
	

Online Supplemental Methods 
 
Two multi-echo fMRI resting state datasets are examined in this paper. The first dataset is the 
89-subject 4-echo cohort published in (1), referred to as the ME (multi-echo) dataset. The 
second dataset was a smaller 12-subject 3-echo cohort acquired at the National Institutes of 
Health, referred to as the NA dataset (so named because the scans were acquired as part of a 
task study on object naming; only the resting state fMRI scans are used). Each subject’s data 
included a high-resolution T1-weighted (MP-RAGE) scan and one or more resting state T2*-
weighted (BOLD-weighted) multi-echo scans. Pertinent details of these studies are provided in SI 
Appendix, Table S2. 
 
Structural data: processing 
All T1-weighted images underwent automated segmentation by FreeSurfer version 5.3.  
FreeSurfer segmentation yielded high-resolution (1 mm isotropic) masks of brain compartments. 
Lower resolution masks to match the fMRI data (3 mm isotropic) were created using nearest-
neighbor resampling. Separate gray matter masks of the cortical ribbon, cerebellum, and 
subcortical nuclei were created. Masks of the white matter underwent 0-4 erosion cycles, and 
ventricle masks underwent 0-2 erosion cycles at 1 mm resolution prior to resampling to fMRI 
resolution.  
 
To separate signals with varying proximity to gray matter, fMRI-resolution masks were 
subtracted from each other to identify voxels in superficial, deeper, and deepest nuisance masks 
(in white matter: ero0-ero2, ero2-ero4, and ero4 masks). In the ventricles, which are much 
smaller, only superficial and deeper masks (ero0-2 and ero2) were possible. In Figures, color 
darkness corresponds to mask depth (i.e., light green are superficial voxels, dark green are 
deepest voxels). These procedures are identical to those described in (2, 3). 
 
Two whole-brain masks are used. The all-brain mask contains all voxels inside the brain based 
on FreeSurfer segmentation and is used to mask images prior to ME-ICA. Because the spatial 
coverage of the structural image is often larger than that of the fMRI data (e.g., fMRI 
acquisitions often crop out portions of the cerebellum), another whole-brain mask including 
only voxels with mean fMRI values over 20% of the modal value was combined with all the 
above-mentioned masks to exclude any non-scanned parts of the brain. 
 
fMRI data: preprocessing 
fMRI scans of all cohorts underwent identical processing (except as noted). Throughout 
processing the first 4 volumes from all fMRI scans were ignored to ensure magnetization 
equilibrium in used data. 
 
To prepare scans for analysis, all scans first underwent slice time correction using AFNI’s 
3dTshift, followed by motion correction via AFNI’s 3dvolreg. If multiple runs existed (NA cohort 
only), the 5th volume of the first run was the target volume for motion correction, thus enforcing 
cross-run alignment. This 5th volume was linearly registered to the subject’s T1-weighted image 
using AFNI’s 3dAllineate, and the T1-weighted image was linearly registered to the TT_N27 atlas 
space via AFNI’s @auto_tlrc command. All transformations were concatenated to resample the 
slice-time-corrected fMRI images to atlas space at 3 mm isotropic resolution in a single step. 
Prior to examination of the temporal properties of the data, all images of all cohorts were 
visually inspected to ensure proper registration and adequate brain coverage. 



	

 
Note that a 4-echo dataset exists as 4 volumes per run and that these volumes were processed 
independently of each other. However, the resulting independently-estimated transforms are 
nearly identical, reflecting both the stability of the registration algorithms and the fact that only 
~12-16 ms elapse between each version of an image (see detailed discussion of motion in these 
data in (4)). These separate preprocessed volumes - slice-time corrected, motion-corrected, and 
in atlas space - serve as the substrates of analyses leveraging multi-echo signal decay. We also 
performed all multi-echo computations in scanner space followed by the appropriate 
transformations into atlas space, but these results were comparable to our main results and 
accordingly we do not show them. 
 
fMRI data: processing to leverage multi-echo decay properties 
To obtain ME-ICA denoised data, the preprocessed images were masked by the whole-brain 
mask, vertically concatenated, and then submitted using “default” settings to tedana.py as 
implemented in AFNI1. As described in (1, 5), this procedure yielded a single “optimally 
combined” image that merged the multiple volumes for various echo times according to each 
voxel’s estimated T2*, a list of ICA components and estimates of the extent of R2* and S0 
modulation observed in the components across echoes (summarized by kappa and rho values, 
which are statistics describing the fit of signals over echoes to DR2* and DS0 models, 
respectively, see (5) for full definitions and discussion), and the “multi-echo ICA denoised” 
image excluding components that show high S0 dependence but low R2* dependence as 
determined automatically by elbows in the kappa and rho distributions. The difference between 
the “optimally combined” and “multi-echo ICA denoised” images is the “discarded” image. 
 
