1	Lipidomics of Thalassiosira pseudonana Under Phosphorus Stress Reveal Underlying								
2	Phospholipid Substitution Dynamics and Novel Diglycosylceramide Substitutes								
3	SUPPLEMENTARY MATERIALS								
4	Running Title: P Stressed Diatom Lipids								
5									
6	Jonathan E. Hunter ^{1,2†} , Joost Brandsma ³ , Marcus K. Dymond ⁴ , Grielof Koster ³ , C. Mark								
7	Moore ¹ , Anthony D. Postle ³ , Rachel A. Mills ¹ and George S. Attard ⁵ .								
8	1. Ocean and Earth Science, University of Southampton, National Oceanography Centre								
9	Southampton, European Way, Southampton, SO14 3ZH, United Kingdom								
10	2. Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom								
11	3. Faculty of Medicine, University of Southampton, Southampton General Hospital,								
12	Tremona Road, Southampton, SO16 6YD, United Kingdom								
13	4. Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of								
14	Brighton, Brighton, BN2 4GJ, United Kingdom								
15	5. Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom								
16									
17									
18									
19	†Corresponding Author: jhunter@whoi.edu; Current Address: Woods Hole Oceanographic								
20	Institution, Woods Hole, MA 02543-1050, United States of America								

Supplementary Figure 1 - Macronutrient concentrations in the cultures through time. Dissolved phosphorus concentration in the growth media (A); dissolved silicon concentration in the growth media (B); particulate organic phosphorus concentration per litre growth media (C); dissolved phosphorus concentration in the growth media (D) and percentage viability of the T. pseudonana cells in culture (E). Data include P+ and P- conditions, with the progression of time. Data are the mean of n = 3 biological replicates, with error bars of 1 standard deviation.

Total (PC,Figure glycerophosphatidylcholine *A*), 31 *Supplementary* 2 total glycerophosphatidylglycerol (PG, B), total glycerophosphatidylethanolamine (PE, C), total 32 diacylglycerol (DAG, D) and total sulfoquinovosyldiacylglycerol (SQDG, E) per cell under 33 34 P+ and P- conditions, with the progression of time. Panel (F) depicts the change in total lipid quantity (total phospholipid (P-Lipid) and DGCC) per mL culture (Lipid_{t-12h}), between 35 time t and 12 h, in the P- cultures (A). y < 0 indicates a net degradation and loss of the total 36 37 phospholipids, y = 0 indicates a constant quantity (no net synthesis or degradation), y > 0indicates biosynthesis and net increase in total lipid quantity. Values are relative to 12 h, 38 observed as the initiation of P stress and consequently DGCC biosynthesis and P-Lipid 39

- 40 substitution/degradation in the P- cultures. Data are the mean of n = 3 biological replicates,
- 41 *with error bars of 1 standard deviation.*

Lipid Class, Time (h) and Treatment (P+/P-)

- 44 Supplementary Figure 3: Heatmap of correlation coefficients (r) from pairwise comparisons
- 45 *between different lipid classes at each time point (between 12 and 72 h) and each treatment*
- 46 (*P*+ and *P*-), as a measure of fatty acid compositional similarity. The correlation coefficients
- 47 were calculated from percentage relative abundances of each individual lipid species. As the %
- 48 relative abundances sum to 100 in both cases, the fatty acyl similarity of a pair can be simply
- 49 assessed upon r. Data are the mean of n = 3 biological replicates.

Supplementary Figure 4 – Pairwise regression analysis of PC degradation and DGCC 52 53 synthesis, per mL culture volume, between subsequent time points from 12 to 72 h. Data points are individual lipid species, of the same fatty acid composition, between the two lipid 54 classes. This analysis was performed to look for evidence of the recycling of diacylglyceride 55 substructures, liberated by the degradative breakdown of PC and funnelled into the synthesis 56 of the substitute lipid DGCC. Such a relationship would be evident here as a significant 57 anticorrelation, as observed in the DGCC P- t48-t24/PC P- t48-t24; DGCC P- t72-t48/PC P- t48-24; 58 and DGCC P- $_{t72-t48}/PC$ P- $_{t72-t48}$ cases (panels D, E, and F). Data are the mean of n = 359

