidewall 

evanescent wave and can be written in the locally transverse (Er) and longitudinal 

(Eφ) polarization basis” for clearer indication. 

• In the first sentence after Equation (2), the discussion on the transverse spin state is 

revised from “… and it directly characterizes the (spatial) transverse-spin density 

in the evanescent wave as S⊥ ∝ σ (refs 6,11)” to “and it directly characterizes the 

spatial density of transverse spin6,11”, as here using the additional notation S⊥	for 

transverse spin density may only introduce confusion for readers. Accordingly, the 

notation S⊥	has been removed throughout the whole paper. 

• The sentence after Equation (5) “Note that Sz here, which should be distinguished 

from the spatial transverse spin density S⊥, is the SAM in CVVs averaged over the 

transverse x-y plane” is now revised as “Note that Sz is the SAM in the emitted CVVs 

averaged over the transverse x-y plane, which should be distinguished from the 

spatial density of transverse spin in evanescent waves”. 

• The sentence before Equation (6) is revised with the insertion of “… the 

Pancharatnam phase49,52, which is extensively used for comparing the phase 

between light fields of different polarization states, is here used to describe” to 

introduce and justify the involvement of Pancharatnam phase. 

• ‘CCW’ is added to the sentence “… has a pure geometric nature and arises from 

the rotation of local transverse-spin state while CCW WGMs travel around the 

resonator” for more accurate description. 

In the section of Transverse spin engineering 

• The following passage is added when introducing the device parameters to justify 

our design of the scatterers’ geometry (as discussed in the response to the first 

question of Reviewer 1) 



“Intuitively, the simplest geometry of the scatterers for projecting the evanescent-

field transverse-spin information into far-field with high fidelity is spherical 

Rayleigh particle22. However, the fabrication of sub-micron spherical scatterers, 

whether of metallic or dielectric nature, placed uniformly in the evanescent region 

along the resonator is rather challenging. Here we utilize square cuboid structures 

(as shown in Figure 1b), attached to the inner sidewall and of the same height as 

waveguide, as Rayleigh scatterers, allowing for both one-step etching in fabrication 

and highly uniform scattering of evanescent waves along the entire resonator (see 

Supplementary Note 1)”. 

• As a result, the description of the device and scatterers is revised from 

“For the 8 sample devices, the ring radius of 80 µm is used. For each device, q = 

517 scatterers are embedded on the inner-sidewall of ring. The ratio of evanescent 

cylindrical components may be perturbed by the presence of scatterers in the 

evanescent region, as represented by matrix M1. In this proof-of-principle study, we 

consider square-shape scatterers protruding from the waveguide sidewall. Each 

scatterer has the constant area of 100 nm by 100 nm, but is in the same height as the 

ring waveguide” 

to 

“For the 8 sample devices, the ring radius R = 80 µm. For each device, the number 

of scatterers q = 517, and each scatterer has a planar size 100 nm by 100 nm”. 

• In addition, a new Supplementary Note is added as Note 1 to explain the scattering 

effect of the grating elements with the fundamental Rayleigh scattering theory (as 

shown in the response to the first question of Reviewer 1). 

In the section of Polarization and transverse-spin state characterization 

• The word ‘global’ is added to the sentence “… and therefore here the components 

Er and Eφ are measured to characterize the average global ellipticity in the 

cylindrical basis …” to better distinguish the results shown in Figure 4 and those in 

Figure 5. 

• Also, the word ‘local’ is used in “… by performing the spatially resolved Stokes 

polarimetry to the near-field image of CVVs, the local transverse-spin state 

distribution in near-field CVVs can be revealed …” for the same reason. 

In the section of Spin-orbit controlled unidirectional coupling 



• In Table 2, the topological charges, as well as the SAM and OAM charges, are now 

marked in blue (red), if in the column of access port 1 (2). This difference in color 

for these two access ports is in accordance with the colors of bars shown in Figure 7 

representing the power received at the two ports, so that it will be more intuitive for 

readers to understand the results in Figure 7. 

In the Supplementary Note 3 

• Some remarks are inserted at the beginning to conclude the phase-matching 

condition presented in Note 2 and to introduce the formulation in Note 3: “The 

phase-matching condition that rules the WGM and grating scatterers has been 

discussed in the previous Note to show the essence of this device. However, to fully 

present the interaction between the transverse spin in evanescent waves and the 

OAM in CVVs, a more explicit formulation is presented here”. 