Multi-echo ICA leverages the covariance structure of tens or hundreds of thousands of voxel 
signals over time to identify major signals in the data, followed by classification of these signals 
as “BOLD-like” or “not-BOLD-like” according to their decay properties across echoes. This 
procedure has the advantage of finding structured signals, but inherits some constraints of ICA. 
Because signal separation by ICA is optimized for spatial independence of the signals, ICA tends 
to place spatially specific signals into single components but will not place widespread signals 
into single components. In other words, global or near-global signals will pervade many 
component timeseries. 
 
We thus decided to also fit signal decay, at each voxel and timepoint, to the monoexponential 
decay, !(#) = !&'() *+∗- , using Matlab’s nlinfit with least squares optimization. This 2-parameter 
model requires at least 2 echoes to fit, and the accuracy of the fit will increase with increasing 
echoes. This technique is noisy in 3-echo data, and somewhat less noisy in 4-echo data, but it 
also has no spatial constraints on S0 and R2* estimation. Under this approach, fMRI timeseries 
become decomposed into S0-timeseries and R2*-timeseries (or, equivalently, T2*-timeseries). 
An example of signals and fits is shown in SI Appendix, Fig. S1. We use this approach not to 
advocate its use in the present data (FIT would perform better with more echoes), but instead 
to show that certain separations of S0 and R2* effects by ME-ICA are truly S0 and R2* effects, 
the spatial constraints of ICA aside. 
 
In figures, fMRI timeseries are presented after “mode 1000” normalization (the modal value of 
all voxels at all times in a scan defines 1000 units). The scaling is held constant across images 
																																																								
1 A forked, freestanding version of ME-ICA is available at: https://bitbucket.org/prantikk/me-ica 



	

when possible (e.g., from “optimally combined” to “multi-echo ICA denoised”), but since 
multiple kinds of images are presented (R2*-timeseries vs. optimally combined timeseries, etc.) 
different scaling factors must sometimes be used. 
 
Physiological traces 
The 12 NA datasets includes pulse oximeter traces (in arbitrary units) and respiratory belt traces 
(in arbitrary units) for each scan, both sampled at 500Hz. The pulse oximeter traces underwent 
automated peak detection in Matlab to detect systole, and instantaneous heart rate was 
calculated from peak-to-peak intervals. Pulse oximeter traces contain many artifacts, and 
suspicious portions of signals were identified using methods such as sensible checks on changes 
in heart rate (e.g., >25 Dbpm in a single beat). All signals and detected peaks were visually 
checked in their entirety to exclude spurious peaks. The respiratory belt traces are presented 
without further processing and were submitted to RetroTS.m in AFNI to derive respiration 
volume per unit time (RVT) measures following (6). In Figure 2 and elsewhere, respiratory 
pattern variability is defined as the standard deviation of the envelope of the z-scored 
respiratory belt record (which is in arbitrary units). This exact measure to our knowledge has not 
been used in the literature but is a sensible way to gauge the variety of slow, fast, deep, and 
shallow breathing patterns that occur in a scan. 
 
fMRI data: nuisance regressions 
Several denoising strategies are examined to attempt to remove ventilation-related signals from 
data after ME-ICA or FIT, shown in Figures S5-7. The nuisance regression of mean compartment 
signals used the deepest white matter mask and deep ventricle mask in each subject, as well as 
the 6 realignment parameters and their first temporal derivatives, for a total of 14 regressors 
(Figures S6 and S7). In SI Appendix, Fig. S5, two models of respiratory variance were tested. First, 
the RVT measures at 5 lags (the default output of RetroTS.m) were used as regressors, as well as 
5 variables created by convolving each of those regressors with a “respiratory response 
function” created in (3). Second, the RV (respiratory variance) measure was created from the 
standard deviation of the respiratory trace within a 6-second window (following (7)), and this 
trace was lagged back 3 seconds and forward 3 seconds to create 3 regressors, and each of 
these regressors was convolved with the RRF defined above for a total of 6 respiratory 
regressors. All regressors had mean and linear trend terms removed and were standardized 
prior to regressions. 
 
