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S1 Table. Specifications for the 4 biological and 5 simulated movie data sets used
in this paper.

Specifications Biomovies Simulated movies
datasets 4 sets (D1–D4) 5 sets (DS1–DS5)
channels RGB 4 sets green-only, 1 set RGB

(DS5)
frame count N = 115 (D1, D2), 44 (D3, D4) N = 25, 60, 63, 78, 76
hours of recording 57.5h (D1, D2), 22h (D3, D4) varying times
lateral resolution 60 nm/px (high) varying (low - moderate)
experiments 2 experiments w/ 2 conditions

each
5 simulations

cell organism S. meliloti (in situ) cell model (in silico)
cell count ∼300 cells (D1, D2), 80 cells (D3,

D4)
vary from ∼70 to ∼400 cells

cell shape diversity high variation (from rod-shape to
contiguous cells)

low variation (elliptical or oval)

cell shape size high variation no variation
cell density high density high density
cells in contact touching cells (no overlay) touching with few overlays, no

touching
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S1 Appendix. Simulated movies. Simulated movies were created by employing: cell
simulation, shape, texture, channels with noise and artifacts. While the cell simulation software
(Wiesmann et al. 2013) has been extended for biomovie simulation, the steps for simulation are
similar to image simulation. First, the cell shape is calculated. Second, the cell position on the
image. In the third step, the cell texture is added. In the fourth and last step, imaging artifacts
and noise are added. For the simulated movies, bacterial shapes are modeled as ellipses with
varying length of semi-major and semi-minor axis. Bacterial cell positions are determined on a
frame by frame basis by minimizing an energy function. For the first frame the first bacterium
is placed in the image centre. After it has divided, the new bacterium is placed next to the
bacterium of which it originates from. After all bacteria for the frame have been calculated,
the bacteria are input to the following energy equation:

E∗(bacteria) =

No∑
o

∑
p∈o

Idist(p) + k ∗
No∑

o1 6=o2

∑
p1∈o1

∑
p2∈o2

δ(p1, p2) (1)

Where:

No = number of bacteria
Idist = distance transformed mask of the bacterial cell shape
δ(p1, p2) = equal to 1 if the below condition is fulfilled.

If p1 == p2 pixels of bacterium o1 and o2, respectively. Else, δ(p1, p2) = 0.

The first energy summand keeps bacteria sticking together in the image centre. The second
energy summand prevents overlap between bacteria. The factor k weighs energy summand one
against the second energy summand. The gradient descent method is applied to iteratively
minimize the energy equation to find the positions of bacterial cells on the current frame.
Their positions at the previous frame are the starting point for energy minimisation at the
current frame. Three channels are simulated with varying appearance modelling the properties
of various real fluorophores. The bacteria texture is calculated with the sigmoid function as
written below.

fsigmoid =
Ii

1 + eκ∗v
(2)

Ii = maximum intensity of the texture of bacterium i (Gaussian distributed)
v = distance transformation value for the corresponding pixel on the mask
κ = controls the slope of the intensity at the bacteria edges

The bacterial intensity is highest in blue channel with lowest variability. The green channel
has medium intensity level, and variability. The red channel has the lowest intensity, and the
highest variability. Each channel depicts linearly increasing background intensity from the left
to the right side of a modeled cell to simulate illumination inhomogeneity. This slope of the
intensity ramp is chosen to be increasing from blue channel over the green channel to the blue
channel. Gaussian noise is added with increasing level from blue channel over the green channel
to the red channel.
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S1 Fig. Comparative illustration of the single-cell segmentation approach to our
particle-based solution for constructing lineages in biomovies. (A) Single-cell segmen-
tation is used to track object centroids, detecting cell mitosis explicitly, and constructing cell
lineages accordingly. (B) Multiple particles are detected within regions, and tracked over time,
detecting mitosis implicitly.
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cell division
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(A) Single-cell segmentation (centroids)

t2
cell division

t1
elongation

t0
mother cell

(B) CYCASP approach (particles)
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S2 Fig. Overview of the three steps of the CYCASP architecture. It comprises:
preprocessing, particles, and patch lineages. Their respective function calls in the publicly
available source code are referenced on the right side of the figure. The modular patch lineage
algorithm uses the create, and propagate patches functions within its three internal stages: find
patches, split patches, and merge patches.

Preprocessing
Input: RGB images

Output: binary images

For each time (frame) t from 0 → tmax: preprocess()
enhance the signal to noise ratio
subtract and enhance local signals
adaptive background masking

Particles
Input: binary images

Output: particle trajectories

For each get_data()
time point: particle finding, and tracking
trajectory: trajectory linking
trajectory: trajectory time filtering
particle: particle color re-adding
trajectory: trajectory color filtering

Patch Lineages
Input: particle trajectories

Output: patch lineages graph (.gml or .json)

At time tmax: modalgo()
1 - find patches

2 - create patches
3 - propagate patches

For each time t from tmax → 0
1 - find patches

2 - create patches
3 - propagate patches
4 - split patches

2 - create patches

For each time t from 0→ tmax

5 - merge patches
2 - create patches
3 - propagate patches
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S2 Appendix. Preprocessing A pipeline of standard computer vision methods to reduce
noise and enhance the object-to-background contrast.