Additional revisions and corrections: 

Abstract 

• Typo corrected by removing the ‘in’: “By tapping the evanescent wave of in a 

whispering-gallery-mode-based optical vortex emitter and engineering the 

transverse-spin state carried therein”. 

• Missing preposition ‘of’: “This unconventional interplay between the spin and 

orbital angular momenta allows the regulation of the spin-orbital angular 

momentum states …”. 

• The last sentence is simplified: “… and can enable a variety of functionalities 

employing spin and orbital angular momenta of light in applications such as 

communications and quantum information processing”. 

Figure 1 

• The caption is simplified to reduce redundancy: “(a) Schematic of the platform for 

the investigation of transverse spin induced SOI effect. A single-transverse-mode 

ring resonator is coupled with an access waveguide and embedded with sub-

wavelength scatterers arranged as 2nd order grating in the evanescent wave region. 

(b) Each WGM possesses transverse spin of opposite signs in the inner- and outer-



resonator evanescent waves, andThe clock-wise (CW) and counter clock-wise (CCW) 

WGMs present opposite transverse spins on each side of the resonator …” 

Figure 2 

• The error in the caption is corrected: “… and the dashed rectangular indicates the 

waveguide of 0.6 µm width and 0.8 µm height” is revised to “… and the dashed 

rectangular indicates the waveguide of 0.8 µm width and 0.6 µm height”. 

In the section of Transverse spin engineering 

• The inappropriate adverb ‘effectively’ is removed: “More importantly, a contour 

map of this ratio is plotted in Figure 2d, in which an effectively variable ratio of the 

two components can be observed over various waveguide dimensions”. 

• ‘refractive index’ is acronymized as ‘RI’ in the last sentence before Table 1, and the 

refractive index of silicon is mentioned for comparison: “SiNx waveguide is 

employed for its moderate refractive index (RI ~ 2.01) so that a larger range of 

transverse-spin state can be accessed than other materials (e.g., silicon with RI ~ 

3.5)”. 

Table 1 

• The following annotation is removed due to redundancy: “*The ring radius of all 

sample devices is 80 µm, gap between ring and access waveguide is 200 nm, and 

each square-shape scatterer is 100 nm by 100nm (with the same height as 

waveguide)”. 

In the section of Polarization and transverse-spin state characterization 

• An error is corrected in the following sentence by replacing ‘|σ|’ with ‘ε’: 

“Particularly, near-CP (ε ≈ 1) CVVs are observed with devices WG4-10 and WG6-8, 

indicating that the reduced superposition of single spin-orbital eigen-state vortices 

predicted by Equation (4) can be reached …”. 

In Methods 

• The methods for Numerical simulations is now revised as “Numerical simulations. 

Numerical simulations are performed with the finite difference eigenmode solver 

(FDE, Lumerical Solutions, Inc.)”, because the calculation of W1 and W2 previously 

shown here is now moved into Supplementary Note 1. 



• The description of ‘Experimental setups’ is revised with more details added in the 

parentheses: “Experimental setups for device characterizations (including 

polarization ellipticity and Stokes polarimetry), SOI measurement and spin-orbit 

controlled unidirectional coupling are shown and explained in Supplementary Note 

6 and 9”. 

In supplementary material 

• All equations and references are now referred to with an additional ‘S’ before their 

number, e.g., Equation (S1) and ref. [S1], to be better distinguished from those in 

the main text. 



Reviewers’ Comments: 

 

Reviewer #1 (Remarks to the Author):  
 
See document attached.  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have addressed the referees' comments and have considerably improved the 
presentation in the paper. I still think that notation 2\sigma/(1+\sigma^2) should be changed to 
\sigma. This is just a notation, and it will considerably simplify the equations. Moreover, the fact 
that this quantity is the azimuthal phase gradient exactly emphasizes that it is the relevant spin 
quantity, see PRL 101, 030404 (2008). This is just a minor remark; otherwise, the paper can be 
published in Nature Communications.  



The authors successfully answered all my concerns about the paper. Indeed the real character of Wrr 

and Wpp  is  now  clear.  The  absorption  cross  section  of  a  dipolar  scatterer  is  proportional  to  the 

imaginary part of the polarizability. Therefore if the scatterers are not absorptive, the polarizability 

can be said to be real. 

The authors’  improved description of the experimental results  is very satisfactory, and  I think they 

made an excellent work in summarizing their results for the inverse experiments in such a short space. 