- 60 biological replicates. The dashed lines represent the 95% confidence bounds of the linear
- *regression model.*

68 Supplementary Figure 5 - Chemical structure assignment of $(Gly)_2Cer(d18:3/24:0)$ (A) and supporting MS2 fragmentation data in negative (B) and positive (C) ion mode. Spectra from 69 a single representative P- sample. Hydroxyl group and unsaturation regio- and 70 71 stereochemistry was not resolved. Arrows indicate fragmentation and the direction of the charged ion position. The negative ion MS2 (B) revealed fragment ions of 968.6918, 72 806.6386, 644.5892 and 179.0543 Da, corresponding to a neutral loss of the formic acid 73 74 (CHOOH) adduct, neutral loss of CHOOH and a glycosyl-H2O, neutral loss of CHOOH and two glycosyl-H2O units and a glycosyl fragment respectively. Knowledge of the CHOOH 75 76 adduct and the retention time was used to identify the [M+H]+ equivalent in positive ion mode and its respective MS2 fragmentation spectrum. In positive ion mode (C), MS2 77 fragment ions of 628.6010, 368.3872, 278.2458 and 260.2358 corresponded to a neutral loss 78

- of two glycosyl moieties, a 24:0 fatty amide fragment ion and a d18:3 long chain base minus
- 80 one and two H2O respectively.

(A) Positive

Database Assignment and Corroborating MS2 Evidence:

							PPM	
MZ (Da)	R.T.	P Val.	P+	P-	Adduct	Assignment	Diff.	MS2 Fragments
774.5897	11.5	1.04E-05	0.00	1.00	(M+H)+	DGCC(20:5/16:0)	2.39	D184, 20:5 and 16:0 NL Fatty Ketene
536.3573	5.0	2.19E-03	0.00	1.00	(M+H)+	LDGCC(20:5)	-1.57	D104, 20:5 NL Fatty Ketene
800.6057	11.9	5.98E-05	0.00	1.00	(M+H)+	DGCC(22:6/16:0)	2.71	D104, 22:6 and 16:0 NL Fatty Ketene
562.3729	5.4	8.74E-03	0.00	1.00	(M+H)+	LDGCC(22:6)	-1.65	D104, 22:6 NL Fatty Ketene
820.5735	10.6	1.02E-04	0.00	1.00	(M+H)+	DGCC(20:5/20:5)	1.59	D104, 20:5 NL Fatty Ketene
846.5897	11.0	1.48E-04	0.00	1.00	(M+H)+	DGCC(22:6/20:5)	2.20	D104, 22:6 NL Fatty Ketene
772.5719	10.8	2.91E-03	0.00	1.00	(M+H)+	DGCC(20:5/16:1)	-0.32	D104, 20:5 NL Fatty Ketene
748.5718	11.0	1.81E-03	0.00	1.00	(M+H)+	DGCC(18:4/16:0)	-0.50	D104, 18:4 and 16:0 NL Fatty Ketene
726.5891	11.7	8.79E-04	0.00	1.00	(M+H)+	DGCC(16:1/16:0)	1.68	D104, 16:1 and 16:0 NL Fatty Ketene
746.5589	10.5	2.22E-03	0.00	1.00	(M+H)+	DGCC(20:5/14:0)	3.10	D104, 20:5 and 14:0 NL Fatty Ketene
510.3410	4.8	9.59E-03	0.00	1.00	(M+H)+	LDGCC(18:4)	-3.04	D104, 18:4 NL Fatty Ketene
724.5720	11.1	4.12E-03	0.00	1.00	(M+H)+	DGCC(16:1/16:1)	-0.20	D104, 16:1 NL Fatty Ketene
796.7424	20.7	7.97E-04	0.00	1.00	(M+NH ₄) ⁺	TAG(16:0/16:0/14:0)	4.41	16:0 and 14:0 NL FA+NH3
798.5871	11.1	1.03E-03	0.00	1.00	(M+H)+	DGCC(20:5/18:2)	-0.96	D104, 20:5 and 18:2 NL Fatty Ketene
794.5575	10.1	2.88E-02	0.00	1.00	(M+H)+	DGCC(20:5/18:4)	1.23	D104, 20:5 NL Fatty Ketene

