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S1. Pair potential for CGMS simulation 

To understand the resistance-strain hysteresis of carbon nanotubes (CNTs) 

conductors, we use coarse-grained molecular statics (CGMS) method to simulate the 

morphological change of CNT networks under loading cycles. We model a thin sheet of 

CNTs composed of a collection of 
CNTN  nanotubes, with each one discretized by a set of 

(on the order of 100) 
nodeN  nodes. We use the following pair potential for different nodes 

(1, 2): 
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(S1) 

The first two terms are the stretching and bending energies between neighboring nodes 

in one CNT. The interaction parameters are chosen to reproduce the bending and 

stretching response of an elastic tube with Young’s modulus 5CNTE TPa , inner diameter 

in CNT CNTd d h  , and outer diameter 
out CNT CNTd d h  , where 

CNTd  is the diameter of the 

CNTs, and we adopt the CNT wall thickness 0.07 nmCNTh   (3). The parameters 
ir  in Eq. 

S1 is the position of a node, 
0 CNT nodel l N  is the stress-free length between two 

neighboring nodes, with 
CNTl  the length of CNTs. The stretching stiffness is 

0s CNT CNTk E A l  with the cross-section area  2 2 2CNT out inA r r  , and the bending 

stiffness is 
0s CNT CNTk E I l  with the moment of inertia  4 4 64CNT out inI d d  . The last 

term of Eq. S1 is the Lennard-Jones potential for non-neighboring nodes. The 



parameters 
12 12cC N c  and 

6 6cC N c , where 
cN  is the number of carbon atoms 

represented by each node (4), -1

12 2516582.4 kcal molc   Å12, and -1

6 1228.8 kcal molc   Å6 

(5). For single-wall CNTs, we estimate 
0c CNT CN d l A , where 2.6194CA   Å2 is the 

average area covered by each carbon atom. An additional potential is applied to each 

node to model the adhesion and repulsion of the substrate 
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where y  is the thickness direction of the CNT network, and 
0y  is the position of the 

substrate. Here we set 
1 2 sk k k  . The initial simulation cell has the size of 

xH  , yH  = 

100 nm and 
zH  in the x, y and z direction. Periodic boundary conditions are applied in 

the x and z directions, i.e. within the plane of the CNT film. 

 

S2. Calculating the resistance of CNT networks 

S2.1. Zero net current condition 

 According to Ohm’s law, the electrical current I  is proportional to the voltage 

difference across a conductor V  

I G V  ,  (S3) 

where G  is the conductance. Fig. Sec S1 sketches the electrical current through one CNT, 

which is discretized with multiple nodes. A voltage drop is applied at the two ends of the 

simulation cell. When the steady state is reached, net current going in and out each node 

is zero. Take node 3 as an example, and this condition can be expressed as 

32 3 2 34 3 4( ) ( ) 0G V V G V V    . (S4) 

This can be reorganized as  

32 34 3 32 2 34 4( ) 0G G V G V G V    .  (S5) 

The general condition of zero net current for node i  is 

0ij i ij j

j j

G V G V   ,  (S6) 

where nodes j  are the ones connecting node i . 



 

Fig. Sec S1. Schematics of the current through the nodes of a CNT in the simulation cell 

and the two neighboring unit cells under the periodic boundary condition. 

 

S2.2. Periodic boundary condition 

 Since the period boundary condition is applied to the simulation cell and a 

voltage difference 0V  is applied at the two ends of the simulation cell, the voltage of 

node 1 in the simulation cell and node 1'  which physically connected to node 2 (Fig. Sec 

S1) satisfies the relation 

1 1 0'V V V   . (S7) 

The zero net current condition for node 2 is 

21 2 1 23 2 3( ') ( ) 0G V V G V V     , (S8) 

which can be rewritten as the same form of Eq. S6, but with a source term 21 0G V  

21 2 1 23 2 3 21 0( ) ( )G V V G V V G V      . (S9) 

Similarly, the zero net current condition for node 6 can be written as the general form 

with a source term 67 0G V   

65 6 5 67 6 7 67 0( ) ( )G V V G V V G V       . (S10) 

Thus, the zero net flux conditions for the node i  connecting their neighbors on the left 

boundary of the simulation cell introduce a source term 
0ij

j

G V , while the zero net flux 

conditions for the node connecting their neighbors on the right boundary introduce a 

source term 
0ij

j

G V  . 