fMRI data: approaches to separating widespread signals from sparse signals 
After demonstrating in the NA cohort that widespread R2* signals are often linked to respiratory 
patterns, we demonstrate in detail two methods for removing widespread signals: GODEC and 
regression of mean gray matter signals. Results related to a third method, robust principal 
components analysis (PCA), are shown in supplemental figures, as are results related to a fourth 
method, CompCor. 
 
All of these methods were applied to “multi-echo ICA denoised” images.  
 
Mean signal regression entailed computing the mean signal of the cortical ribbon in a subject 
(this mean signal, as mentioned in the main text, correlates at nearly r = 1 with the average of all 
gray matter signals and with the average of all within-brain signals), removing mean and trend 
terms from the mean signal regressor and all voxel timeseries, and performing a univariate 
regression. We show the variance removed and retained (in the residuals) by this regression.  



	

 
CompCor describes a family of approaches that identify nuisance signals in non-gray matter 
portions of fMRI scans and attempt to derive nuisance regressors from those signals by PCA (8). 
Our results related to CompCor take 3 forms, and leverage the signals in each of the 3 white 
matter nuisance compartment masks and 2 ventricle compartment masks mentioned above. In 
each of these masks and in each subject, the mean signal was calculated and then correlated 
with the global signal, and the values of these correlations in different masks are shown in SI 
Appendix, Fig. S11. In addition to the mean signal, we also decomposed the voxel signals in each 
compartment by PCA and SVD, selected the 5 signals that explained the most variance (as is 
commonly done in CompCor approaches), correlated these signals with the global (mean 
cortical) signal, and plotted the highest correlation for each subject within each mask space in SI 
Appendix, Fig. S11. The mean value across subjects within each compartment for each 
treatment of the nuisance signals is shown with a large red dot. For the purposes of Figures S12 
and S13, only white matter signals in the deepest mask were used (for these signals are the 
most isolated from and distinct from those of the gray matter). 
 
GODEC and robust PCA, in contrast to CompCor approaches, operate on gray matter timeseries 
and attempt to divide widespread signals from the other signals of the gray matter. GODEC is a 
multivariate technique related to robust PCA, and both techniques are part of a large family of 
techniques intended to separate background signals from sparse signals in large matrices. 
GODEC and robust PCA can achieve similar solutions, but GODEC is considerably more 
computationally efficient, which is why we focused on it in this paper. GODEC is formally 
described below, Python code for our implementation is found here2, and the paper detailing 
the algorithm (9) can be found here3 or at the website accompanying this paper4. Numerous 
implementations of robust PCA have been developed in the past two decades. Code for many 
approaches can be found here5, and the specific form we applied (Augmented Lagrange 
Multiplier (ALM)) is described here6 with Matlab code available at the just-mentioned website or 
the website accompanying this paper. 
 
Robust PCA decomposes data into the sum of a low-rank space of signals and a sparse space of 
signals. The low-rank space includes a high percentage of variance in the data but is explained 
by a small number of uncorrelated signals. In contrast, the sparse space includes a low 
percentage of variance in the data but is explained by a large number of uncorrelated signals. 
GODEC differs from conventional robust PCA in accommodating a random noise component and 
in using different techniques to achieve the signal partitioning, described below. The low-rank 
space was considered to carry the global signal. The sparse space was considered to carry BOLD 
network activity. Our implementation of GODEC is Python-based (godec.py), and included a 
random sampling method to estimate the covariance matrix iteratively with a power method as 
described below. We also included steps of discrete wavelet transform before and after GODEC 
to conserve autocorrelation in the final solution, using the Daubechies wavelet. A rank-1 
approximation was used, with 100 iterations. 
 

