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The structure of this Supporting Information is as follows:
First, we discuss our assembly perspective on the role of community structure and the emergence

of generic patterns in community properties.
Second, we give a systematic description of the numerical experiments, and show which outcomes

could or could not be predicted by the reference model.
Third, we carefully describe the reference model and its analytical solution, allowing us to explain

what it means to have a “fully disordered system”.
Finally, we discuss how to analyze deviations from full disorder, which are important to represent

complex communities from which a simple global structure emerges (e.g. hierarchical competition,
trophic systems). Previously unpredictable outcomes are found to be correctly predicted by an ex-
tended theory, with the addition of supplementary information on this global structure.
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I Introduction

I.1 Assembly

The theoretical study of large communities, whether analytical or numerical, requires some assump-
tions on the attributes of each species in the community: they can be derived from mechanistic rules,
or, barring full knowledge of these rules, sampled from statistical distributions. However, large number
of species with randomly sampled attributes are very unlikely to coexist in a stable community [22].

The assembly perspective [19] allows to circumvent this problem: we do not make assumptions
about rules or randomness in the realized community; instead, we make them in the pool of species
from which the community emerges through invasions and extinctions. By definition, the community
is then a set of species in stable coexistence, and it is generally less random than the pool. Randomness
may be more plausible in the species pool, since these candidates for invasion could come from diverse
origins, with independent ecological and evolutionary histories.

By computing the stable equilibria of an assembly process, we are effectively asking: what does
a community look like when its species have been selected for coexistence by population dynamics
(growth, mortality and interactions) alone? Other processes leading to coexistence, such as adaptive
or evolutionary dynamics, may induce other community characteristics.

Our control parameters are properties of the species pool. We can talk about generic assembly
patterns if pools constructed with different rules and statistical distributions give rise to communities
with similar macroscopic properties.

I.2 Model reduction and disorder

Such comparisons allow us to define a protocol of “model reduction”: given a model for generating
the species pool, we say it is reducible to another model if the latter leads the same quantitative
predictions for community properties, with fewer parameters. We can talk about genericity if a large
and diverse set of models can be reduced to the same model with few parameters (where by “few” we
mean a limited number that does not increase when adding more species or more traits to the species).
In particular, our analysis hinges on testing whether diverse models inspired by the literature can be
reduced to the same minimal reference model.

As we explain in Sec. III, a model is fully disordered if it can be reduced to our reference model.
This reduction has a stark ecological meaning: it signals that each species “sees a fair sample” of
the entire community. That is to say, while the “local environment” of each species (its traits and
interactions, and those of its neighbors) may be unique, it is statistically representative of the whole
community, both in how heterogeneous it is, and in the dynamical feedback it provides. Conceptually,
it is similar to the idea of a well-mixed community, except the mixing is not in space but within the
interaction web.

This condition is more easily understood from its negation: in less disordered communities, species
may for instance occur in guilds with similar interaction patterns, or within a strict hierarchy (such
that top predators being only able to feed on mesopredators), instead of each species encountering an
unbiased sample of the whole community. Thus, while the drastic reduction to full disorder succeeds
for a surprising number of models, it also faces obvious limitations.
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Figure S1: Model reduction. For many complex models (with a large number of parameters), commu-
nity properties can be predicted from simpler models with relatively few parameters. In the space of
these reduced models, the reference (totally disordered) model occupies a central position, from which
it is possible to deviate in different directions by adding correlations and structure: for instance, to-
ward hierarchical order, or toward group order. Complexity means that a model is not totally ordered:
the more heterogeneity between species, the further away it is from any simple ordered structure –
but doing so, it may “move toward the center” i.e. its reduction can become closer to the reference
model. For intermediate cases, reduction requires a combination of order and disorder, i.e. one of the
extensions of the reference model discussed in Sec. IV.
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Yet, even models with more structure can be “mostly disordered”, requiring only a few more pa-
rameters: rather than tackle the whole complex interaction network, it may be sufficient to consider a
minimal extension of our reference model, enriched with simple structural information about hierarchy
or group structure, as we show in Sec. IV.

This general framework, which we illustrate in Fig. S1, thus provides a powerful way to combine
the points of view of community ecology on heterogeneity and coexistence, and ecosystem theory on
large-scale functional structure.

II Numerical experiments

We discuss how the numerical experiments were performed in Sec. II.1, and how their results were
compared to the reference model in Sec. II.2.

The full combinatorial space of model features was too vast to be explored systematically. In
consequence, two main sets of numerical experiments were performed: a list of specific examples
combining various model features among the four categories listed below, described in Table S1, and
a systematic exploration of combinations of one interaction type and another model feature, listed in
Table S2.

II.1 Simulation models

Simulations were performed by numerically integrating the dynamical equations1

d

dt
Bi = Bi

ri −DiBi − f

 S∑
j 6=i

AijBj

 (S1)

Note that for simulations, the abundance of species i is expressed by Bi, denoting its absolute biomass
as it would appear in data or in realistic simulations. In the main text and in our analysis in Sec. III,
we use rescaled abundance variables Ni = ciBi, where the choice of scaling constants ci depends on
the model as explained in Sec. III.1. For instance, in a competitive system where carrying capacities
span many orders of magnitude, we may want to define Ni as the ratio of biomass to carrying capacity,
so that all the Ni are on the same scale.

While results for Ni are generic, their translation to absolute values Bi depends on the rescaling
choice, and thus on the model. In particular, we find that the distribution P (N) is generally a
truncated Gaussian, while the resulting P (B) can be more realistically lognormal or otherwise fat-
tailed, as discussed in Sec. III.3.

Each distinct simulation model consisted in a choice of a functional response f , and a set of rules
and parameters to generate the coefficients ri, Di and Aij . We decomposed the interaction matrix
into

Aij = Gijaij (S2)

where Gij is the unweighted adjacency matrix of the network structure, and aij are random variables.
Hence, each model can be characterized by the following options which are detailed below in their
respective sections II.1.1-4:

List of model features (with additional parameters in parentheses)

1. Functional response:

(a) Linear

1We used the LAPACK integrator DOP853 provided by the SciPy library in Python.
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(b) Saturating (Bc)

2. Network structure Gij

(a) Random (connectivity c)

(b) Scale-free (pd)

(c) Assortativity (|corr(zi, zj)|)
(d) Clustering (pt)

(e) Partition (pb)

(f) Cascade (pc)

(g) Nestedness (pn)

3. Parameterization

(a) Independent ri, Di and aij

(b) Predation (βij , ε)

(c) Independent carrying capacities (ki)

(d) Correlated ri and aij (Cra)

(e) Correlated rows in aij (σrow)

(f) Resource competition (ξia, ρa, mi)

(g) Functional groups (inter- and intra-group parameters)

4. Trait distributions (distribution family, mean, variance, symmetry)

(a) No rescaling

(b) Moderate interactions: rescaling max |Aij | = 0.1Di

(c) Weak interactions: rescaling max |
∑
j Aij | = 0.5Di

(d) Diffuse interactions: rescaling Aij ∝ 1/d (d)

We show in Table S1 which choices and parameter values were used for all simulation results in the
main text and SI. Random initial conditions on Bi were drawn for each simulation. The asymptotic
equilibrium of the assembly process was attained by allowing an arbitrary number of extinctions and
reinvasions: numerically, this was done by setting a threshold for species extinction Be = 10−15, and
letting

dBi
dt

= max

(
0,
dBi
dt

)
if Bi < Be. (S3)

Thus, species that fell under the extinction threshold would retain the same abundance unless dBi/dt
became positive again, allowing for reinvasions. As Lotka-Volterra dynamics are notably stiff, with
rare species dynamics taking very long time to converge, we set a threshold for convergence of

max
i

d

dt
logBi < 10−8 (S4)

and while this may fail to capture extremely long time dynamics, we generally assumed that aggregated
community properties, such as those we measure, would already be very close to their asymptotic value.

II.1.1 Functional response

1a Linear functional response
f(z) = z (S5)

Linear functional response is the basic frame in which the reference model is defined in Sec. III.
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Models in figures Default values
Figure Name of model in figure Model features
Fig. 1-3 Resource competition 1a, 2a, 3f, 4a
Fig. 1 “C-R mutualism” 1b, 2a, 3a, 4a

“Cascade predation” 1a, 2f, 3b, 4b
“Spatial competition” 1b, 2a, 3c, 4d

Fig. 3 Predation 1a, 2a, 3b, 4a
Figs. 4, S4 Competition 1a, 2a-g, 3a, 4a

Mutualism 1a, 2a-g, 3a, 4c
Predation 1a, 2a-g, 3b, 4a

Fig. 5 “Plant-pollinator” 1a, 2e, 3g, 4a
Fig. S3 Competition 1b, 2a-f, 3a, 4a

Mutualism 1b, 2a-f, 3a, 4c
Predation 1b, 2a-f, 3b, 4a

〈ri〉 1
Var(ri) 0.1
〈Di〉 1
Var(Di) 0
〈aij〉 or 〈fij〉 0.1
Var(aij) or Var(fij) 0.01
Species number S 100
Connectivity c 0.1
Threshold Bc 5
Symmetry Γ 0.5

Table S1: Model choices and parameter values for results in the main text and SI. Left: For each figure
and each named model within that figure, we give the corresponding model features as listed above.
For Fig. 1, the example models we list here are not exactly those appearing in the source materials
(which may not be compatible with the Generalized Lotka-Volterra form we use), but they retain
some of their important features: for instance, the simulation model inspired by spatial competition
corresponds to the choice of a saturating functional response 1b, random network 2a, independent
parameters 3a and diffuse interactions 4d. Right: Default parameter values used unless otherwise
specified.