 

S2.3. Contact resistance 
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 So far, we have only considered resistance to current of bonded nodes inside one 

CNT. When two CNTs contact, a larger contact resistance needs to be considered. If 

nodes i  and k  form a contact, the zero net current condition of node i  should be 

modified as 

0ij i ij j ik i ik k

j j k k

G V G V G V G V        , (S11) 

where ikG  is the contact conductance, which is usually much smaller than ijG , the 

conductance between bonded nodes. Similarly, for the contacts formed on the boundary 

of the simulation cell, source terms need to be added as shown in Eqs. S9 and S10. 

 

S2.4. Governing equation set 

 Considering the zero net current condition for all the nodes ( 1 to i n ), we obtain 

a governing equation set  

GV = S ,  (S12) 

with voltage  1 1 2( ) , ,...
T

i n nV V V V V , source term  1 1 2( ) ,S ,...S
T

i n nS S S  and the 

conductance matrix ( )ij n nG G . 
iS  becomes nonzero if node i  connects their neighbors 

or forms contacts on the left or right boundaries of the simulation cell. ijG  becomes 

nonzero if nodes i  and j  form a bond or contact. Under the given voltage drop on the 

boundary of the simulation cell 
0V , the conductance between bonded or contacting 

nodes ijG  and ijG , and the known structure of the CNT network, we can solve Eq. S12 

and obtain the distribution of the voltage in the simulation cell.  

Next, in order to calculate the effective conductance of the CNT network, we need 

to calculate the total current going through the simulation cell. To do so, we can choose 

an arbitrary cross-section, and the total current across it should be independent of the 

choice. Here we just take the left boundary of the simulation cell as an example. For a 

node i  connecting its neighboring node j  across the left boundary, the current across 

the boundary can be calculated as  

0( )ij ij j iI G V V V    . (S13) 

The total flux can then be obtained as the sum of all flux through bonded CNTs ijI  and 

contacts ikI , 
, ,

ij ik

i j k

I I I  . The effective conductance of the matrix can be calculated as 

0/G I V  , and the effective resistance as 1/R G . The electric conductance through 



bonded CNTs ijG  are related to the CNT resistance as 1/ij nodeG R , and the electric 

conductance through contacts ijG  are related to the contact resistance as 1/ij contactG R . 

  

S3. Analytical model of resistance evolution under loading cycles 

Here we establish an analytical model to relate the resistances in the stretching 

and transverse directions, 
xR  and 

zR  respectively, with the loading history in the limit of 

very long CNTs, which easily buckles under compression. In this model, we first obtain 

an expression for the dependence of the mean relative projected length   on the strain 

history, and then establish the relation between   and the electrical resistance R .  

Before stretching, the CNTs are assumed to be straight, with a random 

distribution of orientation. Therefore, the mean relative projected length 
x x xl h   and 

z z zl h   before stretching are 

/2
0 0

0

2
cos 0.637x x z z

CNT CNT

H H
d

l l

 


     , (S14) 

where 
xH  and 

zH  are the sizes of the simulation cell in x and z directions before the 

stretching, 
CNTl  is the length of CNTs, and   is the angle between the CNT and the x axis.  

After stretching, the CNTs may be curved, and we consider the vector connecting 

the two end points of every CNT, the end-to-end vector. If the end-to-end vector deforms 

affinely with the applied strain, it experiences a stretch of 1    in the x direction, and 

a stretch of 1   in the z direction. Then the vector of a CNT with the initial orientation 

  deforms to length affl , and rotates to orientation   

2 2 2cos sin /aff CNTl l     ,   3/2arctan tan    .  (S15) 

By setting aff CNTl l , we can obtain a critical angle   2arccos 1 1c      . For all 