I have the following comments on the resubmitted version: 

A‐ The discussion of the transverse spin  in the evanescent region of the waveguides, together with 

the figures of longitudinal and transverse field, reminded me very strongly of a paper “Espinosa‐Soria, 

A. & Martinez, A.  Transverse  Spin  and  Spin‐Orbit  Coupling  in  Silicon Waveguides.  IEEE  Photonics

Technol. Lett. 28, 1561–1564 (2016)” which could be cited due to the similarities.

B‐ I would like to convince the authors that reviewer 2 point 2 was actually a very valid point that I 

strongly  suggest  they  follow.  I  feel  that  the authors did not  completely understand  the  reviewers 

comment and their answer missed a key point, in my opinion. I explain in detail below: 

I completely agree with the reviewer 2 that some confusion is added by the notation of σ used in Eqs. 

(2,5,6). This notation is typically reserved for the spin of the field, and actually the authors are using it 

for a quantity which is very similar to the local spin of the field (it is identical in the cases ‐1, 0 and 1), 

which adds to the confusion. In fact the authors describe σ as "characterising the transverse spin", and 

later, σ is directly compared on equal footing with the SAM Sz, e.g. "the variation in magnitude from 

the local density (σ) to the average SAM (Sz) is associated with [...]". The use of the symbol and the 

descriptions  in  the  text make a  reader continually  think  that σ  is  the usual definition  for  the  local 

density  of  transverse  spin,  but  it  is  not.  Even  Fig  1(b,c)  shows  arrows  representing  the  circular 

polarization of  the  transverse  spin  in  the evanescent wave, next  to  the  symbol  σ,  reinforcing  this 

interpretation. In fact, later experimental discussions of illuminating vortex beams use σ as the spin of 

the illumination. Overall, I think that the choice of measurement parameter σ was unfortunate. 

I can find two ways of solving this: 

(1) Rename σ to some other symbol such as κ (I will use κ from now on in this document to refer to

the author’s σ)

ߢ ൌ ቊ
െ݅ሺܧ/ܧமமሻ |ܧ| ൏ |மமܧ|
݅ሺܧமம/ܧሻ |ܧ|  |மமܧ|

 

Note that this definition has some drawbacks, namely the conditional definition, and also the fact that 

it inherently assumes that ܧமம is in quadrature phase to ܧ  in order for ߢ to be real. This is not as 
elegant as it could be. 

(2) Use  the  correct  usual  definition  for  the  local  spin  of  the  evanescent wave  and  re‐write  the

equations in terms of the proper definition of σ. This is what reviewer 2 suggested and I agree with

him. I strongly suggest the authors to perform this substitution because it simplifies all the expressions

in the paper and helps with the intuitive understanding.

The usual definition for the local spin is the following (which I will call σ and I will compare with the 

author’s κ): 

ߪ ൌ
ା|ଶܧ| െ ଶ|ିܧ|

ା|ଶܧ|  ଶ|ିܧ|
 

Comments from Reviewer #1:



This is a very natural and easy to understand definition of local spin, where ܧା and ିܧ are the right 
and left handed components of the polarization vector in the coordinate basis (ݎ, ߶), obtained as the 
projection  of  the  Jones  vector ۳ ൌ ൫ܧ,  థథ൯ܧ into  the  unit  vectors ࣌ା  and ି࣌  for  local  circular 
polarizations in the (ݎ, ߶) basis. 

ାܧ ൌ ۳ ⋅ ሺ࣌ାሻ∗ ൌ ൬
ܧ
மமܧ

൰ ⋅
1

√2
ቀ 1
െ݅
ቁ
∗
 

ିܧ ൌ ۳ ⋅ ሺି࣌ሻ∗ ൌ ൬
ܧ
மமܧ

൰ ⋅
1

√2
ቀ1
݅
ቁ
∗
 

Using this substitution one can write: 

ߪ ൌ
หܧ  மமหܧ݅

ଶ
െ หܧ െ மமหܧ݅

ଶ

หܧ  மமหܧ݅
ଶ
 หܧ െ மமหܧ݅

ଶ 

If we compare the values of ߢ (the author’s choice for characterising the transverse spin) and ߪ (the 
usual choice) we find that they are very similar, they both “characterise the transverse spin” because 

the  cases  +1  and  ‐1  correspond  to  RCP  and  LCP  pure  circular  polarizations,  while  the  case  0 

corresponds to linear polarizations. However, the values of ߪ and ߢ differ for all intermediate elliptical 

polarization cases. 