1b Saturating functional response This saturation can come from many factors: limited pro-
vision or diminishing returns for mutualistic services [14], finite handling time for predators [15] or
competition with only close neighbors in space [26].

f(z) =
z

1 +
|z|
ABc

(S6)

with A = 〈Aij〉 and Bc an additional parameter giving the population threshold for saturation (see
Sec. III.5). This analysis requires the addition of one new parameter, Bc the saturation threshold,
from which we recover the basic reference model in the limit Bc →∞.

II.1.2 Network structure

2a Connectance The overall number of nonzero entries in the interaction matrix is given by cS(S−
1) with c the connectance. Simulations for arbitrary connectance agreed with the reference model, and
in particular, maintaining the same parameters (µ, σ, γ) while changing connectance would provide
identical results (except when this led to very strong interactions at very low connectance, see [3]).
For all network structures below, we used fixed connectance c = 0.1 by default.

2b Scale-free degree distribution We generated a scale-free network using the Barabasi-Albert
algorithm [1], and then rewired the edges randomly with probability 1 − pd to interpolate between
scale-free and uniformly random (Erdos-Renyi [11]) degree distributions.

2c Assortativity Correlation between the degrees zi and zj of nodes i and j connected by an edge.
We could create assortative networks (where hubs are connected together) or disassortative networks
(where high-degree nodes are mainly connected to low-degree nodes). We took random networks and
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rewired them to tune assortativity, keeping the same number of in- and out- edges for each node, but
swapping partners to increase degree correlation or anticorrelation.

2d Clustering We follow the standard interpretation of clustering as a measure of how many
triangles there are in a network [28]. We took random networks and rewired them to tune clustering.
Our algorithm to do so was the following. First, we compute length-2 paths in the network (by taking
the square of the adjacency matrix), then list pairs of nodes that are connected only by a length-2
path, and those that are connected both by a direct interaction and a length-2 path. With probability
|pt|, triangles are created by adding direct interactions between pairs of nodes in the first list, or (if
pt < 0) destroyed by removing direct interactions in the second list; swapping partners with pairs that
appear in neither list allows us to do the same without changing node degrees2.

2e Partition The network was made more or less bipartite by taking a random network, assigning
each species a group index (either 1 or 2), then deleting intra-group links with probability pb (thus
pb = 0 would be a random network, and pb = 1 a perfectly bipartite network).

2f Cascade The classical cascade model [8] has a triangular matrix with only nonzero elements
within the triangle. Allowing zeros, we find Directed Acyclic Graphs. We tuned ordering by taking
a random network and varying pn the probability that αij was set to zero for i ≤ j. For pc = 0, the
matrix was random, while for pc = 1 it was upper-triangular.

2g Nestedness Nestedness is the flipside of directedness: in a fully nested matrix, all elements are
contained on one side of the anti -diagonal. We tuned nestedness by taking a random network and
varying pn the probability that αij was set to zero for i ≤ S − j. For pn = 0, the matrix was random,
while for pn = 1 it was fully nested.

II.1.3 Parameterization

3a Independent For competition and mutualism, we could directly draw ri, Di, and aij indepen-
dently from the weight distributions listed in Sec. II.1.4, with aij having positive or negative mean
respectively.

3b Predation In a predation model, we first drew a matrix βij of “predation intensity” coefficients
as if they were competition coefficients (with average β and other parameters depending on the choice
of distribution, see below). We then chose, within each pair, one species to be the predator and one
to be the prey. Whenever we had βij 6= 0 and βji = 0 (e.g. in the nested structure above) we decided
that j was the predator, else we randomly selected either i or j. Then, if for instance j was the
predator, we set αij = βij and αji = −εβij , with ε the biomass conversion efficiency of the trophic
interaction, which was set here to ε = 0.1.

3c Independent carrying capacities In this parameterization discussed in Sec. III.1, we drew
three independent sets of parameters: growth rates ri, carrying capacities ki and effective interactions
Cij , then set

Di =
ri
ki
, Aij =

ri
kj
Cij . (S7)

Note that these independent parameters ki represent the actual carrying capacities of species, in the
same units as Bi, while the Ki appearing below are nondimensional variables that depend on the
choice of scaling in Sec. III.1.

2All the while, the lists must be maintained dynamically after each operation.
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3e Correlated rows While the basic reference model assumes no correlations in the coefficients
drawn above, we considered two simple ways of adding correlation structure to their distributions,
to test how they cause a deviation from the reference model and how the latter can be extended to
account for them. We could introduce row correlation in the interaction matrix: instead of drawing
the matrix α directly, we drew a matrix M according to our other rules, then let αij = ciMij with
some coefficients ci drawn independently (e.g. normal).

3d Correlated growth and interactions Similarly, we could introduce correlations between a
and r by having ci = c(Ki) with some function c, for instance c(Ki) = Ki. As for strong interactions,
such correlations may be minimized by rescaling variables (see Sec. III.2), but we wished here to test
how correlations modify results and can be accounted for by analytical extensions.

3f Resource competition This parameterization is explained in detail in Sec. II.1.5. In short, we
derived ri, Di and aij from three different sets of parameters: the abundance ρa of resource a, the
consumption efficiency ξia of resource a by species i, and the mortality mi of species i. Each of these
traits were drawn independently from exponential distributions with prescribed mean (see Sec. II.1.5)

3g Functional groups Each species was assigned to one of n groups. We let Di = 1 for all species
i. Then, for each group x we drew growth rates with prescribed mean and variance. For each pair of
groups x and y, we drew interactions with mean, variance and symmetry. Thus, the total parameters
were two vectors (mean and variance of growth rates) and three n× n matrices (mean, variance and
symmetry of interactions).

II.1.4 Trait distributions

Many models called for interaction weights aij , as well as growth rates ri and self-interactions Di, to
be drawn directly from probability distributions. In those cases, we always set Di = 1 for simplicity in
our simulations (although our approach remains valid otherwise). For specific model parameterizations
such as 3c or 3f above, these coefficients were not drawn directly, but computed from other species
traits which had to be generated first.

For all these traits, we tested different distributions: normal, uniform, exponential, bimodal (two
discrete values) and fat-tailed (power-law with exponent 2). Each of these distributions could be
parameterized to set the mean, and most allowed to set the variance, of the generated trait values.
Unless otherwise specified in the description of model parameterizations, we used normal distributions
with mean and variance selected to obtain the default values in Table S1.

In the case of interaction coefficients aij , we also wanted to tune their symmetry i.e. the correlation
between aij and aji. To do so without changing their variance, we can first draw a matrix M of
independent coefficients Mij according to the rules selected for aij , then construct the interaction
matrix as follows

aij =
Mij + sMji√

1 + s2
with s = (1−

√
1− Γ2)/Γ (S8)

where we choose the value of auxiliary parameter Γ ∈ [−1, 1] to make interactions more or less
symmetrical (Γ = −1 yields antisymmetrical weights, and Γ = 1 makes them symmetrical).

4a No rescaling

4b Moderate interactions In most cases, we wished to find stable and diverse equilibria, which
are generally difficult to attain with strong individual interactions (such as competitive exclusion
causing all species but the strongest competitor to go extinct) in the absence of precise tradeoffs.
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Hence, we ensured that interaction magnitudes were always individually smaller than intra-species
competition, rescaling the entire matrix so that

max
ij
|Aij | = 0.1Di, (S9)

although the sum interaction of a species with all others was generally large (
∣∣∣∑j αij

∣∣∣ > 1).

4c Weak interactions Moderate interactions generally ensured the existence of stable multi-
species equilibria, except in the case of mutualism with a linear functional response where, to prevent
population explosion, we instead rescaled the entire matrix so that

max
i

∣∣∣∣∣∣
∑
j

Aij

∣∣∣∣∣∣ = 0.5Di (S10)

4d Diffuse interactions In diffuse interactions [16], for instance spatial competition between
plants, if all space is occupied by some plant, then the more species occupy the same area, the fewer
individuals from two given species of plants are going to be in contact with each other (e.g. if each
plant has a few neighbors, the more species there are in the system, the less likely it is that a given
species is found in the neighborhood of a given plant). To represent this, we used the rescaling

Aij ∝
1

d
(S11)

where d is the effective number of species that could figure among interaction partners for a given
individual. This parameter depends on S and can be modulated by spatial aggregation, i.e. d = S
if species are perfectly well-mixed, and d = O(1) if the same species keep interacting no matter how
many other species are introduced.

II.1.5 Example models

While a systematic exploration of combinations of the above features is beyond our purpose, we used
some as examples in the main text and to illustrate the sort of ecological settings that can be analyzed
within our approach. We now present these specific model choices (whose basic features are listed in
Table S1 and further detailed below when necessary) with their ecological motivation.

Cascade predation The combination of predatory interactions and a nested structure is reminis-
cent of the cascade model [8], whose structure has been and remains in use in many theoretical works
on trophic structure, both qualitative and quantitative, alongside more modern proposals such as
the allometric niche model [5]. The main difference with these models is that we did not distinguish
basal species, which should be the only ones to have positive carrying capacities Ki, meaning that all
species here grow on external resources. A realistic model of trophic structure certainly requires this
distinction in addition to the triangular interaction matrix, but we wanted here to separately address
groups and hierarchical structure as basic model ingredients, as we do in Table S2, and show that each
of them causes deviations from the reference model, but can be addressed by its extensions described
in Sec. IV.