CNTs with the initial orientation angle 
c , the length of the end-to-end vector 

becomes shorter under the affine deformation <aff CNTl l , and therefore we assume that all 

these CNTs buckle so that the end-to-end vectors will deform affinely with the applied 

strain.  On the other hand, the end-to-end vector will not be able to follow the affine 



deformation for all CNTs with the initial orientation angle 
c , since doing so would 

require the vector to become longer than the contour length of the CNT. For simplicity, 

we assume that the end-to-end vector for these CNTs will only rotate to the new 

orientation specified by the affine deformation, but its length will remain at the contour 

length of the CNT. Given these assumptions, during loading the mean relative projected 

length 
x  and 

z  can be expressed as 

 
/2

0

2
cos cos

c

c
x CNT aff

x

l d l d
h


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




    ,  (S16) 
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where the current simulation cell sizes relate the one before stretching by 
x xh H  and 

/z zh H  . 

During unloading, after reaching the maximal stretch 
m , the CNTs with 

c  

reversibly recover from the buckling, and therefore the two ends of the CNTs always 

deform affinely with the substrate. It can also be proved that CNTs with initial 

orientation 
c  buckle during unloading, so the two ends of the CNTs follow the 

affine deformation of the substrate with the configuration under the maximal stretch 
m  

as the reference state. During unloading, the mean relative projected length 
x  and 

z  

can be calculated as 

/2

m
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m

2
cos cos

c
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where   3/2

m marctan tan    . Combining Eqs. S16-S19, we obtain Eq. 1 and 2 in the 

main text. 

During the subsequent loading, the CNTs with 
c  will buckle again, while the 

CNTs with 
c  reversibly recover from the buckling until 

m , after which Eqs. S16 



and S17 are applicable again. Therefore, the subsequent reloading curve of    

overlaps the unloading one until the previous maximal strain is reached. 

After obtaining the evolution of 
x  and 

z , we further relate them to 
xR  and 

zR . 

The inverse of the mean relative projected length /x x xh l   represents the least 

contacts needed for electrons to conduct through the simulation cell in the x direction. 

Then 
CNTN  number of CNTs can form /CNT xN   parallel paths of conduction, so the 

resistance 
xR  should be proportional to 2 /x CNTN . When the contact resistance 

contactR  is 

much higher than the resistance of the CNTs, the resistance in the stretching direction 

can be estimated as 

2 /x contact x CNTR R N  ,  (S20) 

where   is a constant on the order of 1 related to the morphology of the CNT network. 

Similarly, the resistance in the z direction can be calculated as  

2 /z contact z CNTR R N  .  (S21) 

Combining Eqs. S16-S21, we can analytically calculate the evolution of the resistance 
xR  

and 
zR  with respect to an arbitrary loading history. 

 

  



4. Supplementary figures 

 

Fig. S1. Experimental setup for the in situ measurement of the resistance of the CNT thin 

film under a cyclic loading. (A) Images with no strain applied ( 0  ), and (B) with 

0.6  . Analysis of the images (A) and (B) shows that the width and length changes of 

the PDMS substrate follow the one of an incompressible material under uniaxial 

deformation, and that the deformation of the CNT film is the same as the PDMS 

substrate.  

 

  



 

Fig. S2. Example of CNTs sliding in the same bundles as strain increases.  

  



Fig. S3. Effect of the simulation cell size on the convergence of the simulation. The 

resistance of the CNT network increases and then decreases during a loading and 

unloading cycle of maximal strain 0.4, forming a hysteresis. Each CNT has length 

800 nmCNTl   and diameter 1 nmCNTd  , and is discretized by 40nodeN   nodes. The 

simulation cell has size 
xH  and 

zH  in the x (loading) and z (transverse) directions, and 

100 nm in the y direction. The cell size is varied from (A) 400 nmx zH H  , (B) 

800 nmx zH H  , to (C) 1600 nmx zH H  . The density of the CNTs is fixed, and the 

number of CNTs is (A) 30CNTN  , (B) 120CNTN   and (C) 480CNTN   respectively. All the 

results shown here are the average of around 10 simulations. As we can see, even when 

the cell size is as small as half of the CNT length, the cell size almost does not affect the 

calculated resistance change. 

