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Justification of modeling origami structures using truss models 

In this paper, truss models are used to model origami structures. In a recent paper1, detailed 

comparisons have been conducted to justify the application of truss models to origami structures. 

Here, we specifically performed finite element simulations on triangular patterns subjected to 

characteristics deformations, namely, in-plane stretching, in-plane shearing, and out-of-plane 

bending. The finite element simulations were compared with the results using the truss model. 

Figure S1 shows the results and here the normalization is through the maximum displacement in 

each case. As seem in these three loading cases, the truss models can qualitatively agree with the 

finite element simulations. Specifically, for the triangulated cylinder patterns used in this study 

(i.e., Figs. 1a and 1b), or 112γ °=  (for Fig. 1a) and 80γ °=  (for Fig. 1b), both tension (Fig. S1a 

and S1b) and shear (Fig. S1c and S1d) show excellent agreement between the finite element 

simulations and truss models. For bending deformation, the difference between finite element 

simulations and truss models is also acceptable.  
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Figure S1. Comparison between finite element simulations and truss models for several 

featured deformation modes. ABAQUS 4-node shell elements (S4R) were used in the finite 

element simulations. (a) For tension, the bottom is fixed, and a concentrated force is applied at 
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the top vertex. (b) For tension, vertical displacement of the top vertex normalized by the maximum 

displacement for studied γ angles, as a function of γ angles. (c) For shear, the bottom is fixed, and 

a concentrated force is applied at the top vertex. (d) For shear, horizontal displacement of the top 

vertex normalized by the maximum displacement for studied γ angles, as a function of γ angles. 

(e) For bending, the bottom of two triangles with a dihedral angle τ are fixed, and a concentrated 

force is applied at the top vertex. (f) For bending, displacement of the top vertex normalized by 

the maximum displacement for studied dihedral angle τ, as a function of dihedral angle τ. 
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Geometry of triangulated cylinder patterns 

Figure S2a shows a unit cell of a triangulated cylinder pattern from the crease pattern (Fig 1a). At the 

planar state, 

 ABL a= ,  (1) 

and the law of sines gives 
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At the folded state, height h, twist angle φ, and radius r are used to characterize the geometry (Fig. 

S2b). The coordinates of the points O, O’, A, B, and C are given by, 

 
( ) ( )(0,0,0), 0,0, , ,0,0

2 2 2 2cos , sin ,0 , cos , sin ,

O O h A r

B r r C r r h
n n n n
π π π πφ φ

′

      − + − +      
      

.  (5) 

Then the length of the three folding lines, AB, BC, and AC at the folded state become 
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The strains in these three folding lines are  
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Here hh
a

= , and rr
a

=  are normalized height h, and radius r, respectively.  

 

(a) 

 

(b) 

Figure S2. Illustrations of the triangulated cylinder. (a) Unit cell at the planar state, (b) Top view 

and 3D view of the folder cylindrical state. 
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Deformation energy analysis 

For a stripe (highlighted in Fig. 1a), the deformation energy is given by 

 2 2 2( )
2 AB AB BC BC AC AC

nEAU L L Lε ε ε= + +   (12) 

As shown in Eqs. (9) to (11), the deformation energy U depends on three variables, namely height h, 

twist angle φ, and radius r. Using the principle of stationary potential energy, optimization with respect 

to these variables determines the folded states. Specifically, when only height h is prescribed, the 

folded state can be obtained by solving the following nonlinear equations, 
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When both h and φ are prescribed, the following equations will be solved, 
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MATLAB was used to solve these nonlinear equations.  
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Deformation energy analysis of triangulated cylinder with n = 6, 50α °= , and 50β °=  and 

asymmetric tension/compression behaviors of AC, AB, or AC and AB members 

In Fig. 2c, both AC and AB show strain variations between tension and compression during the 

processes of deploy and collapse. These two members are assigned asymmetrical tension and 

compression behavior, while BC truss keep a symmetrical tension and compression behavior. For AC, 

its tensile rigidity is four orders of magnitude smaller than its compressive rigidity that is as the same 

as that for BC truss. Thus, AC is easy to be stretched but hard to be compressed. For AB, its compressive 

rigidity is four orders of magnitude smaller than its tensile rigidity that is as the same as that for BC 

truss. Thus, AB is easy to be compressed but hard to be stretched. There are three combinations that 

can be considered in this system, specifically with just AC having the asymmetrical behavior, or with 

just AB having the asymmetrical behavior, or with both of them having the asymmetrical behavior. As 

shown in Fig. S3, they all show similar energy landscape with elevated energy at the collapsed state 

and an equilibrium state at the deployed configuration. During collapse, they all show a much higher 

energy barrier to prevent easy collapse. A difference is that when just AB truss having asymmetrical 

tension/compression behavior, there exists an energy barrier during deploy. Given that it is 

experimentally easier to achieve easy tension but hard compression, in the following study, just AC 

truss is assigned asymmetrical tension/compression behavior.  
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Figure S3. Energy landscape when AC, AB, or AC and AB members having asymmetrical tension 

and compression behavior. 
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Deformation energy analysis of triangulated cylinder with n = 4, 50α °= , and 50β °=   