C-R mutualism Lotka-Volterra dynamics are claimed [14] to fail to represent mutualistic interac-
tions, notably by allowing for boundless population growth. The most common change introduced in
the description of mutualistic interactions is a saturating functional response. This represents the sim-
plest case considered in consumer-resource mutualism [13], and these communities are fully predicted
by the reference model with the appropriate functional response.
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Spatial competition The consequences of spatial competition (e.g. competition for light between
plants) have rarely been modelled directly at the population level, instead relying on spatially explicit
and even individual-based models [4]. However, a major contribution was the spatial moment perspec-
tive of Law and Dieckmann [18], where spatial structure appears as a correction of the first-moment
(i.e. spatially averaged) Lotka-Volterra equations, using the second-moment equations (i.e. variance
in space).

Here, we approximate this effect further (the validity of these approximations could be tested by
comparison to spatially explicit models). First, we must account for antagonistic interactions with
at most a finite number n of neighbors: we use a connectivity c = n/S and a saturating functional
response with threshold Bc = n (using only one or the other leads to similar results). Second, we
must account for the fact that, if individuals are well-mixed spatially, then the more species there
are, the fewer individuals from any two species interact together. We do so by scaling interactions as
Aij ∝ 1/d where d can be constant or proportional to S (see “Diffuse interactions” above). Note that
connectivity and interaction scaling allow to control two of the reference parameters, as seen in Fig. 2
in the main text: µ ∝ n/d, and σ ∝

√
n/d.

Finally, we allow species to have vastly different carrying capacities ki, and use the parameterization
Ni = Bi/ki, Ki = 1, αij = kjAij/Di.

Resource competition In this discretized version of a classic ecological model [20, 12], S species
compete over R abiotic resources which are steadily resupplied into the ecosystem. It is generally
known from competitive exclusion theory that R > S is necessary to at least potentially allow S
species to survive – however, these many resources need not all differ by their nature, they could
simply be distinguished by spatial or temporal availability within the ecosystem, with some species
having an advantage at capturing certain patches rather than others. We define the net growth rate
of species i as

gi =

R∑
a=1

ρa(t)ξia −Mi (S12)

with consumption rate ξia for resource a, whose abundance is given by

ρa(t) = ρa −
∑
i

ξiaBi(t) (S13)

where ρa is the steady influx of the resource. On the other hand, Mi represents mortality from the
energy costs associated with resource acquisition. To avoid favoring specialists or generalists a priori,
we make these costs proportional to the total ability of a species to acquire resources:

Mi = ρmi

∑
a

ξia (S14)

where we factor out the average amount ρ of resource in the system so that mi is now a dimensionless
number representing the intrinsic lack of fitness of species i. Hence, we get the dynamical equations

d

dt
Bi = giBi = Bi

∑
a

ξia(ρa − ρmi)−
∑
j

Bj
∑
a

ξiaξja

 (S15)

It is easy to see that they map onto the Lotka-Volterra equations with

ri =
∑
a

ξia(ρa − ρmi), (S16)

Di =
∑
a

ξ2ia (S17)

Aij =
∑
a

ξiaξja. (S18)
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Let us assume a disordered pool where consumption rates, resource influxes and mortality are all
drawn as independent random variables with mean

ξ = 〈ξia〉 , ρ = 〈ρa〉 , m = 〈mi〉 (S19)

and standard deviation σξ, σρ and σm. Among other things, this implies that all consumers are
generalists who can consume any resource but perform better at some. Without loss of generality, we
can always set

〈ri〉 = Rρξ(1−m) = 1 (S20)

〈Di〉 = R
〈
ξ2
〉

= R(ξ2 + σ2
ξ ) = 1. (S21)

using a rescaling of time and of Bi (see [3]). The second equation means that there is a tradeoff
between the effective intensity ξ and variability σξ of consumption rates.

We thus generated many species pools, using two different distributions of ξia (either normal or
bimodal) and a normal distribution of ρa, and exploring systematically a range of parameters R, σξ
(which fixed ξ by the relation above) and σρ. By default, we used σ2

ξ = 0.1/R and m = 0.1; values
for the other parameters were explored in Fig. 2 of the main text.

Using the parameterization Ni = Bi, Ki = ri/Di, αij = Aij/Di, we then computed parameters µ,
σ, γ and ζ, as well as the correlation 〈Kiαij〉ij . Ignoring the latter led to slightly worse quantitative
agreement. We inserted these parameters into the reference model, either with or without that
correlation (see Basic correlation structure in Sec. IV), and compared predictions and simulation
outcomes for all the community properties listed in Sec. III.4.

Plant-pollinator community This community of S = 300 species was divided into two functional
groups, one given no intrinsic growth i.e. Ki = 0, while the other had Ki drawn with mean 1
and variance ζ. We then drew two types of interactions αij : mutualistic and competitive, both
as exponential distributions with mean −0.01 and 0.01 respectively (larger mutualistic interactions
caused population explosions since we did not use a saturating functional response here). The ordering
parameter ω decided the probability that mutualistic interactions were exclusively assigned to inter-
group links and competitive interactions to intra-group links. For ω = 0, both types of interactions
were assigned at random, ignoring the group labels.

We then compared simulation results to the mixture (group structure) model detailed below in
Sec. IV: within each group and between groups we measured the average, variance and symmetry
of interactions, such as to construct the µ, σ and γ matrices. The fully ordered case ω = 1 had
zero variance, i.e. σ = 0 for each set of interactions, while the intermediate cases 0 < ω < 1, where
complexity blurred group boundaries, led to nonzero variance and a different mean and symmetry.

We could then insert the µ, σ and γ matrices, as well as the parameters 〈K〉 and ζ for each group,
into the calculations below to compute the abundance distribution and community properties, both
per functional group and collectively. This procedure assumed that, even when group boundaries were
blurred, we knew which group each species belonged to. In real systems, we would have to infer this
clustering of species into groups, but we leave such developments for future work.

II.2 Validation

In this section, we discuss how we compared the results of numerical simulations to the reference
model, with results reported in Table S2. We provide in Appendix a description of the algorithms
and a sample R code allowing to perform the comparison.

II.2.1 Comparison to the reference model

Computing the reference parameters Simulation models are entirely defined by the functional
response f and parameter sets ri, Di and Aij . However, we need much less information to parameterize
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the reference model. Let us focus here on the case of a linear functional response f(z) = z, as the
reference model extensions for other choices are discussed in Sec. III.5.

First we must rewrite the equilibrium condition as

0 = Ni(Ki −Ni −
S∑
j 6=i

αijNj) (S22)

with the following parameters

Ni = ciBi, Ki =
ciri
Di

, αij =
ciAij
Di

(S23)

where we note Ni the effective species abundance, αij the effective interactions and Ki the effective
carrying capacity. The choice of coefficients ci depends on how the parameter sets ri, Di and Aij
have been generated (i.e. are they independent parameters, or derived from other underlying traits,
causing them to be correlated), see discussion in Sec III.1. In all simulations above, we used ci = 1.

Then, as we explain in the analysis of the reference model (Sec. III), the four reference parameters
are defined as

ζ2 = K2
i −Ki

2
, µ = Sαij ,

σ2 = S(α2
ij − αij

2), γ =
S

σ2

(
αijαji − αij2

)
where X is the average over X including zero elements – thus, the value of these parameters depends
not only on the distribution of interaction weights, but also on the network structure specifying which
elements are zero or nonzero. With a complete graph structure (i.e. all elements in the matrix α are
nonzero), we have direct control over the symmetry parameter γ = Γ (where the latter is the control
parameter described in Sec. II.1.4); else, γ may depend on network structure as well.

These four parameters ζ, µ, σ, γ are the only information required to numerically solve the reference
model (see Sec. III and Appendix for the algorithm), which outputs predictions for various community
properties.

Comparing simulation outcomes At the end of each simulation, we compute the total biomass

T =
∑
i

Bi, (S24)

total productivity

P =
∑
i

riBi, (S25)

Simpson index

D−1 =
∑
i

(
Bi
T

)2

, (S26)

and variability in response to demographic3 noise

V =
∑
i

Var(Bi(t))

S
. (S27)

3See discussion in Sec. III.4 for why we consider demographic noise here; this quantity allows to predict variability
to environmental noise as well.
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Rather than add noise to the simulation and compute the variability with the formula above, it can
be evaluated directly [2] (in the linear regime, i.e for small perturbations around an equilibrium) as
the trace of the covariance matrix Vij

V =
∑
i

Vii (S28)

where Vij is obtained by solving the Lyapunov equation4

JV + VJT = N (S29)

with N the diagonal matrix such that Nii = Ni, and J the Jacobian matrix given by

Jij = Bi(Aij −Diδij), δij = 1 if i = j, 0 otherwise. (S30)

We then compare these results to the analytical predictions computed from the reference model, as
given in Sec. III.4.

II.2.2 Results

We now discuss the results presented in Table S2.

Functional response A saturating functional response leads to different results, which can how-
ever be captured quantitatively by the expanded analysis presented in Sec. III.5. Since Bc → ∞
is the Lotka-Volterra case, and the Bc → 0 limit is that of independent species, we can generally
conjecture that a saturating functional response makes community structure less important than in
Lotka-Volterra dynamics, as we indeed see in Fig. S3.

Network structure No network structure caused any significant deviation from the reference
model, except for partitioning, which we capture with the mixture model in Sec. IV.1, and directedness
(cascade structure) or nestedness which we capture with the model in Sec. IV.2 and Fig. S4.

Parameterization The only deviation from the reference model came from parameterizations that
introduced correlations between or within the quantities Ki and αij defined in (S23). Accurate
predictions could however be recovered, using the extended model with an additional parameter
representing first-order correlations, see Sec. IV.3.