																																																								
2 Code implementing GODEC is available with ME-ICA at: https://bitbucket.org/prantikk/me-ica 
3 https://sites.google.com/site/godecomposition/home 
4 www.jonathanpower.net/paper-multiecho.html 
5 http://perception.csl.illinois.edu/matrix-rank/sample_code.html 
6 https://arxiv.org/abs/1009.5055 



	

As mentioned in the main text, all background separation algorithms have tunable parameters. 
We used parameters that returned low-rank spaces with rank approximately of 1-4 to minimize 
removal of signals associated with resting state networks. Inclusion of higher numbers of signals 
in the background for in these data (e.g., ~10-15) began to remove much of the on-block 
structure of the correlation matrices shown in SI Appendix, Fig. S14, consistent with 
incorporation of resting state networks in the background, which we deemed undesirable for 
our purposes of separating the largely additive global respiratory signals from other signals in 
the data. 
 
In Figures 3, S9, and S12 we show signal separation by mean signal regression, by GODEC, by 
robust PCA, and by CompCor as gray plots. Online Movie 6 shows such separations for all ME 
subjects. In SI Appendix, Fig. S13 we plot the mean correlation matrix after all of these 
techniques, the histograms of these matrices (all are approximately zero-centered), and plot the 
matrices against one another. 
 
Implementation of GODEC 
 
Given an /	1	2 dense matrix 3, we use GODEC to approximate 3 as 3 = 4 + ! + 6, where 4 is 
a low-rank space, ! is a sparse space, and 6 is random noise. This approximation differs from 
the decomposition performed by robust PCA (RPCA) which solves 3 = 4 + !. GODEC’s 
computations can be performed much more quickly than those of RPCA, which is the chief 
reason it has been chosen in this paper. 
 
We use the bilateral random projection (BRP) method to estimate 4 as a rank-7 approximation 
of 3 such that 4 =	89(:+*89)(98+*, where 89 = 3:9and 8+ = 3*:+. :9 ∈ ℝ=	>	?  and :+ ∈
ℝ@	>	?  are random matrices. Efficient estimation of 4 is accomplished via an iterative updating 
process, where we use the right random projection 89 to build a better left projection matrix :+ 
and then use	8+to build :9. In particular after 89 = 3:9, we set :+ = 	89 and calculate 8+ =
3*:+, and then we set :9 =	8+ and calculate 89 = 3:9. 
 
In cases where the singular values of 3 decay slowly, a power scheme modification can improve 
estimation: 3 is reformulated as 3A = (33*)B3 such that CDE3AF = CDE3AF+BG9. The singular 
values of 3A decay faster than those of 3 but the matrices share the same singular vectors. The 
BRP of 3A is 4A = 89(:+*89)(98+*, where 89 = 3A:9and 8+ = 3A*:+. We use QR decomposition to 
calculate 89 = H9I9 and 8+ = H+I+.  

The low-rank approximation of 3 thus becomes 4 = E4AF
J

KLMJ = H9[I9(:+*89)(9I+*]
J

KLMJH+*.  
 
The error of the BRP procedure, including when paired with the power scheme, approaches the 
error of SVD (which is used in many robust PCA approaches) under mild conditions. However, 
whereas the computational cost of SVD is either /+2 or /2+, the cost of GODEC is of order 
7+(/ + 32 + 47) + (4R + 4)/27, with 7 typically far less than / or 2. 
 
The overall goal of GODEC is to minimize the decomposition error: minV,W

‖3 − 4 − !‖Z+ , with rank 
(4) ≤ 7 and card(!) ≤ \. GODEC accomplishes this task by iteratively solving two subproblems: 
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These subproblems are solved by updating 4)  by singular value hard thresholding of 3 − !)(9 
and by updating !)  by entry-wise hard thresholding of 3 − 4) . 
 
Algorithmically, our implementation is as follows: 
Input: 3, 7, \, k, R 
Output: 4, ! 
Initialize: 4l = 3;	!l = 0; 	# = 0 
while ‖3 − 4) − !)‖Z+ ‖3‖Z+⁄ 	> 	k do 
 # = # + 1 
 4A = [(3 − !)(9)(3 − !)(9)*]B(3 − !)(9) 
 89 = 4A:9, :+ = 	89 
 8+ = 4A*89 = H+I+, 89 = 4A8+ = 	H9I9 
 If 7q2\(:+*89) < 7 then 7 = 7q2\(:+*89), goto first step, end; 