The energy landscape and strain distribution for the triangulated cylinder with n = 4, 50α °=  and 

50β °=  are shown in Fig. S4. It can be seen that this pattern shows very similar feature as that for n 

= 6, 50α °=  and 50β °=  (shown in Fig. 2b). Specifically, the completed collapsed state is at an 

elevated energy state and the deployed state remains at an equilibrium configuration. However, there 

is still an energy barrier to overcome from the collapsed to deployed states, which is similar to that 

shown in Fig. 2a. This energy barrier is about 300 times higher than that in Fig. 2a. For strain variations, 

the maximum strain exceeds 10%, such that a construction paper-folded pattern cannot be collapsed 

because a construction paper cannot bear this large strain. Also, similar to the strains in Fig. 2b, strains 

vary between tension and compression. For example, AC truss is in tension during the most of the 

deploy process and turns compressive right before reaching the deployed state.  

 

Figure S4. Energy landscapes and strain variations during the deploy and collapse processes for 

a pattern with n = 4, 50α °= , and 50β °= . 
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Similar to Fig. 3, AC member is assigned asymmetrical tension and compression behavior. Figure S5 

shows the energy landscape, strain variations, and stiffness. This pattern again shows autonomous 

deploy and selective collapse as there are two collapse paths, with one for easy collapse and one for 

hard collapse.  

 

(a) 
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(b) 
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(c) 

Figure S5. On-demand deployability and selective collapsibility of an origami-inspired 

mechanical metamaterial. (a) Energy landscapes and strain variations during the deploy and collapse 

processes for a mechanical metamaterial inspired by a triangulated cylinder with n = 4, 50α °= , and 

50β °= , and an asymmetric tension/compression behavior for AC member. The dashed lines are strain 

variations when collapsed along the path ○1E

A -> A○2E

A -> A○3E

A -> A○4E

A, i.e., hard collapse path. (b) Energy 

contour showing two collapse paths, hard collapse path A○1E

A -> A○2E

A -> A○3E

A -> A○4E

A and easy collapse path A○1E

A 

-> A○5E

A -> A○3E

A -> A○4E

A, which suggests a selective collapse. (c) Tunable reaction force and stiffness of the 

origami-inspired mechanical metamaterial during deploy and collapse (along two paths). The dashed 

lines are for the hard collapse path.  
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Assembly of the models 

 

(a) 

     

(b)                                               (c)                                                    (d) 
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(e)                                                  (f)                                               (g) 

    

(h)                                                                  (i) 

       

(j)                                                  (k)                                               (l) 

Figure S6. List of components to build the truss-based mechanical metamaterial. 
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Figure S7. SolidWorks model for the truss-based mechanical metamaterial. 
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Figure S8. A spring inside a tube to achieve tension/compression asymmetry in the truss-based 

mechanical metamaterial. 
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Figure S9. Rod end bearing enables smooth rotation.   
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Experimental characterizations 

 

Figure S10. After compression, BC truss that bears largest compression was fractured.  
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(a) 

 

(b) 

 

(c) 

Figure S11. After the 1st compression, the metamaterial is still deployable and collapsible. (a) 3D 

view of the deployed state, (b) side view of the collapse(c) d view, top view of the collapsed state. 
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(a) 

 

(b) 

 

Figure S12. After the 2nd compression, the metamaterial is still deployable and collapsible. (a) 3D 

view of the deployed state, (b) side view of the collapse(c) d view, top view of the collapsed state. 
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(a) 

 

(b) 

 

(c) 

Figure S13. After the 3rd compression, the metamaterial is still deployable and collapsible. (a) 3D 

view of the deployed state, (b) side view of the collapse(c) d view, top view of the collapsed state.  
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Paper-rubber band model 

    

(a)                                                                     (b) 

    

(c)                                                                     (d) 

Figure S14. Photos for paper and rubber band based mechanical metamaterial. (a) 3D view of 

the deployed state. (b) 3D view during collapse. (c) 3D view of completed collapsed state. (d) The 

deployed state can bear compressive load without collapse. Scale bar is 1 cm. 
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