Trait distributions The interaction matrix could be qualitative (binary edges) meaning that we
set aij ≡ 1 in (S2), or quantitative (weighted edges) meaning that we drew aij according the the rules
below. We found that the reference model worked equally well in both cases, meaning that even with
qualitative interactions, disorder can prevail simply due to network topology.

As we discuss in Sec. III.2, the analytical inaccuracies coming with strong interactions may be
avoided or minimized by rescaling variables when studying specific models (e.g. competition between
species with lognormal carrying capacities). Cases where we did not perform any rescaling appear in
Table S2 as strong interactions if the average interaction was strong 〈αij〉 > 1, or fat tails if only a
few such coefficients were found.

III Reference model and community properties

While the discussion given here is meant to be self-contained, the reference model was solved by
Bunin [7], and it is introduced and discussed in much greater detail in pedagogical notes available
online [3], to which we direct the curious reader.

4It was solved numerically using the Bartels-Stewart algorithm, via the linear algebra package of the SciPy library.
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Competition Predation Mutualism
Functional response

Linear (1a)
Saturating (1b) Threshold III.5

Network structure
Binary/weighted
Connectance (2a)
Degree distribution (2b)
Assortativity (2c)
Clustering (2d)
Partition (2e) Groups IV.1
Cascade (2f) Continuous order IV.2
Nestedness (2g) Continuous order IV.2

Parameters
Interaction weights a

Normal, uniform
Exponential, bimodal
∗Strong (mean& 1)
∗Fat tails
∗Row correlation (3e) Correlations IV.3

Growth rates r
Normal, uniform
Exponential, bimodal
∗Fat tails

∗Correlations r-a (3d) Correlations IV.3
Mechanistic (3c,3f)

Color Agreement (error < 5%)
Reference model

Reference with few exceptions
Reference + one parameter

Reference + more parameters
Outside of method scope

No stationary state

Complex examples
Cascade predation C-R Mutualism Spatial competition Resource competition Plant-pollinator

Continuous order IV.2 Correlations IV.3 Groups IV.1

Table S2: Overview of simulation model properties and their impact on predictability using the refer-
ence model (Sec. III) and its variants (Sec. IV). Here, we systematically test pairs of one interaction
type and another model feature; more complex combinations were not tried exhaustively, but they
appear in the examples listed in the bottom row, described in Sec. II.1.5. Left: Predictability for each
of the three main interaction types combined with various other traits (in parentheses: corresponding
model choices from the list in Sec. II.1). Traits marked by ∗ could, in some models, be eliminated
or reduced by a rescaling of the variables, see Sec. II.2.1). Whenever the fully disordered limit must
be supplemented with additional information to allow good predictions, we note the required param-
eter(s) and refer to the relevant extension of the random model (text in the colored cells). Right:
Agreement between simulations and analytical predictions is judged on a quantitative basis (the error
metric defined in Sec. III.4 should be below 5% for all tested parameters). Colors represent whether
agreement is found with the basic model (blue), with a simple extension (e.g. for functional response)
which adds a single parameter and recovers the reference model in a given limit of this parameter
(green), or with a less generic model accounting for robust network structure (purple). Fainter colors
represent cases where specific parameter choices can cause quantitative disagreement, without com-
promising qualitative agreement. Some scenarios, shown in dark grey and black, are outside of the
scope of our method altogether, or even incompatible with the premise of equilibrium solutions.
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The reference model can be seen as a “maximally generic” model of community assembly, both in
terms of its dynamical processes, and parameter structure. Lotka-Volterra dynamics (in the broadest
sense) are among the simplest dynamics which allow for species extinction, a key factor in shaping the
final assembled community. Another simplifying assumption is that we only consider the equilibrium
reached asymptotically at the end of an arbitrarily long sequence of invasions and extinctions, where
any species from the external pool has the opportunity of reinvading at any time. We observe in
simulations that, while details of community composition may keep changing over long timescales,
community-level aggregate quantities of interest are well described by their predicted equilibrium
values.

In a certain parameter range which we determine below, the composition of the assembled com-
munity is then controlled only by the properties of the global pool of species, instead of depending
on the precise assembly process and sequence. Finally, the pool structure is minimally described by
one set of parameters characterizing species indivdiually, and another characterizing interactions, and
these two parameter distributions are here reduced to their first few moments.

III.1 Dynamics and parameterization

We start from Lotka-Volterra dynamics (see Sec. III.5 for a saturating functional response):

d

dt
Bi = Bi

ri −DiBi −
S∑
j 6=i

AijBj

 (S31)

with Bi the biomass of species i, ri its intrinsic growth rate, Di = ri the density-dependent mortality
(also known as intra-species competition), and Aij the bare interactions, expressed as gain or loss of
biomass per capita of both species i and j. These three sets of parameters entirely characterize the
species pool.

However this expression is not the only possible parameterization. For instance, in competitive
communities, it has been shown [23] that a useful parameterization is

d

dt
Bi = riBi

1− Bi
ki
−
∑
j

Cij
Bj
kj

 . (S32)

with ki the real carrying capacity (in units of biomass) of species i and Cij effective interactions. This
expression is a better choice if we expect ki and Cij to be independent properties, while ri, Di and Aij
are not. In particular, we can choose ki to be very widely distributed (possibly over many orders of
magnitude) to reproduce empirical abundance distributions, and Cij to be more narrowly distributed
to permit species coexistence, as we explain below.

Thus, the first step of our model simplification is to choose a parameterization that will lead to
maximal independence and minimal heterogeneity of the species attributes, i.e. that will minimize
their covariance and variance. The main objective is to avoid the cases listed in Table S2 where our
analytical method breaks down, although cases where there are correlations in the coefficients can be
tackled by simple extensions of the reference model (see Sec. IV).

Once such a parameterization is found, we can always express the equilibrium condition dBi/dt = 0
as

0 = Ki −Ni −
S∑
j 6=i

αijNj (S33)

where we note Ni the effective species abundance, αij the effective interactions and Ki the effective
carrying capacity (which can be negative if species i requires others to persist).

The first parameterization S31 corresponds to

Ni = Bi, Ki =
ri
Di
, αij =

Aij
Di

(S34)
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where Ni is simply the species biomass, which is the one we will use throughout unless otherwise
specified. The second parameterization S32 corresponds to

Ni =
Bi
ki
, Ki = 1, αij = Cij (S35)

where Ni is now the “occupation fraction” of a species’ carrying capacity. Let us assume that ki
is spread over orders of magnitude; then, if ri and Aij are i.i.d., abundant species j may exert a
competition pressure AijBj on rare species i which is hundreds or thousands of time stronger than
the latter’s growth riBi, guaranteeing the latter’s extinction. By contrast, if Cij are i.i.d., competition
pressure from species j will now depend on Bj/kj , which does not vary as dramatically as Bj , and
rare species can coexist with abundant species.

Our results are all computed from (S33); hence, although we will always talk about “abundance”,
“fitness” and ‘interactions”, their interpretation can differ depending on the original parameterization.

III.2 Model reduction and minimal parameters

As argued above, for any model with Lotka-Volterra dynamics (i.e. linear functional response), the
equilibria of the assembly process are entirely controlled by two properties of the species pool: inter-
actions αij and carrying capacities Ki. By “model” we thus mean a set of rules and parameters which
decide how αij and Ki are distributed, see e.g. Sec. II for the description of our various simulation
models. For instance, the resource competition model derives interactions and carrying capacities from
other, more fundamental species characteristics such as their consumption rate for a given resource,
itself drawn from some probability distribution.

We can talk of a “model reduction” if there exists a model with fewer parameters whose assembly
process will lead to the same quantitative predictions for all macroscopic community properties listed
in Sec. III.4, such as diversity, functioning and stability. This reduction may hold for all, or only part,
of the parameter space of the original model.

We call a model “fully disordered” when it can be reduced to our reference model, where species
fitness and interactions are characterized by only four parameters

ζ2 = K2
i −Ki

2
, µ = Sαij ,

σ2 = S(α2
ij − αij

2), γ =
S

σ2

(
αijαji − αij2

)
(S36)

(where X stands for the average of X including null elements). We can see that 〈K〉 does not appear
here: as part of the parameterization discussed in Sec. III.1, we can always divide abundances by a
constant factor to ensure 〈K〉 = 1.

As will become clear in the analysis through the next section, these four parameters emerge
naturally if we assume that interactions are disordered (“effectively random” even if they have some
structure). Then, the abundance of each species at equilibrium is the result of two distinct random
factors: its own carrying capacity and the change in abundance resulting from all interactions.

The result of many direct and indirect interactions is an emergent collective property, which loses
sensitivity to the detail of the interactions (as a consequence of the Central Limit Theorem, see
Sec. III.3). If the αij are not widely distributed or strongly correlated in complex ways, then µ, σ and
γ suffice to predict their effects.

By contrast, ζ is less universal: this parameter emerges under the assumption that the distribution
of carrying capacities Ki is Gaussian, which is not a requirement of our method (the same calculations
can be performed for any other choice of distribution, see e.g. Sec. III.5). Still, unless that distribution
has fat tails or complex correlations, we have only observed so far that using the full distribution rather
than just ζ yields at most small quantitative, rather than qualitative, corrections.

Less disordered models will require more parameters to adequately predict community properties
– a natural choice of additional parameter, which is often useful in practice, is the correlation between
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carrying capacities and interactions 〈Kiαij〉 when it cannot be removed by a choice of parameteri-
zation. If these additional parameters remain sufficiently generic (common to many models), we can
build classes of “mostly disordered” models that represent usual deviations from the fully disordered
limit, such as those represented in Fig. S1 and discussed in Sec. IV.