 4) = H9[I9(:+*89)(9I+*]
J

KLMJH+*  
 !) = ℘t(3 − 4)), with Ω the nonzero subset of the first \ entries of |3 − 4)| 
end while 
 
Motion-related analyses 
A variety of analyses have been developed to identify motion-related influences in functional 
connectivity data (reviewed in (10)). Here we utilize four techniques: 1) visualizing thousands of 
voxel timeseries at the single-subject level as a heatmap paired with motion traces, following 
(11); 2) “QC:RSFC” analyses, which document the linear dependence of resting state functional 
connectivity (RSFC) measures on quality control (QC) measures, following (12); 3) high-low 
motion differences, which document disparities between motion-binned groups of subjects; and 
4) scrubbing analyses, which demonstrate how covariance changes when certain volumes of a 
scan are excluded from calculations.  
 
Head position traces: the {X Y Z pitch roll yaw} estimates provided by 3dvolreg. The motion 
estimates plotted in the paper and used for QC:RSFC analyses are derived in unprocessed data 
since motion estimates on slice time corrected data can be misleadingly low (2, 4). The 5th 
volume was the reference volume. 
 
Head motion traces: head motion was calculated as the sum of the absolute values of the 
derivatives of the head position traces, after converting rotational estimates to arc 
displacements at a radius of 50 mm (approximately the radius of the cortex). This measure is 
called Framewise Displacement (FD) (13). FD = 0 for the first volume of a scan by convention. 
 
Heatmaps: voxel timeseries are shown as a gray-scale heatmap (time on x-axis, voxels on y-axis), 
with voxels organized by the FreeSurfer-derived brain compartments mentioned above, 
following procedures described in (2, 3). Colored bars at the side of the voxel timeseries denote 
the various brain compartments, and a bright green line separates gray matter timeseries from 
all other brain compartments. Mean and trend terms were removed from all voxel timeseries. 
Above the heatmaps, position estimates are shown in a rainbow of colors, and head motion (FD) 



	

traces are shown in a thicker red trace. In some maps, heart rate (in beats per minute, derived 
from the pulse oximeter record) and breathing traces (from the respiratory belt) are shown as 
well. Scales of traces and heatmaps are held constant across subjects and figures. 
 
QC:RSFC analyses: In Figure 4 the QC measure employed was mean FD, summarizing the amount 
of motion in a scan. The RSFC measure employed was the correlation between fMRI timeseries 
at various pairs of regions throughout the brain. 264 regions of interest (ROIs) defined in (14) 
were used, yielding ~35,000 pairwise correlations. The dependence of each of these correlations 
on motion was quantified by correlating the Fisher-z-transformed correlations across subjects 
with the mean FD across subjects to yield a 264 x 264 matrix. The values in this matrix are 
plotted as a function of the distance between the ROIs, thus providing an indication of how 
increasing motion modulates correlations between nearby versus distant ROIs, across subjects. 
By examining QC:RSFC plots across stages of analysis, the influence (and removal) of motion-
linked focal and global influences can be recognized (see conceptual discussion in (10)). 10,000 
permutations of mean FD were used to establish significance. In Figure 5, both mean FD and 
respiratory pattern variability are separately used for QC:RSFC analyses. 
 
High-low motion differences: subjects were binned into high- and low-motion groups by median 
split of mean FD, and, using the same correlation matrices as above, the 264 x 264 mean matrix 
from the low-motion group was subtracted from the 264 x 264 mean matrix of the high-motion 
group. The resulting 264 x 264 matrix was plotted as a function of distance, as above. 10,000 
permutations of mean FD were used to establish significance. 
 
Scrubbing analyses: in each subject, volumes with FD > 0.2 mm were identified, and 264 x 264 
correlation matrices were calculated for each subject either from signals at all volumes or only 
from signals at non-identified volumes (thus eliminating high-motion volumes from 
calculations). The difference between scrubbed and unscrubbed matrices was calculated in each 
subject, and the mean value of this difference across subjects was calculated. The resulting 264 
x 264 matrix was plotted as a function of distance, as above. Subjects with no timepoints 
excluded were withheld from analysis, and subjects with more than 50% of timepoints identified 
were withheld from analysis. 10,000 permutations that randomly censored identical numbers of 
volumes were used to establish significance. 
 