1. Enhancing the signal to noise ratio (SNR)

(a) RGB to greyscale transformation

(b) image inversion

(c) contrast limited adaptive histogram equalization (CLAHE) using a tile size τ = 32

px, and contrast limit of 3, to clip, and uniformly distribute any histogram bin above
that limit

(d) pixel intensities transformation for a global contrast enhancement using the following
formula: I ′t = L

φ × (Ît × 1
L/θ

)2 with maximum intensity L=255, and φ = θ = 1

(Fig. S3(D)).

2. Subtracting and enhancing local signals

(a) denoise bilateral filtering with spatial closeness sspatial = 75, radiometric similarity
srange = 75, and pixel neighborhood size δ = 5 px of each pixel neighborhood that
is used during filtering

(b) adaptive mean thresholding with block size τ = 132 px, and constant C = 2, that is
subtracted from the weighted mean in order to prevent noise to pop up at background
regions (Fig. S3(F)).

3. Adaptive background masking

(a) median blurring with an aperture linear size k = 152 px

(b) binary thresholding with h = 255, and maximum value Vmax = 255

(c) masking, by using a binary mask of image dimensions (r×c) is initialized, containing
the background. A bitwise comparison (disjunction) returns the foreground which
contains the colony (Fig. S3(H)).
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S3 Fig. Example results after each preprocessing step for original biomovie D1
at t = 57.5 h, the final frame. The RGB image is showcased here at 100% exposure,
with close-up detail of the bottom left quadrant. (A) The input RGB image. (B) After
the greyscale transfosrmation and image inversion. (C) After the contrast limited adaptive
histogram equalization (CLAHE). (D) After the global contrast enhancement. (E) After the
denoise bilateral filtering. (F) After the adaptive mean thresholding. (G) After the median
blurring. (H) After masking, the final output is a binary image. For the detailed preprocessing,
see supplemental Appendix S2.

(A) input: RGB (B) greyscale, invert

(C) CLAHE (D) global contrast
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(E) denoise bilateral (F) adaptive threshold

(G) median blur (H) output: binary image Î115
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S4 Fig. Binary images after preprocessing of the original biomovie final frames
(D1–D4). (A) Biomovie D1 shows a phenotypic heterogeneity experiment, with two sep-
arate colonies visible. (B) Biomovie D2 is an alternate condition of the same experiment.
(C) Biomovie D3 shows an experiment on bacterial communication by quorum sensing. (D)
Biomovie D4 is an alternate condition of the same experiment.

(A) D1 - Î57.5 (B) D2 - Î57.5

(C) Biomovie D3 - Î22 (D) D4 - Î22
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S5 Fig. RGB images of the final frames from simulated movies DS1, and DS2. (A)
DS1. (B) DS2.

(A) DS1 - I25 (B) DS2 - I60

S6 Fig. Binary images after preprocessing of RGB images in S5 Fig. (A) DS1. (B)
DS2.

(A) DS1 - Î25 (B) DS2 - Î60
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S7 Fig. RGB images of the finale frames from simulated movies DS3, and DS4.
(A) DS3. (B) DS4.

(A) DS3 - I63 (B) DS4 - I78

S8 Fig. Binary images after preprocessing of RGB images in S7 Fig. (A) DS3. (B)
DS4.

(A) DS3 - Î63 (B) DS4 - Î78
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S9 Fig. Particle detection for original biomovie D1 across cell division events.
Detected particle locations are annotated as red circles on original images (A-C, G-H), and
white circles on binary images (D-F, I-J). The particle paradigm handles cell division cleanly
despite high levels of noise, and the direct contacts between cells: when the cell elongates, a
new particle is created in the centre when the width between the previous particles surpasses
the distance threshold.

(A) RGB I0.5 (B) RGB I7 (C) RGB I8.5

(D) Binary Î0.5 (E) Binary Î7 (F) Binary Î8.5

(G) RGB I9 (H) RGB I10.5

(I) Binary Î9 (J) Binary Î10.5

11



Supporting information Hattab et al.

S10 Fig. Effect of the time filtering window on particle trajectories in biomovie
D3. Binary images are annotated with eliminated particle positions with large 7-px magenta
circles. (A) A 5-frame window filters out 38 particles. (B) A 3-frame window filters out 31
particles. Blue arrows highlight some of the particles kept for the shorter window but filtered
out in the longer window.

(A) (D3 Î16.5) d= 9 px, time filter window 5 frames (B) (D3 Î16.5) d= 9 px, time filter window 3 frames
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S11 Fig. Example result of particle linking for simulated movie DS5. The result is
shown for cropped 375x500 px subsets of the original 2048x2048 px images depicting four to
seven cells appearing in: cyan (top), and magenta (bottom) in (A–C). The black background
was replaced by white pixels to better notice the cells and the background noise. The threshold
for particle finding was diameter d = 13 px and for particle linking the time filtering window
was set to 3 frames. Computed particle locations annotated as 10 px white dots in (A–C). (A)
Time point 1 (30 min or 0.5 h) shows two ancestor cells. (B) By time point 10 (5 h) both
ancestors have divided once. (C) By time point 20 (10 h) the upper cyan colony has 3 cells,
and the lower purple one has 4. (D) Particle trajectories covering the first 23 time points (11.5
h) are shown by color coding each particle differently according the unique ID of the computed
particle trajectory. This image crop contains 19 unique trajectories, all of which show an overall
downward drift. For the entire DS5 biomovie, we globally found 383 particle positions resulting
in 63 unique trajectories after linking, reduced to 34 trajectories after time filtering.

