Supporting information

Programmable Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

Yang Cao,¹ Yuli Chen,¹ Tao Yu,¹ Yuan Guo,¹ Fengqiu Liu,¹ Yuanzhi Yao,¹ Pan Li,¹ Dong Wang,¹ Zhigang Wang,¹ Yu Chen²* and Haitao Ran¹*

¹Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of ultrasound imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P. R. China.

²State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

*Corresponding author:

Yu Chen: Email: <u>chenyu@mail.sic.ac.cn;</u>

Haitao Ran: Email: <u>ranhaitao@hospital.cqmu.edu.cn</u>.

Fig.S1 Diameter of nanodroplets in serum

Fig.S2 Drug-releasing profiles from LN at different ultrasound conditions

(black arrow: ultrasound administration)

Fig.S3 Drug-releasing profiles from PN at different ultrasound conditions

(black arrow: ultrasound administration)

Fig.S4 Cell viability of various ultrasound conditions (*p < 0.05 vs the

control group; ***p < 0.001 vs the control group; n=3).

Fig. S5 Blood retention-time profiles of nanodroplets