In plots of these analyses (Figures 4, 5, and S10), red points are the real data. White smoothing 
curves generated via sliding boxcars over 1000 data points summarize the red points, and black 
smoothing curves from 50 of the 10,000 permutation analyses are shown to visually represent 
random effects. The rank of the real versus permuted smoothing curves at 35 mm is listed as a 
percentile to index general dependence on motion, and the comparable rank for the difference 
between the smoothing curve at 35 and 100 mm is shown to index distance dependence (e.g., a 
rank of 99.97% indicates that the observed value is greater than 9,997 of the 10,000 
permutations). 
 
So that the same subjects could be studied in both Figure 4 and S10 (SI Appendix, Fig. S10 
repeats the analyses of Figure 4 with only low-motion volumes, i.e., those not removed by 
scrubbing analyses), we excluded from the above calculations subjects who lost more than 50% 
of their volumes to scrubbing, and also excluded subjects who lost zero volumes to scrubbing (in 
order not to dilute scrubbing effects). Other selection criteria, such as using only subjects with 
mean FD < 0.3 mm or < 0.2 mm (so that a minority of badly corrupted scans with highly unusual 



	

values do not dominate correlation calculations) yielded similar results. Detailed information on 
motion in the ME cohort can be found at (4), and SI Appendix, Fig. S15 shows the distribution of 
mean FD among the ME subjects. In Figure 5, the same criteria were used for the NA scans, 
except the FD value for scrubbing was set to 0.25 due to slightly higher “floors” in the FD values 
compared to ME data.  
 
Online Supplemental Results 
 
ME-ICA places global BOLD signals into multiple BOLD-like ICA components 
ICA optimizes signal separation using spatial criteria. Signals found throughout the gray matter 
(the vertical black and white bands in Figure 1), since they are spatially non-specific, are unlikely 
to be categorized by ICA as distinct components and are instead likely to be placed in many 
component timeseries.  
 
The presence of global signals in multiple components is easily seen. SI Appendix, Fig. S2 shows 
all component timeseries for two subjects. The global black and white bands are present in 
multiple BOLD-like component timeseries, and these timeseries correlate highly with one 
another and with the mean cortical signal of optimally combined data. Online Video 17 shows 
such plots for each ME subject, all showing the same phenomenon.  
 
Quantitatively, 26% ± 16% of BOLD-like components (3.9 ± 2.7 in raw numbers) correlate at r > 
0.5 with the mean optimally combined cortical signal, whereas 1% ± 1% (0.3 ± 0.7) of non-BOLD-
like components display such correlations. If r > 0.3 is the criterion, these numbers are 60% ± 
17% (9.3 ± 4.2) versus 3% ± 3% (1.6 ± 2.0). On average, retained BOLD-like component 
timeseries correlate with the optimally combined mean cortical signal at r = 0.32 ± 0.24 (p = 0), 
whereas discarded non-BOLD-like components correlate at r = 0.00 ± 0.13 (p = 0.6), a highly 
significant difference (p = 0). The mean cortical signal in optimally combined data correlates 
with the mean cortical signal of ME-ICA denoised data at r = 0.95 ± 0.08, indicating that the 
global signal is largely preserved from undenoised data to ME-ICA denoised data. 
 
Global BOLD signals are truly R2*-dependent signals 
To ensure that the vertical black bands in the BOLD-like components are R2* signals and not 
brain-wide S0 signals that were inadequately separated from R2* signals due to the spatial 
criteria of ICA, all datasets also underwent monoexponential fitting of S0 and R2* at every voxel 
and timepoint. This procedure is labeled FIT and yields “S0-timeseries” and “R2*-timeseries”. SI 
Appendix, Fig. S3 illustrates the separation of S0 vs R2* signals in a subject by both ME-ICA and 
the FIT procedure. Although the FIT procedure is noisier, it has no spatial constraints, and 
identifies similar kinds of distinctions as ME-ICA. Importantly, the same prominent widespread 
signals are identified as R2* signals by both approaches. Online Video 1 shows versions of SI 
Appendix, Fig. S3 for all 87 ME subjects that completed ME-ICA and FIT (1 dataset failed ME-ICA 
and 1 dataset failed FIT).  
 