This model reduction has two main goals. Empirically, if we can find a simpler null model providing
the same community-level predictions, this reveals limits to our ability to infer mechanisms from
observed patterns. Theoretically, the fully disordered limit carries a stronger message: it means that
in a given model, while species might all have different traits, they are in a sense all “sampled from the
same distribution”. The analysis of the reference model will now allow us to give a precise meaning
to this statement.

III.3 Analytical solution

III.3.1 Intuitions

The analysis of the reference model is based on a well-honed technique from statistical physics, the
cavity method [6, 24]. Since species abundances Ni are the only variables in the assembly process, all
macroscopic properties of the assembled community can be determined from computing the equilib-
rium distribution of abundances and their correlations to other properties, see Sec. III.4.

The logic of the cavity method is remarkably simple: 1) we compute what happens after a single
invasion (from a species randomly drawn from the pool) into an already large community, and 2) we
then require that the community properties before and after the invasion be equal. The second part
means that we are computing the fixed point of this invasion process, i.e. an equilibrium which cannot
be invaded nor destabilized. It is thus different from the single-step invasion often studied in adaptive
dynamics (testing whether a given mutant species can invade).

If the system is fully disordered, it is sufficient to single out one invading species to obtain the
equations that define the whole community. More precisely, the hypothesis of disorder states that, for
any species, its traits (e.g. the strength of its interactions) are sampled without bias from the pool, and
the abundances of its interaction partners are sampled without bias from the equilibrium distribution
of the entire community. This is a strong, but very successful, hypothesis which conveys an important
intuition: no matter how complex the community, if each species samples that complexity fairly, the
collective dynamics are in fact surprisingly simple.

In a less disordered system, where different neighborhoods can be distinguished within the com-
munity (e.g. functional groups or different positions in a hierarchy), we must instead perform the
same computation for an invading species in each possible neighborhood. This idea is explained in
Sec. IV.

III.3.2 Calculations

Given the parameters above, we explain in [3] the detailed process of deriving the analytical solution.
In short, if we consider a community with the equilibrium abundances N∗j , then add species 0, its own
abundance obeys

N0 = K0 −
∑
j

α0jNj (S37)

where the abundances of other species have now become Nj . Assuming that this change is rela-
tively small, i.e. no species is largely controlled by a single interaction partner, we can take a linear
approximation

Nj ≈ N∗j +
dNj
dN0

N0. (S38)

We notice from (S37) above (which is also obeyed by species j instead of 0) that adding an interaction
partner 0 to the sum is equivalent to changing the carrying capacity Kj by an amount −αj0N0. In
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other words
dNj
dN0

= −αj0
dN∗j
dKj

. (S39)

This decomposition is helpful since it distinguishes between the effect of the specific interaction αj0,
and the general response of species j to any change, which is encapsulated by dN∗j /dKj (see [3] for
more explanations). We make a further simplifying approximation:

dNj
dN0

≈ −αj0 v, v =

〈
dN∗j
dKj

〉
. (S40)

This coefficient v represents how responsive, on average, the equilibrium abundance of surviving species
is to changes in either Kj (defined by the environment) or community composition. It integrates the
response not only to the initial perturbation, but also to all subsequent feedbacks as the perturbation
propagates through the community5. We later compute v explicitly, but for now we keep it as an
additional unknown6. The fact that we can replace dN∗j /dKj by its average value over all species can
be justified formally [7], but intuitively conveys the idea that this long-term feedback from the entire
community is the same for every species, due to each species occupying a statistically similar position
in the community, under the assumption of disorder.

Then we can rewrite (S37) as

N0 = K0 −
∑
j

α0jN
∗
j + vN0

∑
j

α0jαj0 (S41)

From the definitions in (S36), we notice that the sum on α0jαj0 involves γ the reciprocity parameter.
Identifying the sample mean with the population mean, and noticing that we are only summing over
the S∗ = φS surviving species in the community, we find

S∗=φS∑
j=1

α0jαj0 ≈ S∗αijαji = φγσ2 +O(µ/S) (S42)

(where the remainder is small for large communities with distributed interactions, i.e. µ � S) and
we finally get

N0 =
1

(1− φvγσ2)

K0 −
∑
j

α0jN
∗
j

 (S43)

Here, N0 is a random variable, defined in terms of random variables K0 and α0j drawn from the species
pool distributions, and N∗j drawn from P (N) the community’s equilibrium abundance distribution.
In fact, since α0j and N∗j are independent (N∗j was the abundance before species 0 was added), then
the following

z0 =

S∗∑
j

α0jN
∗
j (S44)

is a sum of i.i.d. random variables, and by the Central Limit Theorem it follows an easily computed
Gaussian distribution (see [3] for details). Thus, N0 = (K0 − z0)/(1− φvγσ2) is fully determined by
two independent random variables, K0 and z0, for which we can compute

〈K0〉 = 1, 〈z0〉 = φµ 〈N〉 , 〈K0z0〉 = 〈K0〉 〈z0〉 ,
Var(K0) = ζ2, Var(z0) = σ2φ

〈
N2
〉
. (S45)

5Hence the total derivative of the equilibrium abundance dN∗
j /dKj meaning that we compute the total change

between the equilibria before and after the change in Kj .
6Taking “response coefficients” as additional unknowns to help solve the problem is a well-established method in

statistical physics, see e.g. [24, 25]. It allows to express a complicated equation on some variables as a simpler pair of
coupled equations on these variables and the associated response coefficients.
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From this we easily deduce

〈N0〉 =
1− φµ 〈N〉
1− φvγσ2

, (S46)

and

Var(N0) =
ζ2 + σ2φ

〈
N2
〉

(1− φvγσ2)
2 (S47)

We will see that the probability distribution P0(N0) of the random variable N0 is well approximated
by a Gaussian7 with these prescribed mean and variance, however the rest of the calculation would
work even if the distribution had a different functional form [3].

If N0 < 0, species 0 could not invade durably. If N0 > 0 however, it could invade8 and reach
abundance N0. Now, recall that we want to compute the fixed point of the invasion process, when
adding a species does not change the abundance distribution. This entails that the distribution P (N)
of abundances for (surviving) interaction partners of species 0 is the same as the distribution for
species 0 itself when it survives, i.e.

P (N) = P0(N) if N > 0. (S48)

However, since this equality holds only for N > 0, moments such as 〈N〉 are computed only on positive
N . Since N0 < 0 indicates extinction, the probability of survival φ is simply the integral over N0 > 0.
All other moments of P (N) are similarly obtained by integrating P0(N0) over survivors:

φ =

∫ ∞
0

dN0 P0(N0), (S49)

〈N〉 =
1

φ

∫ ∞
0

dN0 P0(N0) N0, (S50)

〈
N2
〉

=
1

φ

∫ ∞
0

dN0 P0(N0) N2
0 . (S51)

Finally, from (S43) we can compute

v =

〈
dN∗j
dKj

〉
=
dN0

dK0
=

1

1− φσ2γv
(S52)

Hence, the equations above can be solved for the four parameters φ, 〈N〉,
〈
N2
〉

and v, which appear
both on the left-hand side of the equations, and within P0(N0) through its mean (S46) and variance
(S46).

These equations are transcendental (if we compute the integral, the result involves exponentials
and error functions) and therefore the solution cannot be expressed as an explicit formula. However,
we explain in Appendix how to find the solution numerically.

III.3.3 Abundance distribution

The theoretical abundance distribution P (N) computed above is Gaussian, which seems to contradict
empirical evidence on lognormal Species Abundance Distributions. However, let us recall that in
Sec. III.1, we defined Ni as rescaled abundances, and in particular, we noted that a natural choice for
competitive systems is

Ni =
Bi
ki

(S53)

7This is exact if P (K) is itself Gaussian or narrower, and approximate if it has wider tails.
8Note an important distinction: traditionally, invasion success is calculated by looking only at the initial growth

following the immigration of a species, without considering the ensuing trajectory; here, on the contrary, we check
whether species 0 will remain at very long times in the final equilibrium, after all interactions have played out.
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with ki the carrying capacity of species i and Bi its real abundance. If for instance ki follows a
lognormal distribution, as seen in plant monocultures [27], then a Gaussian distribution of Ni means
that Bi will also have a fat-tailed, quasi-lognormal distribution. A general explanation for such a
distribution of ki would be a series of independent multiplicative factors such as resource fluxes,
conversion efficiencies and reaction rates, whose product would then be lognormally distributed. For
the same reason, having ki follow a multiplicative random walk leads to realistic species abundance
distributions [21]. Another important factor is immigration processes in open systems [29].

III.4 Community properties

The analytical solution has provided us with moments of the effective abundance distribution P (N)
such as φ, 〈N〉 and

〈
N2
〉

or σ2
N and we can also compute correlations such as 〈NiKi〉i or 〈Niαij〉ij

(see [6]). To get back to real community properties, we must first revert the rescaling we performed
earlier (see Sec. III.1) from the real biomasses Bi to these effective abundances Ni. In the simplest
situation, Bi = Ni, ri = Ki and all community properties of interest are directly defined from the
moments and correlations of Ni, Ki and αij listed above. This was the case for all our simulation mod-
els. If however we have a more complex parameterization, there are additional, often straightforward,
calculations to be done to come back to the original parameters.