(B) Negative

Database Assignment and Corroborating MS2 Evidence:

							PPM	
MZ (Da)	R.T.	P Val.	P+	P-	Adduct	Assignment	Diff.	MS2 Fragments
818.5771	11.5	4.41E-04	0.00	1.00	(M+HAc-CH₃)⁻	DGCC(20:5/16:0)	-2.18	20:5 and 16:0 FA Daughter Fragments
844.5949	11.9	7.12E-04	0.00	1.00	(M+HAc-CH ₃)⁻	DGCC(22:6/16:0)	0.49	22:6 and 16:0 FA Daughter Fragments
890.5801	11.1	1.77E-04	0.00	1.00	(M+HAc-CH₃)⁻	DGCC(22:6/20:5)	1.42	20:5 FA Daughter Fragment
770.5778	11.6	1.87E-03	0.00	1.00	(M+HAc-CH₃)⁻	DGCC(16:1/16:0)	-1.39	16:1 and 16:0 FA Daughter Fragments
816.5621	10.8	2.20E-05	0.00	1.00	(M+HAc-CH₃)⁻	DGCC(20:5/16:1)	-1.35	20:5 and 16:1 FA Daughter Fragments
792.5624	11.1	4.49E-04	0.00	1.00	(M+HAc-CH₃)⁻	DGCC(18:4/16:0)	-1.02	18:4 and 16:0 FA Daughter Fragments
1174.7555	12.9	1.30E-05	0.00	1.00		Unknown		
1014.7112	13.6	6.17E-03	0.00	1.00	(M+FA-H)⁻	(Gly) ₂ Cer(d18:3/24:0)	1.34	See Figure 3
532.3505	5.1	4.67E-02	0.00	1.00	(M+HAc-CH₃)⁻	LDGCC(16:1)	2.49	16:1 FA Daughter Fragment
796.5931	11.9	3.46E-04	0.00	1.00	(M+HAc-CH₃)⁻	DGCC(18:2/16:0)	-1.72	18:2 and 16:0 FA Daughter Fragments
595.5395	12.7	4.14E-03	0.00	1.00		Unknown		
838.5529	10.1	4.59E-03	0.00	1.00	(M+HAc-CH₃)⁻	DGCC(20:5/18:4)	6.38	Coelution with Identified +ve Ion
623.5695	13.6	8.15E-03	0.14	0.86		Unknown		
819.5296	11.3	3.72E-02	0.22	0.78	(M-H)⁻	SQDG(34:1)	-0.26	DB Match and Diagnostic R.T. Only
694.6305	15.4	1.28E-02	0.27	0.73		Unknown		
81								

82 Supplementary Figure 6 - Untargeted screen of the T. pseudonana lipidome subject to P 83 stress. Detected ions were ranked based upon normalised differential abundance

(Quantity(P-)/(Quantity(P+) + Quantity(P-))) therefore those at the top are most strongly 84 increased subject to P stress. Panel A displays positive ions and Panel B displays negative 85 ions. R.T. represents chromatographic retention time, P value was determined by unpaired, 86 two sample equal variance T-test. Assignment represents the lipid identity, PPM Diff. the 87 difference between the observed and predicted M/Z, and MS² fragments outlines the observed 88 fragments under AutoMS² in support of the designated assignment. L- refers to a lyso-species 89 (bearing 1 rather than 2 fatty acids), NL = neutral loss, HAc = Acetic Acid and FA = Formic 90 Acid. Data represent the mean of biological triplicate samples. Assignments represent the 91 primary fatty acyl configuration, as determined by the abundance of the fatty acyl fragments 92 93 in the MS^2 spectra.