Across all subjects, the mean signal across cortical voxels is nearly the same in the “optimally 
combined”, “multi-echo ICA denoised”, and “R2*-timeseries” images: mean signals in the R2*-
isolating images are highly correlated (red cells of SI Appendix, Table S1). Additionally, mean 

																																																								
7	Videos are at: www.jonathanpower.net/paper-multiecho.html.	



	

signals in the S0-isolating images are highly correlated (red cells). In contrast, correlations 
between mean signals of R2*-isolating and S0-isolating images are much lower (yellow cells, all 
p’s < 10e-5 compared to the red cells). SI Appendix, Table S1 indicates that global signals are 
mostly R2* signals, and that global variance is partitioned similarly into R2* and S0 elements by 
ME-ICA and FIT procedures. 
 
Methods to remove brain-wide signals 
Two main options exist for removing respiratory BOLD signals: to externally measure respiration 
and model its consequences in BOLD signals, or to use data-driven methods to identify and 
remove respiratory BOLD signals. In this paper, we pursue the data-driven option because the 
87 multi-echo-denoised ME datasets have no physiological records and only 19 NA scans with 
physiological records successfully underwent multi-echo denoising and we therefore would be 
able to make only limited statements about the efficacy of physiological models in removing 
respiratory signals. Additionally, extant model-driven approaches have been reported to be 
inadequate methods of removing respiratory variance (3). 
 
The characteristics of respiratory signals make them unlikely to be removed by many common 
data-driven denoising approaches. As already stated, spatial ICA does not isolate global signals 
as distinct components because they are not spatially specific. Frequency filtering cannot 
eliminate global respiratory signals because they are within the typical pass-band of interest of 
resting state studies (common pass-bands are 10-100 seconds; global respiratory modulations 
span 20-40 seconds or more (7, 15)). And common nuisance regressions do not remove the 
global signals: Figures S5 and S6 show respiratory signals persisting in NA subjects despite 
regression of variance in respiratory models and regression of motion, mean white matter, and 
mean ventricle signals. SI Appendix, Fig. S7 shows global signals (which are likely respiratory) 
persisting in ME subjects after such regressions. Online Video 3 shows such plots for all 87 ME 
subjects. Global signals before and after such regression correlate at r = 0.72 ± 0.11 across ME 
subjects. 
 
None of the above approaches removed respiratory signals adequately from data. Several 
approaches can remove global respiratory signals along with all other global signals. Mean signal 
regression, by definition, is one such approach. Depending on how nuisance masks are defined, 
regression of white matter mean signals or white matter PCA signals will yield nuisance 
regressors either nearly identical to the global signal (if superficial voxels are used, SI Appendix, 
Fig. S11) or at very highly correlated to the global signal (if deeper signals are used, such as in 
Figures S12 and S13). Robust PCA and GODEC can both identify low-rank spaces that effectively 
contain most or all global signals. All of these approaches produce similar correlation matrices 
that are nearly zero-centered (SI Appendix, Fig. S13). All of these approaches largely eliminate 
group-level dependence of correlations on motion. These approaches achieve a common goal 
but by distinct means, and, though broadly the correlation matrices they produce are similar, 
and they also share similar motion-related properties, there are distinctions between the 
matrices, as mentioned in the main text. These distinctions deserve further attention but a full 
exploration of these differences is beyond the scope of this manuscript. 
 
Online Supplemental Discussion 
 
Multi-echo signals can be used in multiple ways for denoising purposes 



	

The basic utility of multi-echo signals is in their decay properties, which in principle allow one to 
separate S0 from R2* influences in signals. These decay properties can be isolated or used in 
multiple ways, each with particular advantages and disadvantages.  
 
One approach is to fit a monoexponential decay to the observed signal at each voxel, a 
procedure called FIT in this paper. The FIT method is attractive for its direct and unambiguous 
treatment of the signals. However, this method is limited by noise in the signals (smaller voxels 
with higher thermal noise will yield poorer fits) and by the number of echoes obtained (fit 
accuracy scales with the number of echoes). In both of these respects the ME data were more 
tractable to FIT than the NA data: the ME voxels were roughly 2.5 times larger than the NA 
voxels, and 4 echoes were available in the ME data compared to 3 in the NA data. Accordingly, 
fits were visibly better (less noisy) in the ME data compared to the NA data (see Online Videos 1 
and 2; or see the “static” in SI Appendix, Fig. S3 in the FIT procedure compared to ME-ICA). One 
could reduce noise in fits by constraining fits by priors (e.g., temporal priors), but this step 
would essentially amount to applying a filter to the data and we chose not to do that in this 
report. 
 