We now detail the predicted community properties, shown in Fig. S2. First, φ the fraction of
survivors is directly one of the variables we solved for (and does not depend on the choice of parame-
terization). Then, we get total biomass

T =
∑
i

Bi = φS 〈B〉 , (S54)

total productivity

P =
∑
i

riBi = φS 〈rB〉 , (S55)

(in the figures, we instead display the ratio P/T since P generically grows with T ), and Simpson index

D−1 = I =
∑
i

(
Bi
T

)2

=
1 + σ2

B/ 〈B〉
2

S
. (S56)

Finally, for stability metrics, variability in response to environmental noise is commonly used. We
show in [3] that it is given by

Venv =
∑
i

Var(Bi(t))

S
=

〈
K

r
B

〉
V (S57)

where V is given by

V ≈ 1

2− σ2 (γ + 1) φS
S−µ

. (S58)

For all comparisons we therefore used V , which is a more fundamental quantity: as we explain
in [3], it is the common term found when we compute the variability in response to different types of
perturbations; in particular, it directly yields variability due to demographic noise.

Finally, we also show in Fig. S2 the phase parameter for multistability. Assembly dynamics have
two main regimes: one where there is a single global attractor reached asymptotically by any sequence
of invasions, and another where multiple attractors exist and the result is history-dependent. The
transition from one regime to another as σ increases is signalled by the divergence of the order
parameter at a critical value σc (see [3, 7] for details and discussion) given by

σ2
c =

1

φ(1 + γ)2
. (S59)
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Figure S2: Coexistence, abundance and stability properties for the assembled state of the random
Lotka-Volterra model, in the space (µ, σ) for ζ = 0.3 and γ = 1. The uniform area in the left
of each graph signals the parameter region where some interactions are positive and strong enough
that abundances diverge. The bottom-right graph showcases the phase parameter: the sharp line
where it diverges indicates the transition from the single-equilibrium regime (below the line) where
our analytical results are exact for the reference model, to the multistable regime (above the line)
where they are approximate.

Our analytical results are exact in the single-equilibrium regime, but even when multiple equilibria
arise, our formulas continue to approximately predict the typical features of a community found in
one of these equilibria [7]. Likewise, the unique equilibrium, when it exists, is reached in the absence
of any noise and at very long times, but community properties do not change significantly when these
strict conditions are relaxed, as indeed they are in simulations.

We combined these quantities into a metric of relative error between simulations and reference:

Error =
1

5

∑
x∈{T,P,φ,D,V }

(
1

2
+

1

2

∣∣∣∣xsimulated + xpredicted
xsimulated − xpredicted

∣∣∣∣)−1 (S60)

which is symmetrical between under- and over-estimation, has values in [0, 1] and coincides with the
straightforward definition of relative error |∆x/x| when it is small. We deemed satisfactory agreement
when this error was below 5% for all explored parameter values.
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Figure S3: Agreement between simulations and the reference model with a saturating functional
response. (a)-(c) For each of the three main interaction types, the relative error (y-axis, between
0 and 60%) of the reference model (with saturating functional response) against simulations, as a
function of the degree of structure in the community (x-axis). Each set of symbols indicates a different
network structural property: assortativity, partitioning (from complete to bipartite graph), clustering,
connectance, nestedness, cascade and scale-free structure. See Sec. II.1 for a description of these
structures and their respective control parameters (x-axis), and Fig. 4 in main text for the same
comparison with a linear functional response.

III.5 Functional response

The model can be adapted to allow any functional response (and in doing so, we also write out equa-
tions allowing for arbitrary distributions of carrying capacities Ki). We will focus on the saturating
case:

d

dt
Ni =

ri
Ki
Ni

Ki −Ni −
∑
j

αijNj

1 + 1
ANc
|
∑
k αikNk|

 (S61)

where we clarify the meaning of the usual saturation half-rate [14] by decomposing it into the average
coefficient A = 〈αij〉 and the population threshold Nc. Hence, the interaction term saturates when the
total population of all partners of a species exceeds Nc. The limit Nc →∞ recovers the Lotka-Volterra
model.

In the context of the cavity method, we isolate species 0 and obtain its equilibrium condition

0 = K0 −N0 − f

∑
j

α0jNj

 (S62)

where
f(z) =

z

1 +
|z|
ANc

. (S63)

The same reasoning as above leads us to compute f(
∑
j α0jNj) at linear order around its value in the

absence of species 0:

f(
∑
j

α0jNj) ≈ f(
∑
j

α0jN
∗
j ) +N0

d

dN0
f(
∑
j

α0jNj). (S64)
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Let us note
z0 =

∑
k

α0jN
∗
j . (S65)

We have

f

∑
j

α0jNj

 ≈ f(z0) +N0f
′(z0)

dz0
dN0

(S66)

where, as above,
dz0
dN0

≈ v
∑
j

α0jαj0,
∑
j

α0jαj0 = φσ2γ (S67)

and finally we find

N0

(
1− f ′(z0)φσ2γv

)
= K0 − f(z0). (S68)

We can explicitly express N0 as a function of z0 and K0

N0(z0,K0) ≈ K0 − f(z0)

1− f ′(z0)φσ2γv
(S69)

where (in the case explored here)

f(z0) =
z0

1 + |z0|/ANc
, f ′(z0) =

1

(1 + |z0|/ANc)2
. (S70)

As we could expect, N0 → K0 ± ANc when z0 → ∓∞. Following our previous arguments, z0 is a
Gaussian random variable, with

〈z0〉 = φµ 〈N〉 , Var(z0) = φσ2
〈
N2
〉
, (S71)

which we denote

P (z0) = N (z0;µ 〈N〉 , σ2
〈
N2
〉
). (S72)

From there, we can easily solve numerically for the following equations, where N0 can be replaced by
its expression N0(z0,K0) above:

φ =

∫ ∞
−∞

dz0dK0 Θ(N0)P (z0)P (K0) (S73)

〈N〉 =
1

φ

∫ ∞
−∞

dz0dK0 Θ(N0)N0 P (z0)P (K0) (S74)

〈
N2
〉

=
1

φ

∫ ∞
−∞

dz0dK0 Θ(N0)N2
0 P (z0)P (K0) (S75)

where Θ(y) stands for the Heaviside step function (1 if y > 0, 0 otherwise). Finally, from (S69),

v =

〈
dN0

dK0

〉
=

1

φ

∫
dz0 Θ(N0)

P (z0)

1− f ′(z0)φσ2γv
(S76)

All right-hand sides are most conveniently rewritten under the general form

1

φ

∫ ∞
−∞

dz0 P (z0)
(
1− f ′(z0)φσ2γv

)−k ∫ ∞
0

dK0K
j
0P (K0 + f(z0)) (S77)

23



for k = 0, 1, 2 and j = k for the first three equations, k = 1 and j = 0 for the equation on v.
As we show in Fig. S3, the saturating functional response makes communities more predictable by

the reference model, since species whose interactions are saturated become indifferent to the state of
others and the general community structure and dynamics.

This method can straightforwardly be extended to different functional responses f(z) (all equations
where we have not made f(z0) and f ′(z0) explicit remain valid), and to the case of a species-dependent
threshold Nci. Important other variations on Lotka-Volterra dynamics in the literature include: energy
reserves and other time-lags between consumption and reproduction (e.g. [10, 17]), and Allee effect or
similarly nonlinear density dependence around zero [9]. The former have an effect on dynamics but
not on the equilibrium condition studied here, and are therefore irrelevant for our analysis. The latter
however can have dramatic consequences on the equilibria, which we will discuss in future work.

IV Reference model extensions

Let us come back to the intuition that “full disorder” means that each species should interact with
a statistically unbiased (if not identical) sample of the whole community – i.e. for any species, its
interactions and the abundances of its partners can, in effect, be drawn uniformly from the equilibrium
distribution of the general community. Then, we can deduce what it means to be less than fully
disordered: species can be differentiated statistically by the subset of the community that they interact
with directly.

In the context of the cavity method, this means that, when considering an invader, we cannot
draw the traits and abundance of its interaction partners at random from the entire equilibrium
community; we must consider each possible invasion scenario for the different “neighborhoods” within
the community (see examples below). This requires more information as we need the parameters
that characterize these neighborhoods in the species pool, from which we can analytically determine
the abundances and other community properties within each neighborhood. However, if we have this
information, we can apply an extended cavity method and successfully predict simulation results, see
the following sections for a few such extensions and Fig. S4 for an example.

In Fig. S1 we show two types of structures that create such neighborhoods in the species pool that
persist into the assembled community. Functional groups are a way to summarize strongly clustered
“profiles” of species, while hierarchy implies some sort of ordering or ranking between species. While
these two types have been extensively studied in simple models, our method works even if these
structures (e.g. group boundaries) are blurred rather than exact, and hence, they could be inferred
from data in complex communities. However we do not tackle this inference problem here yet, and
simply assume that the position of each species within a group or hierarchy in the species pool is
known in advance when making analytical predictions.

These two types add structure in the form of correlations in the matrix of species interactions,
and possibly also correlations between their interactions and their carrying capacity (e.g. a tradeoff
between competitive ability and growth). By contrast, other properties such as a degree distribution
simply adds more “local” heterogeneity, i.e. heterogeneity at the level of individual species attributes
which does not create distinct neighborhoods9. Local heterogeneity should not invalidate the fully
disordered approach, and indeed is found to have little to no impact on community properties.