As an example, let’s take the following normalized Jones vector for the local polarization, varying the 

ratio of the components in polar basis, but with constant phase difference always in quadrature: 

൬
ܧ
థథܧ

൰ ൌ ቀ
cos ߙ
	݅ sin  ቁߙ

So varying ߙ we can “tune” the polarization between circular and linear through all the elliptical cases. 
If we plot the values of ߢ and ߪ as a function of ߙ one gets: 

 

 

Note that, if we assume that ܧமம is in quadrature phase with ܧ୰୰ as in the figure above, then it can be 

shown analytically that ߪ ൌ
ଶ

ଵାమ
, which is a factor that appears throughout several equations in the 

paper, and which could be simplified to show only ߪ. 



In fact, it is well known that the geometric phase acquired due to rotations of local coordinates by an 

angle ߶ can be easily written in terms of the local spin ߪ of the polarization as the simple product ߪ߶. 
See for example Box 2 in the review article [11]. This is a known result that will yield a very elegant 

equation Φ ൌ ℓ்߶   instead of the complex‐looking Eqs. (6, S17, S18). It is a much more elegant ߶ߪ

explanation  for  the  geometric  phase  term  than  all  the  calculations  involving matrix M2  and  the 

supplementary note 5. 

This linear relation between geometric phase and spin is the reason that the authors thought that “the 

quantity of 2σ/(1+σ2) that appears multiple times in the paper actually stands for the spatial phase 

gradient along  the azimuthal direction  resulting  from  the  rotation of evanescent waves along  the 

resonator” as stated in the rebuttal letter. The authors then claim “That is, 2σ/(1+σ2) has a completely 

different  physical  nature  to  σ,  and  therefore  the  substitution  suggested  by  the  Reviewer  is 

inappropriate”. I think that the authors missed the key fact that the local spin is indeed exactly equal 

to the spatial phase gradient due to the rotation of coordinates. 

I hope  this has convinced  the authors  that  the use of  the proper definition of ߪ will  increase  the 
readability of their work, and facilitate greatly the intuitive descriptions. I see no real advantages in 

the use of the measure ߢ. 

 

Overall I think the quality of this work is excellent and recommend it for publication after the revisions 

above are considered. 



Response to Reviewer’s Comments on Nature Communications Manuscript NCOMMS-
17-22490A: 

‘Spin-orbit interaction of light induced by transverse spin angular momentum 
engineering’ by Zengkai Shao et al. 

 
Reviewer 1: 

The authors successfully answered all my concerns about the paper. Indeed the real character 

of Wrr and Wpp is now clear. The absorption cross section of a dipolar scatterer is 

proportional to the imaginary part of the polarizability. Therefore if the scatterers are not 

absorptive, the polarizability can be said to be real. The authors’ improved description of the 

experimental results is very satisfactory, and I think they made an excellent work in 

summarizing their results for the inverse experiments in such a short space.  

I have the following comments on the resubmitted version: 

 
(1) The discussion of the transverse spin in the evanescent region of the waveguides, together 

with the figures of longitudinal and transverse field, reminded me very strongly of a paper 

“Espinosa�Soria, A. & Martinez, A. Transverse Spin and Spin�Orbit Coupling in Silicon 

Waveguides. IEEE Photonics Technol. Lett. 28, 1561–1564 (2016)” which could be cited due 

to the similarities. 

Response: Thank you for the comment. This paper is now added to the manuscript as the 

new reference [42]. Other references have been re-numbered accordingly. 

 (2) I would like to convince the authors that reviewer 2 point 2 was actually a very valid 

point that I strongly suggest they follow. I feel that the authors did not completely understand 

the reviewers comment and their answer missed a key point, in my opinion. I explain in detail 

below:  

I completely agree with the reviewer 2 that some confusion is added by the notation of σ used 

in Eqs. (2,5,6). This notation is typically reserved for the spin of the field, and actually the 

authors are using it for a quantity which is very similar to the local spin of the field (it is 

identical in the cases �1, 0 and 1), which adds to the confusion. In fact the authors describe σ 

as "characterising the transverse spin", and later, σ is directly compared on equal footing with 

the SAM Sz, e.g. "the variation in magnitude from the local density (σ) to the average SAM 

(Sz) is associated with [...]". The use of the symbol and the descriptions in the text make a 

reader continually think that σ is the usual definition for the local density of transverse spin, 

but it is not. Even Fig 1(b,c) shows arrows representing the circular polarization of the 



transverse spin in the evanescent wave, next to the symbol σ, reinforcing this interpretation. 