A related approach is the dual-echo procedure in which signal at a very early echo time is 
regressed from a typical echo time at each voxel in an attempt to correct the typical echo time 
for S0 changes (which should be well-captured at the early echo time). This approach has the 
advantage of being simple to implement with little alterations to sequences needed, but it also 
does not fully isolate S0 from R2* effects, and has only partial efficacy in removing motion 
artifact in data (16). 
 
Another approach is to group signals across voxels in various ways prior to examining decay 
properties. Multi-echo ICA is an example of this approach (5). Such procedures benefit from 
suppressing thermal (or other) noise by averaging many signals prior to calculating signal decay 
properties, but they also inherit the limitations of the grouping procedure. For example, in this 
paper we demonstrated the tendency of spatial ICA to place global signals into multiple 
components. Another limitation of this approach is that dimensionality reduction is needed and 
does not succeed comparably across data with different properties. For example, the ME data 
(the data on which the ME-ICA procedure was developed) usually underwent ME-ICA with 
consistent separation of BOLD and non-BOLD signal in ways that were congruent with FIT’s 
separations, whereas the NA datasets in several instances either failed ME-ICA completely or 
placed some BOLD-like signals into non-BOLD-like components. This behavior was easy to 
identify because global signals that were synced to changes in respiration appeared in non-
BOLD-like components, whereas FIT identified the global signals as R2* signals. Adjustment of 
parameters in the algorithm can improve performance across datasets with various 
characteristics, but the need for such adjustment is a limitation of the approach.  
 
We mention the limitations of FIT and ME-ICA in order to give a full account of our “user 
experience”, not to dissuade readers from using the techniques. In fact, we are enthusiastic 
about both of these approaches. A principal attraction of these approaches over single-echo 
approaches to denoising is that multi-echo approaches leverage the physical properties of the 
signal, rather than assumed features of the data, to separate “signal” from “noise”. For example, 
an ICA procedure that bins signals by decay properties is fundamentally different than an ICA 
procedure that bins signals by their spatial or temporal features – it is not expected that the 



	

former features would differ across clinical populations (e.g., stroke patients versus typical 
subjects), whereas the latter features might differ. 
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Figure S1: Using multi-echo data to separate S0 from R2* effects. At left, 3 schematic timeseries of signal intensity at a voxel over 6 volumes, showing how single-echo sequences cannot distinguish S0 from 
R2* effects in fMRI signals. In multi-echo sequences, S0 and R2* can be derived from the multiple readouts of the fMRI signal per excitation. At right, real data at 4 echo times are shown from a single timepoint 
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Figure S5: Respiratory fluctuations in NA data remain after attempts to model respiratory variance. Plots as in Figure 2 but for different NA subjects, using respiration volume per unit time (RVT) 
and respiratory variance (RV) models to remove respiratory variance after ME-ICA (following methods developed in [Birn, 2008; Chang, 2009]). The respiratory response function (RRF) used was 
obtained empirically from deep breaths of several subjects in [Power, 2017].
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Figure S7: Global fluctuations in ME data remain after common nuisance regressions. Plots similar to those in Figure S6, but now for ME subjects after ME-ICA denoising.
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Figure S9: Further examples of GODEC. At top, the “multi-echo denoised” data from Figure 1. Middle and bottom show the splitting of these signals into low-rank and sparse elements by GODEC. 
The low-rank elements include the global signals likely due to to respiratory patterns.
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Figure S10: Censoring high-motion volumes can attenuate or eliminate significant distance 
dependence. These analyses mirror those in Figure 4, except now volumes with FD > 0.2 are withheld from 
calculations (the same volumes shown in the scrubbing analysis of Figure 4). Note the decreased permutation 
ranks for distance dependence compared to Figure 4.
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Figure S12: Illustration of global signal removal by multiple methods. For a single subject, ME-ICA denoised data are shown at top, the global signal removed by robust PCA, GODEC, 
mean signal regression, and CompCor are shown in the middle row, and the residual timeseries are shown at bottom. Similar plots for all ME subjects are found in Online Movie 6.
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