IV.1 Group structure

The equations for the reference model can be extended to any structure comprised of discrete groups,
with disordered interactions within and between groups, but different statistics for each set of interac-
tions. Coming back to the equilibrium equation, we can write for species i in group x (which contains

9Note that network generated from ensembles such as Barabasi-Albert also come with less local properties such as
degree correlations, which could have an impact. We do observe however that they do not, see main text and Fig. S4.
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Sx species) as

0 = Kx
i −Nx

i −
∑
j∈Gy

αxyij N
y
j (S78)

where Gy is the set of species in group y. Thus, we now have vector ζ and matrices µ, σ, γ, defined
by

αxyij =
µxy

S
+
σxy√
S
axyij (S79)

with
〈a〉 = 0,

〈
a2
〉

= 1,
〈
axyij a

yx
ji

〉
= γxy. (S80)

The equations to solve are the same as in Sec. III.3, except there are now four equations per group,
all coupled: for each group we solve

φx =

∫ ∞
0

dN0 P
x
0 (N0) (S81)

〈N〉x =
1

φx

∫ ∞
0

dN0 P
x
0 (N0) N0 (S82)

〈
N2
〉x

=
1

φx

∫ ∞
0

dN0 P
x
0 (N0) N2

0 (S83)

vx =
1

ux
(S84)

where P x0 (N0) is again a Gaussian distribution for each group x, with the following mean and variance

〈N0〉x =
1−

∑
y µ

xyϕy 〈N〉y

ux
, (S85)

Var(N0)
x

=
ζ2 +

∑
y(σxy)2ϕy

〈
N2
〉y

(ux)2
, (S86)

ux = 1−
∑
y

ϕyvyγxyσxyσyx. (S87)

where

ϕx = φx
Sx

S
. (S88)

IV.2 Hierarchy

We now assume we can characterize a species by its position x on a single axis of possible niches or
roles. We show how to solve this in greater detail in [3]. We can take the continuous limit of the
group approach, where instead of matrices, µ(x, y), σ(x, y) and γ(x, y) are functions.

Note that a strictly nested matrix would have µ(x, y) = 0 for y > x, i.e. it can be written using
Θ(x − y) the Heaviside step function. But we find in Fig. S4 that accurate predictions are obtained
by replacing the step function by a simple linear dependence:

µ(x, y) = µ+ cµ(x− y) (S89)

σ2(x, y) = σ2 + cσ(x− y) (S90)

(S91)

and fixed γ. When deriving them from a simulation model, the coefficients and slopes can be fitted
from the interaction matrix of the species pool, with all slopes zero in the fully disordered case.
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Figure S4: Agreement between simulations and the extended analysis for hierarchical structure. While
a cascade structure precluded agreement with the reference model, it is accounted for by the devel-
opments in Sec. IV.2. Group structure (e.g. bipartition) however requires a different treatment,
discussed in Sec. IV.1. See legend of Fig. S3 for details, and Fig. 4 in main text for comparison with
the reference model.

If we add a similar dependence for carrying capacities,

〈K〉 (x) = K + cKx (S92)

ζ2(x) = ζ2 + cζx (S93)

we can account for tradeoffs such as competition-colonization models: if cµ < 0 and cK > 0, low rank
x corresponds to high competitive ability but low colonization ability.

The solution proceeds similarly to the group approach:

〈N0〉 (x) =
K + cKx− (µ+ cµx) 〈ϕN〉+ cµ 〈ϕNx〉

ũ(x)
, (S94)

Var(N0) (x) =
ζ2 + cζx+ (σ2 + cσx)

〈
ϕN2

〉
− cσ

〈
ϕN2x

〉
ũ2(x)

, (S95)

ũ(x) ≈ 1− γ 〈ϕV 〉σ2. (S96)

(in ũ we should in fact have σ(x, y)σ(y, x) = σ2
√

1− c2σ(x− y)2/σ4 but this complicates the analysis,
so we must assume that cσ is small enough). Hence there are two sets of coupled unknowns: for
Ψ = N,N2, V we must compute

〈ϕΨ〉 =

∫
dxρ(x)

∫ ∞
0

dN0P0(N0, x)Ψ (S97)

and (except for V ),

〈ϕΨx〉 =

∫
dxρ(x)x

∫ ∞
0

dN0P0(N0, x)Ψ. (S98)

where ρ(x) represents the probability distribution of niche position x. Finally, we can compute the
community averages

〈Ψ〉 =
〈ϕΨ〉
〈ϕ〉

(S99)

which are involved in calculating community properties (see Sec. III.4).
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IV.3 Basic correlation structure

Besides group structures and hierarchies, a very simple deviation from the most basic form of the
reference model (described in Sec. III) is the presence of first-order correlations within rows in the
interaction matrix or between fitness and interaction, with an ecological interpretation given below.
Correlations within columns of the interaction matrix can be transformed into row correlations by
rescaling the variables xi differently, see Sec. III.1.

IV.3.1 Fitness-interaction correlations

Sec. III assumed K0 and α0i to be independent variables. If there is a correlation between them, then

〈K0z0〉 = 〈K0〉 〈z0〉+ Sφ 〈N〉CKα (S100)

where we now define
CKα = 〈K0α0j〉 − 〈K〉 〈α〉 (S101)

and as we recall N0 = (K0 − z0)/(1− φvγσ2), it is straightforward to see that

Var(N0) =
ζ2 + σ2φ

〈
N2
〉
− 2Sφ 〈N〉CKα

(1− φvγσ2)
2 . (S102)

Hence, such correlations can be accounted for by a simple shift in the variance of P0(N0) (and therefore
a similar change in the variance of the effective abundances N), at the cost of adding a new parameter,
〈K0α0i〉.

IV.3.2 Row correlation

Let us assume that
α0i = α0 +

σ0√
S
β0i (S103)

with
〈βij〉 = 0, Var(βij) = 1, 〈α0〉 = µ/S, Var(α0) = σ2

row. (S104)

For instance, this allows to capture very skewed degree distributions where a few species serve as hubs
and have much stronger average interactions than the others. Then, the equilibrium condition is

0 = K0 − S∗α0 〈N〉 −N0 −
σ0√
S

S∗∑
i

β0iNi (S105)

where we still assume that 〈N〉 over partners of 0 does not differ from the community average. Then,

Ni ≈ N∗i −
dNi
dKi

σi√
S
βi0N0 (S106)

hence (
1− 1

S

∑
i

σiσ0βi0β0i
dNi
dKi

)
N0 = K0 − S∗α0 〈N〉 −

σ0√
S

S∗∑
i

β0iN
∗
i (S107)

≈ (1− φσ0σγv)N0 (S108)

where

v =

〈
1

1− φσ0σγv

〉
≈ 1

1− φσ2γv
(S109)
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and finally

〈N0〉 = v(〈K〉 − φµ 〈N〉) (S110)

Var(N0) = v2
(
ζ2 + S∗2σ2

row 〈N〉
2 − 2S∗ 〈N〉CKα + σ2φ

〈
N2
〉)

(S111)

where it turns out that the variance on σ0 is irrelevant. So in the end we only need two metrics of
variance: the usual σ and σrow the standard deviation of 〈αij〉i. Hence row (or column) correlations
in the interaction matrix add one more parameter, σrow, compared to fitness-interaction correlations.
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Appendix: Numerical solution of the reference model

We explain here the basic numerical scheme used to obtain results from the reference model, given
the four parameters ζ, µ, σ, γ. See below for example R code.
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The equations to solve are the following

φ =

∫ ∞
0

dN0 G(N0, 〈N0〉 ,Var(N0)), (S112)

〈N〉 =
1

φ

∫ ∞
0

dN0 G(N0, 〈N0〉 ,Var(N0)) N0, (S113)

〈
N2
〉

=
1

φ

∫ ∞
0

dN0 G(N0, 〈N0〉 ,Var(N0)) N2
0 , (S114)

v =
1

1− φσ2γv
(S115)

where

G(x,m, v) =
e−(x−m)2/2v

√
2πv

(S116)

and

〈N0〉 =
1− φµ 〈N〉
1− φvγσ2

, (S117)

Var(N0) =
ζ2 + σ2φ

〈
N2
〉

1− φvγσ2
. (S118)

Let us note

wn(m, v) =

∫ ∞
0

dN0 G(x,m, v)xn (S119)

Then

w0(m, v) =
1

2

(
1 + erf(m/

√
2v)
)

(S120)

w1(m, v) = v
e−(x−m)2/2v

√
2πv

+
m

2

(
1 + erf(m/

√
2v)
)

(S121)

w2(m, v) = mv
e−(x−m)2/2v

√
2πv

+
m2 + v

2

(
1 + erf(m/

√
2v)
)

(S122)

Finally, we use a root solver10 with φ, 〈N〉,
〈
N2
〉

and v as variables, looking for a root of the vector-
valued function

F (φ, 〈N〉 ,
〈
N2
〉
, v) =


φ− w0

〈N〉 − w1〈
N2
〉
− w2

v(1− φσ2γv)− 1

 (S123)

where for each wn we used m = 〈N0〉 and v = Var(N0) which are both explicit functions of
(φ, 〈N〉 ,

〈
N2
〉
, v). The same technique generalizes to the extensions of the reference model, except for

the fact that wn cannot always be derived explicitly (and the equation for v may involve an integral),
in which case the integrals have to be computed numerically.