  



 

Fig. S4. Effect of the contact radius 
contactr  on the convergence of the simulation, (A) 

0.2 nmcontactr  , (B) 0.4 nmcontactr  , (C) 0.6 nmcontactr  . The CNT network is composed of 

480CNTN   CNTs, each with length 800 nmCNTl  , diameter 1 nmCNTd  , and discretized 

by 40nodeN   nodes. As we can see, the resistance change is not sensitive to 
contactr  . In the 

following simulations, we always use 0.4 nmcontactr  . 

 

  



 

Fig. S5. A typical simulation result of the relative resistance change in the (A) x (loading) 

and (B) z (transverse) directions under three sequentially increasing strain cycles of 20%, 

40% and 60% without averaging, for 135CNTN   CNTs with length 2400 nmCNTl  , 

diameter 1 nmCNTd  , each discretized by 120nodeN   nodes, in a simulation cell with 

1200 nmx zH H  . The contact resistance is set as 200 kcontactR   , and the resistance of 

a single CNT is 17.3 kCNTR   .  



 

Fig. S6. Direct comparison between the CGMS simulation and the experimental results 

of the relative resistance change in the (A) x (loading) and (B) z (transverse) directions 

under three sequentially increasing strain cycles of 20%, 40% and 60%. The 

experimental and CGMS simulation results are shown in Fig. 2A, B and Fig. 2C, D 

respectively.  

  



 

Fig. S7. The relative sheet resistance change in the (A) x and (B) z directions under three 

sequentially increasing strain cycles of 20%, 40% and 60%, for 135CNTN   CNTs with 

length 2400 nmCNTl  , diameter 1 nmCNTd  , each discretized by 120nodeN   nodes, in a 

simulation cell with 1200 nmx zH H  . Sheet resistance is defined as 
sx x z xR R h h  and 

sz z x zR R h h . The contact resistance is set as 200 kcontactR   , and the resistance of a 

single CNT is 17.3 kCNTR   .  

  



 

Fig. S8. Evolution of the mean angle difference between neighboring CNT segments 

node  under three sequentially increasing strain cycles of 20%, 40% and 60%. 

 

  



 

Fig. S9. Evolution of the number of total contacts 
contactN  between CNTs under three 

sequentially increasing strain cycles of 20%, 40% and 60%.   



Fig. S10. The mean projected lengths of the end-to-end vectors of CNTs in the x and z 

directions normalized by the original simulation cell size (A, B) and the current cell size 

(C, D). 

  



Fig. S11. The correlation of the relative resistance changes in the x direction 
0/x xR R  (A) 

and z direction 
0/z zR R  (B) with the relative changes of the inverse mean projected 

lengths in the x and z directions 
0/x x   and 

0/z z   respectively.  

  



Fig. S12. The evolution of the inverse mean relative projected lengths in the x and z 

directions 
x  (A, C) and 

z  (B, D) by CGMS simulation (A, B) and analytical modeling 

(C, D). The simulation and analytical results show very good agreement. 

  



Fig. S13. Effect of CNT density on the evolution of the resistance change, (A) 30CNTN   

nanotubes, (B) 60CNTN  , (C) 90CNTN  . For all cases, the CNTs have length 

1600 nmCNTl  , diameter 1 nmCNTd  , each discretized by 80nodeN   nodes, in a 

simulation cell with 800 nmx zH H  .  

  



Fig. S14. Effect of the CNT diameter on the resistance change. (A) 1 nmCNTd  , (B) 

1.4 nmCNTd   and (C) 2 nmCNTd  . For all cases, the CNT network is composed of 

60CNTN   CNTs, each with length 1600 nmCNTl  , discretized by 80nodeN   nodes. 

 

  



Movie S1. The evolution of the morphology of a CNT network under three sequentially 

increasing strain cycles of 20%, 40% and 60%. The CNT network is composed of 

135CNTN   CNTs with length 2400 nmCNTl  , diameter 1 nmCNTd  , each discretized by 

120nodeN   nodes, in a simulation cell with 1200 nmx zH H  . 
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