(A) RGB I?0.5 (B) RGB I?5 (C) RGB I?10

(D) Particle trajectories found across time: t0.5–t11.5
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S12 Fig. Average elapsed time of 100 runs of the preprocessing step for all
biomovies, in seconds. Biomovies in the x-axis are sorted by frame count, from lowest
to highest (as indicated in parentheses). We observe an approximate correlation between frame
count and preprocessing time. The average time varies with a ∆ ± 1 second(s). A mid-2013
MacBook Air (1.7GHz dual-core Intel Core i7, 8Gb of 1600MHz memory) was employed for all
benchmarks.
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S13 Fig. Average elapsed time of 100 runs of the particle step for all biomovies, in
seconds. The particle step includes all three phases of particle finding, linking and filtering.
Biomovies in the x-axis are sorted by frame count, from lowest to highest (as indicated in
parentheses). We observe that particle-related computation time is related to the density of
the colony in the biomovie, rather than the number of frames. The DS4 biomovie is a highly
dense special case, where finding and linking in time over 7000 particles takes over 6 min. The
average time varies with a ∆±2 second(s). The particle step can be computationally expensive,
given a highly populated colony and a particle diameter set to a low value.
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S14 Fig. Patch structure before and after splits/merges occur in biomovie D3 at time points
14.5 h, 15.5 h, and 16.5 h corresponding to the RGB images in Fig. 6. Thresholds are geometric
distance 100 px and specific channel differences of red: 20, green: 50, and blue: 50. Main
images show 7-px dots at computed particle locations; lower left corner shows original binary
image. Top row shows three time points before the split/merge computation, and bottom row
shows those time points after the computation. (A–C) Before the split/merge computation,
all three time points have highly similar patch assignment patterns where particles are colored
by their currently assigned patch ID. The initial patch creation computation has been run at
the final time point (frame 44 in this case) and patch IDs have been propagated backwards to
previous time points. (D–F) The split/merge computation has been run, and only particles with
changed patch assignments are colored by their patch ID; unchanged particles with assignments
matching the top row are grey. (D) Many colored new patch assignments reflect the fact that
the previously propagated patch information was not valid at most of the particle positions for
time point 14.5 h; splits and merges updated these assignments. (E) A moderate number of new
patches reflect the difference in fluorescence patterns between the middle and right columns
of the RGB images in Fig. 6, leading to updated assignments in the split/merge propagation.
(F) Only a few singletons stand out with new assignment colors against the mostly grey points
reflecting a globally unchanged patch pattern, showing that most trajectories visible at time
point 16.5 h maintained correct assignments from the initial computation.

After creating initial patches and propagating backwards, before split/merge computation

(A) D3 - I14.5 (B) I15.5 (C) I16.5

After patch split/merge computation

(D) I14.5 (E) I15.5 (F) I16.5
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S15 Fig. Comparison of the number of annotated cells to the number of computed
particles for four different time points for each biomovie. Observable cells were annotated
using BIIGLE 2.0 (Langenkämper et al. 2017). The four time points in E1 were selected
before the colonies grew out of the image space (i.e. D2) or right before another colony invaded
the image space (i.e. D1). The employed parameters for both experiments are: σmax = 7 px,
Wmax = 5 frames. The particle diameter for E1 and E2 is set to 7 px and 9 px, respectively.
The particle trend is consistent per experiment. On average, we observe that there are at least
1.7 times more particles than there are cells. We calculated regression models based on the
number of particles in each experiment: E1 based on 60 frames, and E2 on 40 frames. The
trend fits to an exponential regression for both experiments. E1 results are consistent with the
exponential trend in the first 21h of the biomovies as shown in Schlüter et al. 2015. We report
the calculated regression parameter results and the average ratio of particles to annotated cells
in the table below.
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correlation
coefficient

coefficient
of determination

average relative
error*

average ratio
of particles to
annotated cells

D1 0.99 0.98 11.74 1.9
D2 0.96 0.93 14.23 1.7
D3 0.98 0.95 10.91 2.7
D4 0.99 0.98 26.03 2.2

*standard error of regression

S16 Fig. Intra-observer reliability for a five times manual annotation of a single
image. A zoomed view of phase contrast image t25 from biomovie D2 is shown below. The
phase contrast image was enhanced: contrast +40%, brightness +20%. Cell centroids are de-
picted as blue dots. The mean and standard deviation are µ = 267 and σ = 21.65, respectively.
The cells were annotated using BIIGLE 2.0 (Langenkämper et al. 2017).
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