R implementation of the comparison scheme

An up-to-date version of this code, plus example files from simulations, are maintained at http:

//github.com/mrcbarbier/ecocavity-R

10We used the hybr (modified Powell hybrid method) solver from the SciPy package.
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library(rootSolve)

# This code is provided as part of the Supporting Information for the article

# "Generic assembly patterns in large ecological communities" (2017)

# M. Barbier, J.-F. Arnoldi, G. Bunin and M. Loreau.

# The function "prediction_from_matrix(r,A,D)" takes matrices for

# growth rates r, interactions A and self-interactions D and returns

# a list containing the four reference parameters

# zeta

# mu

# sigma

# gamma

# as well as all predicted quantities

# biomass: total biomass of the system

# sdBiomass: standard deviation of individual biomass

# phi: fraction of survivors

# survivors: number of survivors

# simpsonD: Simpson diversity (1/Simpson index)

# productivity: productivity ratio

# variability: response to stochastic perturbation

# press: response to random press perturbation (if infinite, signals multistability)

#

# OPTIONS

# correlations

# when set to TRUE (default), the function uses the extension of the reference model

# that accounts for first-order correlations between the coefficients, and returns

# cKa: measure of correlation between carrying capacities and interactions

# sigma_row: measure of row-wise correlations in interactions

# FR

# If provided as a list (f,df) consisting of a function f(z) and its derivative f’(z)

# computes the predictions for the model with functional response f(z)

measure_parameters <- function(r,A,D,PK=TRUE,correlations=TRUE,plotK=FALSE)

{

K <-r/D

alpha <- A / rep(D, each = nrow(A))

S <- length(K)

if( mean(alpha)>1){

print("WARNING: Average interactions are strong (A/D>1). Predictions will not be accurate.")

}

else if (max(alpha)>1){

if (max(alpha)>5){

print("WARNING: Some very strong interactions (A/D>>1). Predictions may not be accurate.")

}

else {

print("WARNING: Some strong interactions (A/D>1). Predictions may not be accurate.")

}

}

avgK <- mean(K)
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stdK <- sd(K)

histK <- hist(K,plot=FALSE)

Kmin <- min(K)-5*stdK

Kmax <- max(K)+5*stdK

if(PK){

PK <- function(x) {

res <- exp(predict(smooth.spline(x=histK$mids, y=log(histK$density)),x)$y)

return(res)

}

}

else{

PK <- function(x){dnorm(x,avgK,stdK)}

}

if(plotK){

ks<-seq(Kmin-.5,Kmax+.5,0.01)

plot(ks,PK(ks),type="l" )

lines(ks,dnorm(ks,avgK,stdK),col="red")

points(histK$mids,histK$density )

}

offdiag <- function(a){ a[row(a)!=col(a)] }

offa <- offdiag(alpha)

mu <- (S-1)* mean( offa )

sig <- sqrt(S-1)*sd(offa )

gam <- cor(as.vector(offa),as.vector(offdiag(t(alpha))))

if(correlations){

corrKA <- (S-1)* mean(offdiag(rep(K, each = nrow(alpha))*(alpha)) ) - avgK* mu

sigrow <- sqrt(S-1)*sd(rowMeans(alpha) )

sig <- sqrt(sig^2 - sigrow^2)

}

else

{ corrKA <-0

sigrow <-0 }

return( list(S=S,mu=mu,sig=sig,gam=gam, PK=list(avgK=avgK,stdK=stdK,dist=PK,Kmin=Kmin,Kmax=Kmax),correl=c(corrKA,sigrow) ))

}

prediction <- function(parameters,correlations=TRUE,FR=FALSE)

{

PK <- parameters$PK

if(!(identical(PK$dist,FALSE) & identical(FR,FALSE) ) ){

#Make integral table for interpolation

Kmin=PK$Kmin

Kmax=PK$Kmax

if(identical(FR,FALSE)){

#Linear functional response by default

FR <- list(f=function(x){x},df=function(x){1})
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}

Kstep <- (Kmax-Kmin)/100

KS <- seq(Kmin,Kmax,Kstep)

Ktable <- mapply(function(mom){

mapply(function(z0){

integrate( function(x){ FR$f(x)^mom * PK$dist(x+z0) },0, Inf )$value

}, KS ) }, c(0,1,2) )

parameters$PK$table <-

mapply(function(mom){function(K){

K[K>Kmax]=Kmax

K[K<Kmin]=Kmin

approxfun(KS , Ktable[,mom] )(K) }

}, c(1,2,3)

)

}

z_parameters <- function(x,S,mu,sig,gam){

meanz <- mu*x[1]*x[2]

varz <- sig^2 * x[1] *x[3]

return(c(meanz,varz) )

}

gaussian_parameters <- function(x,S,mu,sig,gam,PK,correl){

g <-gam*sig^2 * x[1]

v <- x[4]

u <- 1-g*v

zparam <- z_parameters(x,S,mu,sig,gam)

mean0 <- PK$avgK - zparam[1]

corrKA <- correl[1]

sigrow <- correl[2]

var0 <- PK$stdK^2 +sigrow^2 * (S-1)*(x[1] *x[2])^2 - 2*x[1]*x[2]*corrKA + zparam[2]

return(c(mean0/u,var0/u^2,u))

}

erfmom <- function(mom,mean0,var0){

#If functional response is linear and all distributions are normal

erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1

if (var0<=0.001){var0<-0.001}

xx<-mean0/sqrt(2*var0)

mom0 <- .5 * (erf(xx)+1 )

mom1 <- sqrt(var0/2/pi) * exp(-xx^2)

if (mom==0){

return(mom0) }

else if (mom==1){

return(mean0* mom0 + mom1) }

else if (mom==2){

return( (var0+mean0^2)*mom0 + mean0*mom1)}

}

frmom <- function(mom,meanz,varz,g,PK,momden=FALSE){

if (identical(momden,FALSE) ){ momden <- mom }
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funcresp <- FR$f

funcrespd <- FR$df

Kint <- PK$table[[as.integer(mom+1)]]

stdz=sqrt(varz)

res <- integrate(function(z0){

(1-funcrespd(z0) *g)^(-momden)*Kint(z0) *dnorm(z0,meanz,stdz) },-Inf,Inf)$value

return(res)

}

meanfield <-function(S,mu,PK){

v <- PK$avgK/(1+mu*(1-1/S) )

return(c(1,v,v^2+PK$stdK^2,1 ) )

}

solve_system <- function(S,mu,sig,gam,PK,correl,maxtrials=100){

model <- function(x){

if (identical(FR,FALSE) & identical(PK$dist,FALSE) ){

gparam <- gaussian_parameters(x,S,mu,sig,gam,PK,correl)

mean0 <- gparam[1]

var0 <- gparam[2]

F1 <- x[1] - erfmom(0,mean0,var0)

F2 <- x[1] * x[2] - erfmom(1,mean0,var0)

F3 <- x[1] * x[3] - erfmom(2,mean0,var0)

F4 <- x[4]*(1-x[4]*gam*sig^2*x[1] ) -1

}

else{

gparam <- gaussian_parameters(x,S,mu,sig,gam,PK,correl)

mean0 <- gparam[1]

var0 <- gparam[2]

zparam <- z_parameters(x,S,mu,sig,gam)

meanz <- zparam[1]

varz <- max(0.0001,zparam[2])

g <- x[1] * sig^2 *gam * x[4]

g<- min(.9,g)

F1 <- x[1] - frmom(0,meanz,varz,g,PK)

F2 <- x[1] * x[2] - frmom(1,meanz,varz,g,PK)

F3 <- x[1] * x[3] - frmom(2,meanz,varz,g,PK)

F4 <- x[1] * x[4] - frmom(0,meanz,varz,g,PK,1)

}

phimin <-0.001

cost <- max(0,(phimin-x[1])/phimin ) #max(0,min((0.01-x[1])*10,x[2]^2-x[3]) )

val <- c(F1 = F1+cost,F2 = F2,F3 = F3, F4=F4)

#print(c(x,val, cost ))

return( val)

}

ss <- list(root= c( 1,1,1,1),f.root=(100) )

failure <- function(s){ max(abs(s$f.root))>0.01 }
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trials=0

while (failure(ss) & trials<maxtrials ){

if (sig>.8 & trials >0){

x0 <- solve_system(S,mu,sig/1.01,gam,PK,correl,maxtrials=2)

}

else{

if (sig>0.1){

x0 <- solve_system(S,mu,0.1,0,PK,correl,maxtrials=20)

}

else{

x0 <- meanfield(S,mu,PK)

}

}

try( ss <- multiroot(f = model, start = x0, positive=TRUE) ,silent=FALSE)

trials <- trials +1

}

if (failure(ss)){

return( c(0,0,0,0) )

}

else{

return(ss$root)

}

}

compute_results <- function(x,S,mu,sig,gam,PK,correl){

gparam <- gaussian_parameters(x,S,mu,sig,gam,PK,correl)

u <- gparam[3]

phi <- x[1]

N1 <- x[2]

N2 <- x[3]

v <- x[4]

avgN <- N1*phi

avgN2 <- N2*phi

stdN <- sqrt(N2-N1^2)

simpson <- N2/S/phi/N1^2

zeta <- PK$stdK/PK$avgK

if(PK$stdK!=0){

productivity <- (u*avgN2 + mu*avgN^2 +sig^2/PK$stdK^2

*avgN2 * PK$avgK *avgN)/ (1+sig^2/PK$stdK^2*avgN2)

}

else{

productivity <- 1

}

press <- 1./( u^2 - phi*sig^2 )

if(press <0){ press <- Inf }

variability <- 1/(1- phi* sig^2 * (gam+1)/2 )

results= c(zeta=zeta,mu=mu,sigma=sig,gamma=gam,

biomass=avgN*S,sdBiomass=stdN,phi=phi,survivors = S*phi,

simpsonD = 1/simpson, productivity = productivity/avgN,

variability=variability,press=press)
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if(correlations){

results=c(results,cKa=correl[1],sigma_row=correl[2] )

}

return ( results)

}

ss <- do.call(solve_system,parameters)

return(do.call(compute_results, c(list(x=ss),parameters)))

}

prediction_from_matrix <- function(r,A,D=FALSE,PK=TRUE,correlations=TRUE,FR=FALSE){

if ( identical(D,FALSE) ){

D <- diag(A)

diag(A) <- 0

}

return(prediction(measure_parameters(r,A,D,PK,correlations),correlations,FR=FR))

}
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