In fact, later experimental discussions of illuminating vortex beams use σ as the spin of the 

illumination. Overall, I think that the choice of measurement parameter σ was unfortunate. 

I can find two ways of solving this: 

(i) Rename σ to some other symbol such as κ (I will use κ from now on in this document to 

refer to the author’s σ) κ = ቊ−݅൫ܧ ⁄ఝఝܧ ൯	|ܧ| < หܧఝఝห+݅൫ܧఝఝ ⁄ܧ ൯	|ܧ| > หܧఝఝห	 
Note that this definition has some drawbacks, namely the conditional definition, and also the 

fact that it inherently assumes that Eφφ is in quadrature phase to Err in order for κ to be real. 

This is not as elegant as it could be. 

(ii) Use the correct usual definition for the local spin of the evanescent wave and re�write the 

equations in terms of the proper definition of σ. This is what reviewer 2 suggested and I agree 

with him. I strongly suggest the authors to perform this substitution because it simplifies all 

the expressions in the paper and helps with the intuitive understanding. 

The usual definition for the local spin is the following (which I will call σ and I will compare 

with the author’s κ): ߪ = ା|ଶܧ| − ା|ଶܧ|ଶ|ିܧ| +  ଶ|ିܧ|

This is a very natural and easy to understand definition of local spin, where E+ and E- are the 

right and left handed components of the polarization vector in the coordinate basis (r, φ), 

obtained as the projection of the Jones vector E = (Err, Eφφ) into the unit vectors σ+ and σ- for 

local circular polarizations in the (r, φ) basis. ܧା = ܧ ∙ ሺߪାሻ∗ = ൬ܧܧఝఝ൰ ∙ 1√2 ቀ 1−݅ቁ∗ ିܧ = ܧ ∙ ሺିߪሻ∗ = ൬ܧܧఝఝ൰ ∙ 1√2 ቀ1݅ቁ∗ 
Using this substitution one can write: 

ߪ = หܧ + ఝఝหଶܧ݅ − หܧ − ܧఝఝหଶหܧ݅ + ఝఝหଶܧ݅ + หܧ −  ఝఝหଶܧ݅

If we compare the values of κ (the author’s choice for characterising the transverse spin) and 

the σ (the usual choice) we find that they are very similar, they both “characterise the 

transverse spin” because the cases +1 and �1 correspond to RCP and LCP pure circular 



polarizations, while the case 0 corresponds to linear polarizations. However, the values of σ 

and κ differ for all intermediate elliptical polarization cases.  

As an example, let’s take the following normalized Jones vector for the local polarization, 

varying the ratio of the components in polar basis, but with constant phase difference always 

in quadrature: ൬ܧܧఝఝ൰ = ቀ cos݅ߙ sin  ቁߙ

So varying α we can “tune” the polarization between circular and linear through all the 

elliptical cases. If we plot the values of κ and σ as a function of α one gets: 

 

Note that, if we assume that Eφφ is in quadrature phase with Err as in the figure above, then it 

can be shown analytically that σ = ଶଵାమ, which is a factor that appears throughout several 

equations in the paper, and which could be simplified to show only σ. 

In fact, it is well known that the geometric phase acquired due to rotations of local 

coordinates by an angle φ  can be easily written in terms of the local spin σ of the polarization 

as the simple product σφ. See for example Box 2 in the review article [11]. This is a known 

result that will yield a very elegant equation Φ = ℓ்߮ + ߮ߪ  instead of the complex�

looking Eqs. (6, S17, S18). It is a much more elegant explanation for the geometric phase 

term than all the calculations involving matrix M2 and the supplementary note 5. 

This linear relation between geometric phase and spin is the reason that the authors thought 

that “the quantity of 2σ/(1+σ2) that appears multiple times in the paper actually stands for the 

spatial phase gradient along the azimuthal direction resulting from the rotation of evanescent 

waves along the resonator” as stated in the rebuttal letter. The authors then claim “That is, 



2σ/(1+σ2) has a completely different physical nature to σ, and therefore the substitution 

suggested by the Reviewer is inappropriate”. I think that the authors missed the key fact that 

the local spin is indeed exactly equal to the spatial phase gradient due to the rotation of 

coordinates. 

I hope this has convinced the authors that the use of the proper definition of σ will increase 

the 

readability of their work, and facilitate greatly the intuitive descriptions. I see no real 

advantages in the use of the measure κ.  

Overall I think the quality of this work is excellent and recommend it for publication after the 

revisions above are considered. 

Response: Many thanks for the enlightening comments! Now we fully understand the two 

Reviewers’ concern, and agree that the second definition suggested above is a better 

choice for the transverse spin definition. We have changed the definition of the transverse 

spin state throughout the entire paper, and in the meantime carefully revised the relevant 

descriptions and discussions as follows. 

Revision 1: First, new notations Err and Eφφ are now used (in the passage before 

Equation (2)) to represent the evanescent field components after the modulation of 

grating perturbation (i.e., Err = WrrEr and Eφφ = WφφEφ), such that the explanation of 

grating-light interaction is further simplified. 

Revision 2: The Equation (2) used to define the transverse spin state σ is revised as 

suggested by the Reviewer, only that it’s now represented by Err and Eφφ instead of E+ and 

E-. We are concerned that introducing E+ and E- in the main text will further complicate 

the presentation of theory. Instead the derivation of Equation (2) from E+ and E- is 

provided in a new supplementary note (Supplementary Note 3), and other notes are re-

numbered accordingly. 

Revision 3: The former definition of transverse spin state we used is now formally defined 

as the parameter κ, following the Reviewer’s notation, to represent the ration of the two 

cylindrical field components (in the paragraph before Figure 4). Using this ratio still 

shows great convenience in explaining the experimental results, for example the results in 

Figure 4. The caption and discussion of Figure 4 are slightly revised by incorporating 

the parameter κ, including 



• In the caption: “… The prediction of κ2 from numerical calculations is plotted with 

dashed lines …”. 

• In the discussion following Figure 4: “… while the corresponding predicted κ2 of 

each device is plotted …” and “… and the agreement between the ε2 and κ2 shows 

a definitive correspondence …”. 

Revision 4: In addition, to obtain the numerical calculations of the new state σ, we 

calculate κ first and use the dependence of σ on this ratio. This dependence is derived and 

given in the new Supplementary Note 3, and the numerical calculation method for both 

σ and κ is more clearly explained, and moved from previously Supplementary Note 1 

now to the first section of Methods. The calculated results of σ for all devices is updated 

using this method and showed in the new Figure 3a. 

Revision 5: The introductory remark of section ‘Transverse spin engineering’ is 

revised due to the change in σ definition: “The transverse-spin state σ in the waveguide 

evanescent wave is generally subject to the ratio of longitudinal (Elong, along waveguide 

surface) and transverse (Etrans, normal to waveguide surface) field components, iElong/Etrans, 

in the evanescent region (Supplementary Note 3) …”. 

Revision 6: Due to the change of transverse spin definition, other relevant equations are 

all updated according to the new definition, including Equations (4), (5), (6), and (7). All 

relevant expressions throughout the paper are modified, including “ΦG = -σφ” (in the 

passage after Equation (5)), “Sz = σħ” (in the first paragraph of section ‘Transverse 

spin induced SOI’), “⟨±σres, ±lres∓σres⟩” (in the first paragraph of section ‘Spin-orbit 

controlled unidirectional coupling’). The descriptions in Supplementary Notes 4, 5, and 

6 are revised accordingly. 

Revision 7: The discussion on the geometric phase is moved to after Equation (4) to 

show a better connection with Equation (3). An introductory remark is added before this 

discussion (the third sentence after Equation (4)): “The above interaction between the 

vector evanescent wave and grating can further be elucidated with the spatial phase 

acquired by the CVV.” 

Revision 8: Figure 1c along with its caption, used to illustrate the geometric phase, is 

revised: “… For the CCW WGM shown here, a rotation angle of φ·z is experienced by the 

local coordinates from point (r’, φ’) to (r", φ"), and the geometric phase imparted on the 



evanescent wave with a transverse-spin state σ is ΦG = -σφ …”. The previous 

Supplementary Figure 3 is now removed due to similarity to the new Figure 1c. 

Reviewer 2: 

The authors have addressed the referees' comments and have considerably improved the 

presentation in the paper. I still think that notation 2\sigma/(1+\sigma^2) should be changed 

to \sigma. This is just a notation, and it will considerably simplify the equations. Moreover, 

the fact that this quantity is the azimuthal phase gradient exactly emphasizes that it is the 

relevant spin quantity, see PRL 101, 030404 (2008). This is just a minor remark; otherwise, 

the paper can be published in Nature Communications.  

Response: Thanks again for the comment. This change, as well as all relevant revisions 

needed, have been made as per the response to the comments of Review 1. 
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